GNU Linux-libre 4.14.313-gnu1
[releases.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <bp@alien8.de>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/traps.h>
27 #include <asm/apic.h>
28 #include <asm/mce.h>
29 #include <asm/msr.h>
30 #include <asm/trace/irq_vectors.h>
31
32 #include "mce-internal.h"
33
34 #define NR_BLOCKS         5
35 #define THRESHOLD_MAX     0xFFF
36 #define INT_TYPE_APIC     0x00020000
37 #define MASK_VALID_HI     0x80000000
38 #define MASK_CNTP_HI      0x40000000
39 #define MASK_LOCKED_HI    0x20000000
40 #define MASK_LVTOFF_HI    0x00F00000
41 #define MASK_COUNT_EN_HI  0x00080000
42 #define MASK_INT_TYPE_HI  0x00060000
43 #define MASK_OVERFLOW_HI  0x00010000
44 #define MASK_ERR_COUNT_HI 0x00000FFF
45 #define MASK_BLKPTR_LO    0xFF000000
46 #define MCG_XBLK_ADDR     0xC0000400
47
48 /* Deferred error settings */
49 #define MSR_CU_DEF_ERR          0xC0000410
50 #define MASK_DEF_LVTOFF         0x000000F0
51 #define MASK_DEF_INT_TYPE       0x00000006
52 #define DEF_LVT_OFF             0x2
53 #define DEF_INT_TYPE_APIC       0x2
54
55 /* Scalable MCA: */
56
57 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
58 #define SMCA_THR_LVT_OFF        0xF000
59
60 static bool thresholding_irq_en;
61
62 static const char * const th_names[] = {
63         "load_store",
64         "insn_fetch",
65         "combined_unit",
66         "decode_unit",
67         "northbridge",
68         "execution_unit",
69 };
70
71 static const char * const smca_umc_block_names[] = {
72         "dram_ecc",
73         "misc_umc"
74 };
75
76 struct smca_bank_name {
77         const char *name;       /* Short name for sysfs */
78         const char *long_name;  /* Long name for pretty-printing */
79 };
80
81 static struct smca_bank_name smca_names[] = {
82         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
83         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
84         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
85         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
86         [SMCA_RESERVED] = { "reserved",         "Reserved" },
87         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
88         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
89         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
90         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
91         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
92         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
93         [SMCA_PB]       = { "param_block",      "Parameter Block" },
94         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
95         [SMCA_SMU]      = { "smu",              "System Management Unit" },
96 };
97
98 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
99 {
100         [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
101 };
102
103 static const char *smca_get_name(enum smca_bank_types t)
104 {
105         if (t >= N_SMCA_BANK_TYPES)
106                 return NULL;
107
108         return smca_names[t].name;
109 }
110
111 const char *smca_get_long_name(enum smca_bank_types t)
112 {
113         if (t >= N_SMCA_BANK_TYPES)
114                 return NULL;
115
116         return smca_names[t].long_name;
117 }
118 EXPORT_SYMBOL_GPL(smca_get_long_name);
119
120 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
121 {
122         struct smca_bank *b;
123
124         if (bank >= MAX_NR_BANKS)
125                 return N_SMCA_BANK_TYPES;
126
127         b = &smca_banks[bank];
128         if (!b->hwid)
129                 return N_SMCA_BANK_TYPES;
130
131         return b->hwid->bank_type;
132 }
133
134 static struct smca_hwid smca_hwid_mcatypes[] = {
135         /* { bank_type, hwid_mcatype, xec_bitmap } */
136
137         /* Reserved type */
138         { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
139
140         /* ZN Core (HWID=0xB0) MCA types */
141         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
142         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
143         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
144         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
145         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
146         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0x7FF },
147         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
148         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
149
150         /* Data Fabric MCA types */
151         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
152         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0xF },
153
154         /* Unified Memory Controller MCA type */
155         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0x3F },
156
157         /* Parameter Block MCA type */
158         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
159
160         /* Platform Security Processor MCA type */
161         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
162
163         /* System Management Unit MCA type */
164         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
165 };
166
167 struct smca_bank smca_banks[MAX_NR_BANKS];
168 EXPORT_SYMBOL_GPL(smca_banks);
169
170 /*
171  * In SMCA enabled processors, we can have multiple banks for a given IP type.
