GNU Linux-libre 4.4.285-gnu1
[releases.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20
21 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
22
23 /* FSEC = 10^-15
24    NSEC = 10^-9 */
25 #define FSEC_PER_NSEC                   1000000L
26
27 #define HPET_DEV_USED_BIT               2
28 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID                  0x8
30 #define HPET_DEV_FSB_CAP                0x1000
31 #define HPET_DEV_PERI_CAP               0x2000
32
33 #define HPET_MIN_CYCLES                 128
34 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
36 /*
37  * HPET address is set in acpi/boot.c, when an ACPI entry exists
38  */
39 unsigned long                           hpet_address;
40 u8                                      hpet_blockid; /* OS timer block num */
41 bool                                    hpet_msi_disable;
42
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int                     hpet_num_timers;
45 #endif
46 static void __iomem                     *hpet_virt_address;
47
48 struct hpet_dev {
49         struct clock_event_device       evt;
50         unsigned int                    num;
51         int                             cpu;
52         unsigned int                    irq;
53         unsigned int                    flags;
54         char                            name[10];
55 };
56
57 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59         return container_of(evtdev, struct hpet_dev, evt);
60 }
61
62 inline unsigned int hpet_readl(unsigned int a)
63 {
64         return readl(hpet_virt_address + a);
65 }
66
67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69         writel(d, hpet_virt_address + a);
70 }
71
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75
76 static inline void hpet_set_mapping(void)
77 {
78         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80
81 static inline void hpet_clear_mapping(void)
82 {
83         iounmap(hpet_virt_address);
84         hpet_virt_address = NULL;
85 }
86
87 /*
88  * HPET command line enable / disable
89  */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93
94 static int __init hpet_setup(char *str)
95 {
96         while (str) {
97                 char *next = strchr(str, ',');
98
99                 if (next)
100                         *next++ = 0;
101                 if (!strncmp("disable", str, 7))
102                         boot_hpet_disable = true;
103                 if (!strncmp("force", str, 5))
104                         hpet_force_user = true;
105                 if (!strncmp("verbose", str, 7))
106                         hpet_verbose = true;
107                 str = next;
108         }
109         return 1;
110 }
111 __setup("hpet=", hpet_setup);
112
113 static int __init disable_hpet(char *str)
114 {
115         boot_hpet_disable = true;
116         return 1;
117 }
118 __setup("nohpet", disable_hpet);
119
120 static inline int is_hpet_capable(void)
121 {
122         return !boot_hpet_disable && hpet_address;
123 }
124
125 /*
126  * HPET timer interrupt enable / disable
127  */
128 static bool hpet_legacy_int_enabled;
129
130 /**
131  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132  */
133 int is_hpet_enabled(void)
134 {
135         return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138
139 static void _hpet_print_config(const char *function, int line)
140 {
141         u32 i, timers, l, h;
142         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143         l = hpet_readl(HPET_ID);
144         h = hpet_readl(HPET_PERIOD);
145         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147         l = hpet_readl(HPET_CFG);
148         h = hpet_readl(HPET_STATUS);
149         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150         l = hpet_readl(HPET_COUNTER);
151         h = hpet_readl(HPET_COUNTER+4);
152         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154         for (i = 0; i < timers; i++) {
155                 l = hpet_readl(HPET_Tn_CFG(i));
156                 h = hpet_readl(HPET_Tn_CFG(i)+4);
157                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158                        i, l, h);
159                 l = hpet_readl(HPET_Tn_CMP(i));
160                 h = hpet_readl(HPET_Tn_CMP(i)+4);
161                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162                        i, l, h);
163                 l = hpet_readl(HPET_Tn_ROUTE(i));
164                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166                        i, l, h);
167         }
168 }
169
170 #define hpet_print_config()                                     \
171 do {                                                            \
172         if (hpet_verbose)                                       \
173                 _hpet_print_config(__func__, __LINE__); \
174 } while (0)
175
176 /*
177  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178  * timer 0 and timer 1 in case of RTC emulation.
