GNU Linux-libre 4.14.332-gnu1
[releases.git] / arch / x86 / kernel / dumpstack.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
21
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25
26 int panic_on_unrecovered_nmi;
27 int panic_on_io_nmi;
28 unsigned int code_bytes = 64;
29 static int die_counter;
30
31 bool in_task_stack(unsigned long *stack, struct task_struct *task,
32                    struct stack_info *info)
33 {
34         unsigned long *begin = task_stack_page(task);
35         unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
36
37         if (stack < begin || stack >= end)
38                 return false;
39
40         info->type      = STACK_TYPE_TASK;
41         info->begin     = begin;
42         info->end       = end;
43         info->next_sp   = NULL;
44
45         return true;
46 }
47
48 bool in_entry_stack(unsigned long *stack, struct stack_info *info)
49 {
50         struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
51
52         void *begin = ss;
53         void *end = ss + 1;
54
55         if ((void *)stack < begin || (void *)stack >= end)
56                 return false;
57
58         info->type      = STACK_TYPE_ENTRY;
59         info->begin     = begin;
60         info->end       = end;
61         info->next_sp   = NULL;
62
63         return true;
64 }
65
66 static void printk_stack_address(unsigned long address, int reliable,
67                                  char *log_lvl)
68 {
69         touch_nmi_watchdog();
70         printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
71 }
72
73 void show_iret_regs(struct pt_regs *regs)
74 {
75         printk(KERN_DEFAULT "RIP: %04x:%pS\n", (int)regs->cs, (void *)regs->ip);
76         printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
77                 regs->sp, regs->flags);
78 }
79
80 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
81                                   bool partial)
82 {
83         /*
84          * These on_stack() checks aren't strictly necessary: the unwind code
85          * has already validated the 'regs' pointer.  The checks are done for
86          * ordering reasons: if the registers are on the next stack, we don't
87          * want to print them out yet.  Otherwise they'll be shown as part of
88          * the wrong stack.  Later, when show_trace_log_lvl() switches to the
89          * next stack, this function will be called again with the same regs so
90          * they can be printed in the right context.
91          */
92         if (!partial && on_stack(info, regs, sizeof(*regs))) {
93                 __show_regs(regs, 0);
94
95         } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
96                                        IRET_FRAME_SIZE)) {
97                 /*
98                  * When an interrupt or exception occurs in entry code, the
99                  * full pt_regs might not have been saved yet.  In that case
100                  * just print the iret frame.
101                  */
102                 show_iret_regs(regs);
103         }
104 }
105
106 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
107                         unsigned long *stack, char *log_lvl)
108 {
109         struct unwind_state state;
110         struct stack_info stack_info = {0};
111         unsigned long visit_mask = 0;
112         int graph_idx = 0;
113         bool partial = false;
114
115         printk("%sCall Trace:\n", log_lvl);
116
117         unwind_start(&state, task, regs, stack);
118         regs = unwind_get_entry_regs(&state, &partial);
119
120         /*
121          * Iterate through the stacks, starting with the current stack pointer.
122          * Each stack has a pointer to the next one.
123          *
124          * x86-64 can have several stacks:
125          * - task stack
126          * - interrupt stack
127          * - HW exception stacks (double fault, nmi, debug, mce)
128          * - entry stack
129          *
130          * x86-32 can have up to four stacks:
131          * - task stack
132          * - softirq stack
133          * - hardirq stack
134          * - entry stack
135          */
136         for (stack = stack ?: get_stack_pointer(task, regs);
137              stack;
138              stack = stack_info.next_sp) {
139                 const char *stack_name;
140
141                 stack = PTR_ALIGN(stack, sizeof(long));
142
143                 if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
144                         /*
145                          * We weren't on a valid stack.  It's possible that
146                          * we overflowed a valid stack into a guard page.
147                          * See if the next page up is valid so that we can
148                          * generate some kind of backtrace if this happens.
149                          */
150                         stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
151                         if (get_stack_info(stack, task, &stack_info, &visit_mask))
152                                 break;
153                 }
154
155                 stack_name = stack_type_name(stack_info.type);
156                 if (stack_name)
157                         printk("%s <%s>\n", log_lvl, stack_name);
158
159                 if (regs)
160                         show_regs_if_on_stack(&stack_info, regs, partial);
161
162                 /*
163                  * Scan the stack, printing any text addresses we find.  At the
164                  * same time, follow proper stack frames with the unwinder.
165                  *
166                  * Addresses found during the scan which are not reported by
167                  * the unwinder are considered to be additional clues which are
168                  * sometimes useful for debugging and are prefixed with '?'.
169                  * This also serves as a failsafe option in case the unwinder
170                  * goes off in the weeds.
171                  */
172                 for (; stack < stack_info.end; stack++) {
173                         unsigned long real_addr;
174                         int reliable = 0;
175                         unsigned long addr = READ_ONCE_NOCHECK(*stack);
176                         unsigned long *ret_addr_p =
177                                 unwind_get_return_address_ptr(&state);
178
179                         if (!__kernel_text_address(addr))
180                                 continue;
181
182                         /*
183                          * Don't print regs->ip again if it was already printed
184                          * by show_regs_if_on_stack().
185                          */
186                         if (regs && stack == &regs->ip)
187                                 goto next;
188
189                         if (stack == ret_addr_p)
190                                 reliable = 1;
191
192                         /*
193                          * When function graph tracing is enabled for a
194                          * function, its return address on the stack is
195                          * replaced with the address of an ftrace handler
196                          * (return_to_handler).  In that case, before printing
197                          * the "real" address, we want to print the handler
198                          * address as an "unreliable" hint that function graph
199                          * tracing was involved.