172  * So to define a unique name for each bank, we use a temp c-string to append
173  * the MCA_IPID[InstanceId] to type's name in get_name().
174  *
175  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
176  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
177  */
178 #define MAX_MCATYPE_NAME_LEN    30
179 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
180
181 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
182 static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
183
184 static void amd_threshold_interrupt(void);
185 static void amd_deferred_error_interrupt(void);
186
187 static void default_deferred_error_interrupt(void)
188 {
189         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
190 }
191 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
192
193 static void smca_configure(unsigned int bank, unsigned int cpu)
194 {
195         unsigned int i, hwid_mcatype;
196         struct smca_hwid *s_hwid;
197         u32 high, low;
198         u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
199
200         /* Set appropriate bits in MCA_CONFIG */
201         if (!rdmsr_safe(smca_config, &low, &high)) {
202                 /*
203                  * OS is required to set the MCAX bit to acknowledge that it is
204                  * now using the new MSR ranges and new registers under each
205                  * bank. It also means that the OS will configure deferred
206                  * errors in the new MCx_CONFIG register. If the bit is not set,
207                  * uncorrectable errors will cause a system panic.
208                  *
209                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
210                  */
211                 high |= BIT(0);
212
213                 /*
214                  * SMCA sets the Deferred Error Interrupt type per bank.
215                  *
216                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
217                  * if the DeferredIntType bit field is available.
218                  *
219                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
220                  * high portion of the MSR). OS should set this to 0x1 to enable
221                  * APIC based interrupt. First, check that no interrupt has been
222                  * set.
223                  */
224                 if ((low & BIT(5)) && !((high >> 5) & 0x3))
225                         high |= BIT(5);
226
227                 wrmsr(smca_config, low, high);
228         }
229
230         /* Return early if this bank was already initialized. */
231         if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
232                 return;
233
234         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
235                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
236                 return;
237         }
238
239         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
240                                     (high & MCI_IPID_MCATYPE) >> 16);
241
242         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
243                 s_hwid = &smca_hwid_mcatypes[i];
244                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
245                         smca_banks[bank].hwid = s_hwid;
246                         smca_banks[bank].id = low;
247                         smca_banks[bank].sysfs_id = s_hwid->count++;
248                         break;
249                 }
250         }
251 }
252
253 struct thresh_restart {
254         struct threshold_block  *b;
255         int                     reset;
256         int                     set_lvt_off;
257         int                     lvt_off;
258         u16                     old_limit;
259 };
260
261 static inline bool is_shared_bank(int bank)
262 {
263         /*
264          * Scalable MCA provides for only one core to have access to the MSRs of
265          * a shared bank.
266          */
267         if (mce_flags.smca)
268                 return false;
269
270         /* Bank 4 is for northbridge reporting and is thus shared */
271         return (bank == 4);
272 }
273
274 static const char *bank4_names(const struct threshold_block *b)
275 {
276         switch (b->address) {
277         /* MSR4_MISC0 */
278         case 0x00000413:
279                 return "dram";
280
281         case 0xc0000408:
282                 return "ht_links";
283
284         case 0xc0000409:
285                 return "l3_cache";
286
287         default:
288                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
289                 return "";
290         }
291 };
292
293
294 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
295 {
296         /*
297          * bank 4 supports APIC LVT interrupts implicitly since forever.