179  */
180 #ifdef CONFIG_HPET
181
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183
184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186         struct hpet __iomem *hpet = hpet_virt_address;
187         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188         unsigned int nrtimers, i;
189         struct hpet_data hd;
190
191         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
193         memset(&hd, 0, sizeof(hd));
194         hd.hd_phys_address      = hpet_address;
195         hd.hd_address           = hpet;
196         hd.hd_nirqs             = nrtimers;
197         hpet_reserve_timer(&hd, 0);
198
199 #ifdef CONFIG_HPET_EMULATE_RTC
200         hpet_reserve_timer(&hd, 1);
201 #endif
202
203         /*
204          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
206          * don't bother configuring *any* comparator interrupts.
207          */
208         hd.hd_irq[0] = HPET_LEGACY_8254;
209         hd.hd_irq[1] = HPET_LEGACY_RTC;
210
211         for (i = 2; i < nrtimers; timer++, i++) {
212                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214         }
215
216         hpet_reserve_msi_timers(&hd);
217
218         hpet_alloc(&hd);
219
220 }
221 #else
222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224
225 /*
226  * Common hpet info
227  */
228 static unsigned long hpet_freq;
229
230 static struct clock_event_device hpet_clockevent;
231
232 static void hpet_stop_counter(void)
233 {
234         u32 cfg = hpet_readl(HPET_CFG);
235         cfg &= ~HPET_CFG_ENABLE;
236         hpet_writel(cfg, HPET_CFG);
237 }
238
239 static void hpet_reset_counter(void)
240 {
241         hpet_writel(0, HPET_COUNTER);
242         hpet_writel(0, HPET_COUNTER + 4);
243 }
244
245 static void hpet_start_counter(void)
246 {
247         unsigned int cfg = hpet_readl(HPET_CFG);
248         cfg |= HPET_CFG_ENABLE;
249         hpet_writel(cfg, HPET_CFG);
250 }
251
252 static void hpet_restart_counter(void)
253 {
254         hpet_stop_counter();
255         hpet_reset_counter();
256         hpet_start_counter();
257 }
258
259 static void hpet_resume_device(void)
260 {
261         force_hpet_resume();
262 }
263
264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266         hpet_resume_device();
267         hpet_restart_counter();
268 }
269
270 static void hpet_enable_legacy_int(void)
271 {
272         unsigned int cfg = hpet_readl(HPET_CFG);
273
274         cfg |= HPET_CFG_LEGACY;
275         hpet_writel(cfg, HPET_CFG);
276         hpet_legacy_int_enabled = true;
277 }
278
279 static void hpet_legacy_clockevent_register(void)
280 {
281         /* Start HPET legacy interrupts */
282         hpet_enable_legacy_int();
283
284         /*
285          * Start hpet with the boot cpu mask and make it
286          * global after the IO_APIC has been initialized.
287          */
288         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291         global_clock_event = &hpet_clockevent;
292         printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294
295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297         unsigned int cfg, cmp, now;
298         uint64_t delta;
299
300         hpet_stop_counter();
301         delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302         delta >>= evt->shift;
303         now = hpet_readl(HPET_COUNTER);
304         cmp = now + (unsigned int)delta;
305         cfg = hpet_readl(HPET_Tn_CFG(timer));
306         cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307                HPET_TN_32BIT;
308         hpet_writel(cfg, HPET_Tn_CFG(timer));
309         hpet_writel(cmp, HPET_Tn_CMP(timer));
310         udelay(1);
311         /*
312          * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313          * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314          * bit is automatically cleared after the first write.