200                          */
201                         real_addr = ftrace_graph_ret_addr(task, &graph_idx,
202                                                           addr, stack);
203                         if (real_addr != addr)
204                                 printk_stack_address(addr, 0, log_lvl);
205                         printk_stack_address(real_addr, reliable, log_lvl);
206
207                         if (!reliable)
208                                 continue;
209
210 next:
211                         /*
212                          * Get the next frame from the unwinder.  No need to
213                          * check for an error: if anything goes wrong, the rest
214                          * of the addresses will just be printed as unreliable.
215                          */
216                         unwind_next_frame(&state);
217
218                         /* if the frame has entry regs, print them */
219                         regs = unwind_get_entry_regs(&state, &partial);
220                         if (regs)
221                                 show_regs_if_on_stack(&stack_info, regs, partial);
222                 }
223
224                 if (stack_name)
225                         printk("%s </%s>\n", log_lvl, stack_name);
226         }
227 }
228
229 void show_stack(struct task_struct *task, unsigned long *sp)
230 {
231         task = task ? : current;
232
233         /*
234          * Stack frames below this one aren't interesting.  Don't show them
235          * if we're printing for %current.
236          */
237         if (!sp && task == current)
238                 sp = get_stack_pointer(current, NULL);
239
240         show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
241 }
242
243 void show_stack_regs(struct pt_regs *regs)
244 {
245         show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
246 }
247
248 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
249 static int die_owner = -1;
250 static unsigned int die_nest_count;
251
252 unsigned long oops_begin(void)
253 {
254         int cpu;
255         unsigned long flags;
256
257         oops_enter();
258
259         /* racy, but better than risking deadlock. */
260         raw_local_irq_save(flags);
261         cpu = smp_processor_id();
262         if (!arch_spin_trylock(&die_lock)) {
263                 if (cpu == die_owner)
264                         /* nested oops. should stop eventually */;
265                 else
266                         arch_spin_lock(&die_lock);
267         }
268         die_nest_count++;
269         die_owner = cpu;
270         console_verbose();
271         bust_spinlocks(1);
272         return flags;
273 }
274 EXPORT_SYMBOL_GPL(oops_begin);
275 NOKPROBE_SYMBOL(oops_begin);
276
277 void __noreturn rewind_stack_and_make_dead(int signr);
278
279 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
280 {
281         if (regs && kexec_should_crash(current))
282                 crash_kexec(regs);
283
284         bust_spinlocks(0);
285         die_owner = -1;
286         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
287         die_nest_count--;
288         if (!die_nest_count)
289                 /* Nest count reaches zero, release the lock. */
290                 arch_spin_unlock(&die_lock);
291         raw_local_irq_restore(flags);
292         oops_exit();
293
294         if (!signr)
295                 return;
296         if (in_interrupt())
297                 panic("Fatal exception in interrupt");
298         if (panic_on_oops)
299                 panic("Fatal exception");
300
301         /*
302          * We're not going to return, but we might be on an IST stack or
303          * have very little stack space left.  Rewind the stack and kill
304          * the task.
305          * Before we rewind the stack, we have to tell KASAN that we're going to
306          * reuse the task stack and that existing poisons are invalid.
307          */
308         kasan_unpoison_task_stack(current);
309         rewind_stack_and_make_dead(signr);
310 }
311 NOKPROBE_SYMBOL(oops_end);
312
313 int __die(const char *str, struct pt_regs *regs, long err)
314 {
315 #ifdef CONFIG_X86_32
316         unsigned short ss;
317         unsigned long sp;
318 #endif
319         printk(KERN_DEFAULT
320                "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
321                IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
322                IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
323                debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
324                IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
325                IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
326                (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
327
328         if (notify_die(DIE_OOPS, str, regs, err,
329                         current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
330                 return 1;
331
332         print_modules();
333         show_regs(regs);
334 #ifdef CONFIG_X86_32
335         if (user_mode(regs)) {
336                 sp = regs->sp;
337                 ss = regs->ss;
338         } else {
339                 sp = kernel_stack_pointer(regs);
340                 savesegment(ss, ss);
341         }
342         printk(KERN_EMERG "EIP: %pS SS:ESP: %04x:%08lx\n",
343                (void *)regs->ip, ss, sp);
344 #else
345         /* Executive summary in case the oops scrolled away */
346         printk(KERN_ALERT "RIP: %pS RSP: %016lx\n", (void *)regs->ip, regs->sp);
347 #endif
348         return 0;
349 }
350 NOKPROBE_SYMBOL(__die);
351
352 /*
353  * This is gone through when something in the kernel has done something bad
354  * and is about to be terminated:
355  */
356 void die(const char *str, struct pt_regs *regs, long err)
357 {
358         unsigned long flags = oops_begin();
359         int sig = SIGSEGV;
360
361         if (__die(str, regs, err))
362                 sig = 0;
363         oops_end(flags, regs, sig);
364 }
365
366 static int __init code_bytes_setup(char *s)
367 {
368         ssize_t ret;
369         unsigned long val;
370
371         if (!s)
372                 return -EINVAL;
373
374         ret = kstrtoul(s, 0, &val);
375         if (ret)
376                 return ret;
377
378         code_bytes = val;
379         if (code_bytes > 8192)
380                 code_bytes = 8192;
381
382         return 1;
383 }
384 __setup("code_bytes=", code_bytes_setup);