315          * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316          * Publication # 24674)
317          */
318         hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319         hpet_start_counter();
320         hpet_print_config();
321
322         return 0;
323 }
324
325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327         unsigned int cfg;
328
329         cfg = hpet_readl(HPET_Tn_CFG(timer));
330         cfg &= ~HPET_TN_PERIODIC;
331         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332         hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334         return 0;
335 }
336
337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339         unsigned int cfg;
340
341         cfg = hpet_readl(HPET_Tn_CFG(timer));
342         cfg &= ~HPET_TN_ENABLE;
343         hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345         return 0;
346 }
347
348 static int hpet_resume(struct clock_event_device *evt, int timer)
349 {
350         if (!timer) {
351                 hpet_enable_legacy_int();
352         } else {
353                 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
355                 irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
356                 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
357                 disable_hardirq(hdev->irq);
358                 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359                 enable_irq(hdev->irq);
360         }
361         hpet_print_config();
362
363         return 0;
364 }
365
366 static int hpet_next_event(unsigned long delta,
367                            struct clock_event_device *evt, int timer)
368 {
369         u32 cnt;
370         s32 res;
371
372         cnt = hpet_readl(HPET_COUNTER);
373         cnt += (u32) delta;
374         hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376         /*
377          * HPETs are a complete disaster. The compare register is
378          * based on a equal comparison and neither provides a less
379          * than or equal functionality (which would require to take
380          * the wraparound into account) nor a simple count down event
381          * mode. Further the write to the comparator register is
382          * delayed internally up to two HPET clock cycles in certain
383          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384          * longer delays. We worked around that by reading back the
385          * compare register, but that required another workaround for
386          * ICH9,10 chips where the first readout after write can
387          * return the old stale value. We already had a minimum
388          * programming delta of 5us enforced, but a NMI or SMI hitting
389          * between the counter readout and the comparator write can
390          * move us behind that point easily. Now instead of reading
391          * the compare register back several times, we make the ETIME
392          * decision based on the following: Return ETIME if the
393          * counter value after the write is less than HPET_MIN_CYCLES
394          * away from the event or if the counter is already ahead of
395          * the event. The minimum programming delta for the generic
396          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397          */
398         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399
400         return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402
403 static int hpet_legacy_shutdown(struct clock_event_device *evt)
404 {
405         return hpet_shutdown(evt, 0);
406 }
407
408 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
409 {
410         return hpet_set_oneshot(evt, 0);
411 }
412
413 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
414 {
415         return hpet_set_periodic(evt, 0);
416 }
417
418 static int hpet_legacy_resume(struct clock_event_device *evt)
419 {
420         return hpet_resume(evt, 0);
421 }
422
423 static int hpet_legacy_next_event(unsigned long delta,
424                         struct clock_event_device *evt)
425 {
426         return hpet_next_event(delta, evt, 0);
427 }
428
429 /*
430  * The hpet clock event device
431  */
432 static struct clock_event_device hpet_clockevent = {
433         .name                   = "hpet",
434         .features               = CLOCK_EVT_FEAT_PERIODIC |
435                                   CLOCK_EVT_FEAT_ONESHOT,
436         .set_state_periodic     = hpet_legacy_set_periodic,
437         .set_state_oneshot      = hpet_legacy_set_oneshot,
438         .set_state_shutdown     = hpet_legacy_shutdown,
439         .tick_resume            = hpet_legacy_resume,
440         .set_next_event         = hpet_legacy_next_event,
441         .irq                    = 0,
442         .rating                 = 50,
443 };
444
445 /*
446  * HPET MSI Support
447  */
448 #ifdef CONFIG_PCI_MSI
449
450 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
451 static struct hpet_dev  *hpet_devs;
452 static struct irq_domain *hpet_domain;
453
454 void hpet_msi_unmask(struct irq_data *data)
455 {
456         struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457         unsigned int cfg;
458
459         /* unmask it */
460         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461         cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
462         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464
465 void hpet_msi_mask(struct irq_data *data)
466 {
467         struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
468         unsigned int cfg;
469
470         /* mask it */
471         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
472         cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
473         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
474 }
475
476 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
477 {
478         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
479         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
480 }
481
482 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
483 {
484         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
485         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
486         msg->address_hi = 0;
487 }
488
489 static int hpet_msi_shutdown(struct clock_event_device *evt)
490 {
491         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492
493         return hpet_shutdown(evt, hdev->num);
494 }
495
496 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
497 {
498         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499
500         return hpet_set_oneshot(evt, hdev->num);
501 }
502
503 static int hpet_msi_set_periodic(struct clock_event_device *evt)
504 {
505         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
506
507         return hpet_set_periodic(evt, hdev->num);
508 }
509
510 static int hpet_msi_resume(struct clock_event_device *evt)
511 {
512         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513
514         return hpet_resume(evt, hdev->num);
515 }
516
517 static int hpet_msi_next_event(unsigned long delta,
518                                 struct clock_event_device *evt)
519 {
520         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
521         return hpet_next_event(delta, evt, hdev->num);
522 }
523
524 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
525 {
526         struct hpet_dev *dev = (struct hpet_dev *)data;
527         struct clock_event_device *hevt = &dev->evt;
528
529         if (!hevt->event_handler) {
530                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
531                                 dev->num);
532                 return IRQ_HANDLED;
533         }
534
535         hevt->event_handler(hevt);
536         return IRQ_HANDLED;
537 }
538
539 static int hpet_setup_irq(struct hpet_dev *dev)
540 {
541
542         if (request_irq(dev->irq, hpet_interrupt_handler,
543                         IRQF_TIMER | IRQF_NOBALANCING,
544                         dev->name, dev))
545                 return -1;
546
547         disable_irq(dev->irq);
548         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
549         enable_irq(dev->irq);
550
551         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
552                          dev->name, dev->irq);
553
554         return 0;
555 }
556
557 /* This should be called in specific @cpu */
558 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
559 {
560         struct clock_event_device *evt = &hdev->evt;
561
562         WARN_ON(cpu != smp_processor_id());
563         if (!(hdev->flags & HPET_DEV_VALID))
564                 return;
565
566         hdev->cpu = cpu;
567         per_cpu(cpu_hpet_dev, cpu) = hdev;
568         evt->name = hdev->name;
569         hpet_setup_irq(hdev);
570         evt->irq = hdev->irq;
571
572         evt->rating = 110;
573         evt->features = CLOCK_EVT_FEAT_ONESHOT;
574         if (hdev->flags & HPET_DEV_PERI_CAP) {
575                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
576                 evt->set_state_periodic = hpet_msi_set_periodic;
577         }
578
579         evt->set_state_shutdown = hpet_msi_shutdown;
580         evt->set_state_oneshot = hpet_msi_set_oneshot;
581         evt->tick_resume = hpet_msi_resume;
582         evt->set_next_event = hpet_msi_next_event;
583         evt->cpumask = cpumask_of(hdev->cpu);
584
585         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
586                                         0x7FFFFFFF);
587 }
588
589 #ifdef CONFIG_HPET
590 /* Reserve at least one timer for userspace (/dev/hpet) */
591 #define RESERVE_TIMERS 1
592 #else
593 #define RESERVE_TIMERS 0
594 #endif
595
596 static void hpet_msi_capability_lookup(unsigned int start_timer)
597 {
598         unsigned int id;
599         unsigned int num_timers;
600         unsigned int num_timers_used = 0;
601         int i, irq;
602
603         if (hpet_msi_disable)
604                 return;
605
606         if (boot_cpu_has(X86_FEATURE_ARAT))
607                 return;
608         id = hpet_readl(HPET_ID);
609
610         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
611         num_timers++; /* Value read out starts from 0 */
612         hpet_print_config();
613
614         hpet_domain = hpet_create_irq_domain(hpet_blockid);
615         if (!hpet_domain)
616                 return;
617
618         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619         if (!hpet_devs)
620                 return;
621
622         hpet_num_timers = num_timers;
623
624         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
626                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
627
628                 /* Only consider HPET timer with MSI support */
629                 if (!(cfg & HPET_TN_FSB_CAP))
630                         continue;
631
632                 hdev->flags = 0;
633                 if (cfg & HPET_TN_PERIODIC_CAP)
634                         hdev->flags |= HPET_DEV_PERI_CAP;
635                 sprintf(hdev->name, "hpet%d", i);
636                 hdev->num = i;
637
638                 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
639                 if (irq <= 0)
640                         continue;
641
642                 hdev->irq = irq;
643                 hdev->flags |= HPET_DEV_FSB_CAP;
644                 hdev->flags |= HPET_DEV_VALID;
645                 num_timers_used++;
646                 if (num_timers_used == num_possible_cpus())
647                         break;
648         }
649
650         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
651                 num_timers, num_timers_used);
652 }
653
654 #ifdef CONFIG_HPET
655 static void hpet_reserve_msi_timers(struct hpet_data *hd)
656 {
657         int i;
658
659         if (!hpet_devs)
660                 return;
661
662         for (i = 0; i < hpet_num_timers; i++) {
663                 struct hpet_dev *hdev = &hpet_devs[i];
664
665                 if (!(hdev->flags & HPET_DEV_VALID))
666                         continue;
667
668                 hd->hd_irq[hdev->num] = hdev->irq;
669                 hpet_reserve_timer(hd, hdev->num);
670         }
671 }
672 #endif
673
674 static struct hpet_dev *hpet_get_unused_timer(void)
675 {
676         int i;
677
678         if (!hpet_devs)
679                 return NULL;
680
681         for (i = 0; i < hpet_num_timers; i++) {
682                 struct hpet_dev *hdev = &hpet_devs[i];
683
684                 if (!(hdev->flags & HPET_DEV_VALID))
685                         continue;
686                 if (test_and_set_bit(HPET_DEV_USED_BIT,
687                         (unsigned long *)&hdev->flags))
688                         continue;
689                 return hdev;
690         }
691         return NULL;
692 }
693
694 struct hpet_work_struct {
695         struct delayed_work work;
696         struct completion complete;
697 };
698
699 static void hpet_work(struct work_struct *w)
700 {
701         struct hpet_dev *hdev;
702         int cpu = smp_processor_id();
703         struct hpet_work_struct *hpet_work;
704
705         hpet_work = container_of(w, struct hpet_work_struct, work.work);
706
707         hdev = hpet_get_unused_timer();
708         if (hdev)
709                 init_one_hpet_msi_clockevent(hdev, cpu);
710
711         complete(&hpet_work->complete);
712 }
713
714 static int hpet_cpuhp_notify(struct notifier_block *n,
715                 unsigned long action, void *hcpu)
716 {
717         unsigned long cpu = (unsigned long)hcpu;
718         struct hpet_work_struct work;
719         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
720
721         switch (action & 0xf) {
722         case CPU_ONLINE:
723                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
724                 init_completion(&work.complete);
725                 /* FIXME: add schedule_work_on() */
726                 schedule_delayed_work_on(cpu, &work.work, 0);
727                 wait_for_completion(&work.complete);
728                 destroy_delayed_work_on_stack(&work.work);
729                 break;
730         case CPU_DEAD:
731                 if (hdev) {
732                         free_irq(hdev->irq, hdev);
733                         hdev->flags &= ~HPET_DEV_USED;
734                         per_cpu(cpu_hpet_dev, cpu) = NULL;
735                 }
736                 break;
737         }
738         return NOTIFY_OK;
739 }
740 #else
741
742 static void hpet_msi_capability_lookup(unsigned int start_timer)
743 {
744         return;
745 }
746
747 #ifdef CONFIG_HPET
748 static void hpet_reserve_msi_timers(struct hpet_data *hd)
749 {
750         return;
751 }
752 #endif
753
754 static int hpet_cpuhp_notify(struct notifier_block *n,
755                 unsigned long action, void *hcpu)
756 {
757         return NOTIFY_OK;
758 }
759
760 #endif
761
762 /*
763  * Clock source related code
764  */
765 static cycle_t read_hpet(struct clocksource *cs)
766 {
767         return (cycle_t)hpet_readl(HPET_COUNTER);
768 }
769
770 static struct clocksource clocksource_hpet = {
771         .name           = "hpet",
772         .rating         = 250,
773         .read           = read_hpet,
774         .mask           = HPET_MASK,
775         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
776         .resume         = hpet_resume_counter,
777 };
778
779 static int hpet_clocksource_register(void)
780 {
781         u64 start, now;
782         cycle_t t1;
783
784         /* Start the counter */
785         hpet_restart_counter();
786
787         /* Verify whether hpet counter works */
788         t1 = hpet_readl(HPET_COUNTER);
789         start = rdtsc();
790
791         /*
792          * We don't know the TSC frequency yet, but waiting for
793          * 200000 TSC cycles is safe:
794          * 4 GHz == 50us
795          * 1 GHz == 200us
796          */
797         do {
798                 rep_nop();
799                 now = rdtsc();
800         } while ((now - start) < 200000UL);
801
802         if (t1 == hpet_readl(HPET_COUNTER)) {
803                 printk(KERN_WARNING
804                        "HPET counter not counting. HPET disabled\n");
805                 return -ENODEV;
806         }
807
808         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
809         return 0;
810 }
811
812 static u32 *hpet_boot_cfg;
813
814 /**
815  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
816  */
817 int __init hpet_enable(void)
818 {
819         u32 hpet_period, cfg, id;
820         u64 freq;
821         unsigned int i, last;
822
823         if (!is_hpet_capable())
824                 return 0;
825
826         hpet_set_mapping();
827         if (!hpet_virt_address)
828                 return 0;
829
830         /*
831          * Read the period and check for a sane value:
832          */
833         hpet_period = hpet_readl(HPET_PERIOD);
834
835         /*
836          * AMD SB700 based systems with spread spectrum enabled use a
837          * SMM based HPET emulation to provide proper frequency
838          * setting. The SMM code is initialized with the first HPET
839          * register access and takes some time to complete. During
840          * this time the config register reads 0xffffffff. We check
841          * for max. 1000 loops whether the config register reads a non
842          * 0xffffffff value to make sure that HPET is up and running
843          * before we go further. A counting loop is safe, as the HPET
844          * access takes thousands of CPU cycles. On non SB700 based
845          * machines this check is only done once and has no side
846          * effects.
847          */
848         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
849                 if (i == 1000) {
850                         printk(KERN_WARNING
851                                "HPET config register value = 0xFFFFFFFF. "
852                                "Disabling HPET\n");
853                         goto out_nohpet;
854                 }
855         }
856
857         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
858                 goto out_nohpet;
859
860         /*
861          * The period is a femto seconds value. Convert it to a
862          * frequency.
863          */
864         freq = FSEC_PER_SEC;
865         do_div(freq, hpet_period);
866         hpet_freq = freq;
867
868         /*
869          * Read the HPET ID register to retrieve the IRQ routing
870          * information and the number of channels
871          */
872         id = hpet_readl(HPET_ID);
873         hpet_print_config();
874
875         last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
876
877 #ifdef CONFIG_HPET_EMULATE_RTC
878         /*
879          * The legacy routing mode needs at least two channels, tick timer
880          * and the rtc emulation channel.
881          */
882         if (!last)
883                 goto out_nohpet;
884 #endif
885
886         cfg = hpet_readl(HPET_CFG);
887         hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
888                                 GFP_KERNEL);
889         if (hpet_boot_cfg)
890                 *hpet_boot_cfg = cfg;
891         else
892                 pr_warn("HPET initial state will not be saved\n");
893         cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
894         hpet_writel(cfg, HPET_CFG);
895         if (cfg)
896                 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
897                         cfg);
898
899         for (i = 0; i <= last; ++i) {
900                 cfg = hpet_readl(HPET_Tn_CFG(i));
901                 if (hpet_boot_cfg)
902                         hpet_boot_cfg[i + 1] = cfg;
903                 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
904                 hpet_writel(cfg, HPET_Tn_CFG(i));
905                 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
906                          | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
907                          | HPET_TN_FSB | HPET_TN_FSB_CAP);
908                 if (cfg)
909                         pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
910                                 cfg, i);
911         }
912         hpet_print_config();
913
914         if (hpet_clocksource_register())
915                 goto out_nohpet;
916
917         if (id & HPET_ID_LEGSUP) {
918                 hpet_legacy_clockevent_register();
919                 return 1;
920         }
921         return 0;
922
923 out_nohpet:
924         hpet_clear_mapping();
925         hpet_address = 0;
926         return 0;
927 }
928
929 /*
930  * Needs to be late, as the reserve_timer code calls kalloc !
931  *
932  * Not a problem on i386 as hpet_enable is called from late_time_init,
933  * but on x86_64 it is necessary !
934  */
935 static __init int hpet_late_init(void)
936 {
937         int cpu;
938
939         if (boot_hpet_disable)
940                 return -ENODEV;
941
942         if (!hpet_address) {
943                 if (!force_hpet_address)
944                         return -ENODEV;
945
946                 hpet_address = force_hpet_address;
947                 hpet_enable();
948         }
949
950         if (!hpet_virt_address)
951                 return -ENODEV;
952
953         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
954                 hpet_msi_capability_lookup(2);
955         else
956                 hpet_msi_capability_lookup(0);
957
958         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
959         hpet_print_config();
960
961         if (hpet_msi_disable)
962                 return 0;
963
964         if (boot_cpu_has(X86_FEATURE_ARAT))
965                 return 0;
966
967         cpu_notifier_register_begin();
968         for_each_online_cpu(cpu) {
969                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
970         }
971
972         /* This notifier should be called after workqueue is ready */
973         __hotcpu_notifier(hpet_cpuhp_notify, -20);
974         cpu_notifier_register_done();
975
976         return 0;
977 }
978 fs_initcall(hpet_late_init);
979
980 void hpet_disable(void)
981 {
982         if (is_hpet_capable() && hpet_virt_address) {
983                 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
984
985                 if (hpet_boot_cfg)
986                         cfg = *hpet_boot_cfg;
987                 else if (hpet_legacy_int_enabled) {
988                         cfg &= ~HPET_CFG_LEGACY;
989                         hpet_legacy_int_enabled = false;
990                 }
991                 cfg &= ~HPET_CFG_ENABLE;
992                 hpet_writel(cfg, HPET_CFG);
993
994                 if (!hpet_boot_cfg)
995                         return;
996
997                 id = hpet_readl(HPET_ID);
998                 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
999
1000                 for (id = 0; id <= last; ++id)
1001                         hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1002
1003                 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1004                         hpet_writel(*hpet_boot_cfg, HPET_CFG);
1005         }
1006 }
1007
1008 #ifdef CONFIG_HPET_EMULATE_RTC
1009
1010 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1011  * is enabled, we support RTC interrupt functionality in software.
1012  * RTC has 3 kinds of interrupts:
1013  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1014  *    is updated
1015  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1016  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1017  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1018  * (1) and (2) above are implemented using polling at a frequency of
1019  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1020  * overhead. (DEFAULT_RTC_INT_FREQ)
1021  * For (3), we use interrupts at 64Hz or user specified periodic
1022  * frequency, whichever is higher.
1023  */
1024 #include <linux/mc146818rtc.h>
1025 #include <linux/rtc.h>
1026 #include <asm/rtc.h>
1027
1028 #define DEFAULT_RTC_INT_FREQ    64
1029 #define DEFAULT_RTC_SHIFT       6
1030 #define RTC_NUM_INTS            1
1031
1032 static unsigned long hpet_rtc_flags;
1033 static int hpet_prev_update_sec;
1034 static struct rtc_time hpet_alarm_time;
1035 static unsigned long hpet_pie_count;
1036 static u32 hpet_t1_cmp;
1037 static u32 hpet_default_delta;
1038 static u32 hpet_pie_delta;
1039 static unsigned long hpet_pie_limit;
1040
1041 static rtc_irq_handler irq_handler;
1042
1043 /*
1044  * Check that the hpet counter c1 is ahead of the c2
1045  */
1046 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1047 {
1048         return (s32)(c2 - c1) < 0;
1049 }
1050
1051 /*
1052  * Registers a IRQ handler.
1053  */
1054 int hpet_register_irq_handler(rtc_irq_handler handler)
1055 {
1056         if (!is_hpet_enabled())
1057                 return -ENODEV;
1058         if (irq_handler)
1059                 return -EBUSY;
1060
1061         irq_handler = handler;
1062
1063         return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1066
1067 /*
1068  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1069  * and does cleanup.
1070  */
1071 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1072 {
1073         if (!is_hpet_enabled())
1074                 return;
1075
1076         irq_handler = NULL;
1077         hpet_rtc_flags = 0;
1078 }
1079 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1080
1081 /*
1082  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1083  * is not supported by all HPET implementations for timer 1.
1084  *
1085  * hpet_rtc_timer_init() is called when the rtc is initialized.
1086  */
1087 int hpet_rtc_timer_init(void)
1088 {
1089         unsigned int cfg, cnt, delta;
1090         unsigned long flags;
1091
1092         if (!is_hpet_enabled())
1093                 return 0;
1094
1095         if (!hpet_default_delta) {
1096                 uint64_t clc;
1097
1098                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1099                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1100                 hpet_default_delta = clc;
1101         }
1102
1103         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1104                 delta = hpet_default_delta;
1105         else
1106                 delta = hpet_pie_delta;
1107
1108         local_irq_save(flags);
1109
1110         cnt = delta + hpet_readl(HPET_COUNTER);
1111         hpet_writel(cnt, HPET_T1_CMP);
1112         hpet_t1_cmp = cnt;
1113
1114         cfg = hpet_readl(HPET_T1_CFG);
1115         cfg &= ~HPET_TN_PERIODIC;
1116         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1117         hpet_writel(cfg, HPET_T1_CFG);
1118
1119         local_irq_restore(flags);
1120
1121         return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1124
1125 static void hpet_disable_rtc_channel(void)
1126 {
1127         u32 cfg = hpet_readl(HPET_T1_CFG);
1128         cfg &= ~HPET_TN_ENABLE;
1129         hpet_writel(cfg, HPET_T1_CFG);
1130 }
1131
1132 /*
1133  * The functions below are called from rtc driver.
1134  * Return 0 if HPET is not being used.
1135  * Otherwise do the necessary changes and return 1.
1136  */
1137 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1138 {
1139         if (!is_hpet_enabled())
1140                 return 0;
1141
1142         hpet_rtc_flags &= ~bit_mask;
1143         if (unlikely(!hpet_rtc_flags))
1144                 hpet_disable_rtc_channel();
1145
1146         return 1;
1147 }
1148 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1149
1150 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1151 {
1152         unsigned long oldbits = hpet_rtc_flags;
1153
1154         if (!is_hpet_enabled())
1155                 return 0;
1156
1157         hpet_rtc_flags |= bit_mask;
1158
1159         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1160                 hpet_prev_update_sec = -1;
1161
1162         if (!oldbits)
1163                 hpet_rtc_timer_init();
1164
1165         return 1;
1166 }
1167 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1168
1169 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1170                         unsigned char sec)
1171 {
1172         if (!is_hpet_enabled())
1173                 return 0;
1174
1175         hpet_alarm_time.tm_hour = hrs;
1176         hpet_alarm_time.tm_min = min;
1177         hpet_alarm_time.tm_sec = sec;
1178
1179         return 1;
1180 }
1181 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1182
1183 int hpet_set_periodic_freq(unsigned long freq)
1184 {
1185         uint64_t clc;
1186
1187         if (!is_hpet_enabled())
1188                 return 0;
1189
1190         if (freq <= DEFAULT_RTC_INT_FREQ)
1191                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1192         else {
1193                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1194                 do_div(clc, freq);
1195                 clc >>= hpet_clockevent.shift;
1196                 hpet_pie_delta = clc;
1197                 hpet_pie_limit = 0;
1198         }
1199         return 1;
1200 }
1201 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1202
1203 int hpet_rtc_dropped_irq(void)
1204 {
1205         return is_hpet_enabled();
1206 }
1207 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1208
1209 static void hpet_rtc_timer_reinit(void)
1210 {
1211         unsigned int delta;
1212         int lost_ints = -1;
1213
1214         if (unlikely(!hpet_rtc_flags))
1215                 hpet_disable_rtc_channel();
1216
1217         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1218                 delta = hpet_default_delta;
1219         else
1220                 delta = hpet_pie_delta;
1221
1222         /*
1223          * Increment the comparator value until we are ahead of the
1224          * current count.
1225          */
1226         do {
1227                 hpet_t1_cmp += delta;
1228                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1229                 lost_ints++;
1230         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1231
1232         if (lost_ints) {
1233                 if (hpet_rtc_flags & RTC_PIE)
1234                         hpet_pie_count += lost_ints;
1235                 if (printk_ratelimit())
1236                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1237                                 lost_ints);
1238         }
1239 }
1240
1241 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1242 {
1243         struct rtc_time curr_time;
1244         unsigned long rtc_int_flag = 0;
1245
1246         hpet_rtc_timer_reinit();
1247         memset(&curr_time, 0, sizeof(struct rtc_time));
1248
1249         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1250                 get_rtc_time(&curr_time);
1251
1252         if (hpet_rtc_flags & RTC_UIE &&
1253             curr_time.tm_sec != hpet_prev_update_sec) {
1254                 if (hpet_prev_update_sec >= 0)
1255                         rtc_int_flag = RTC_UF;
1256                 hpet_prev_update_sec = curr_time.tm_sec;
1257         }
1258
1259         if (hpet_rtc_flags & RTC_PIE &&
1260             ++hpet_pie_count >= hpet_pie_limit) {
1261                 rtc_int_flag |= RTC_PF;
1262                 hpet_pie_count = 0;
1263         }
1264
1265         if (hpet_rtc_flags & RTC_AIE &&
1266             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1267             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1268             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1269                         rtc_int_flag |= RTC_AF;
1270
1271         if (rtc_int_flag) {
1272                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1273                 if (irq_handler)
1274                         irq_handler(rtc_int_flag, dev_id);
1275         }
1276         return IRQ_HANDLED;
1277 }
1278 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1279 #endif