298          */
299         if (bank == 4)
300                 return true;
301
302         /*
303          * IntP: interrupt present; if this bit is set, the thresholding
304          * bank can generate APIC LVT interrupts
305          */
306         return msr_high_bits & BIT(28);
307 }
308
309 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
310 {
311         int msr = (hi & MASK_LVTOFF_HI) >> 20;
312
313         if (apic < 0) {
314                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
315                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
316                        b->bank, b->block, b->address, hi, lo);
317                 return 0;
318         }
319
320         if (apic != msr) {
321                 /*
322                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
323                  * the BIOS provides the value. The original field where LVT offset
324                  * was set is reserved. Return early here:
325                  */
326                 if (mce_flags.smca)
327                         return 0;
328
329                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
330                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
331                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
332                 return 0;
333         }
334
335         return 1;
336 };
337
338 /* Reprogram MCx_MISC MSR behind this threshold bank. */
339 static void threshold_restart_bank(void *_tr)
340 {
341         struct thresh_restart *tr = _tr;
342         u32 hi, lo;
343
344         rdmsr(tr->b->address, lo, hi);
345
346         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
347                 tr->reset = 1;  /* limit cannot be lower than err count */
348
349         if (tr->reset) {                /* reset err count and overflow bit */
350                 hi =
351                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
352                     (THRESHOLD_MAX - tr->b->threshold_limit);
353         } else if (tr->old_limit) {     /* change limit w/o reset */
354                 int new_count = (hi & THRESHOLD_MAX) +
355                     (tr->old_limit - tr->b->threshold_limit);
356
357                 hi = (hi & ~MASK_ERR_COUNT_HI) |
358                     (new_count & THRESHOLD_MAX);
359         }
360
361         /* clear IntType */
362         hi &= ~MASK_INT_TYPE_HI;
363
364         if (!tr->b->interrupt_capable)
365                 goto done;
366
367         if (tr->set_lvt_off) {
368                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
369                         /* set new lvt offset */
370                         hi &= ~MASK_LVTOFF_HI;
371                         hi |= tr->lvt_off << 20;
372                 }
373         }
374
375         if (tr->b->interrupt_enable)
376                 hi |= INT_TYPE_APIC;
377
378  done:
379
380         hi |= MASK_COUNT_EN_HI;
381         wrmsr(tr->b->address, lo, hi);
382 }
383
384 static void mce_threshold_block_init(struct threshold_block *b, int offset)
385 {
386         struct thresh_restart tr = {
387                 .b                      = b,
388                 .set_lvt_off            = 1,
389                 .lvt_off                = offset,
390         };
391
392         b->threshold_limit              = THRESHOLD_MAX;
393         threshold_restart_bank(&tr);
394 };
395
396 static int setup_APIC_mce_threshold(int reserved, int new)
397 {
398         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
399                                               APIC_EILVT_MSG_FIX, 0))
400                 return new;
401
402         return reserved;
403 }
404
405 static int setup_APIC_deferred_error(int reserved, int new)
406 {
407         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
408                                               APIC_EILVT_MSG_FIX, 0))
409                 return new;
410
411         return reserved;
412 }
413
414 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
415 {
416         u32 low = 0, high = 0;
417         int def_offset = -1, def_new;
418
419         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
420                 return;
421
422         def_new = (low & MASK_DEF_LVTOFF) >> 4;
423         if (!(low & MASK_DEF_LVTOFF)) {
424                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
425                 def_new = DEF_LVT_OFF;
426                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
427         }
428
429         def_offset = setup_APIC_deferred_error(def_offset, def_new);
430         if ((def_offset == def_new) &&
431             (deferred_error_int_vector != amd_deferred_error_interrupt))
432                 deferred_error_int_vector = amd_deferred_error_interrupt;
433
434         low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
435         wrmsr(MSR_CU_DEF_ERR, low, high);
436 }
437
438 static u32 smca_get_block_address(unsigned int cpu, unsigned int bank,
439                                   unsigned int block)
440 {
441         u32 low, high;
442         u32 addr = 0;
443
444         if (smca_get_bank_type(bank) == SMCA_RESERVED)
445                 return addr;
446
447         if (!block)
448                 return MSR_AMD64_SMCA_MCx_MISC(bank);
449
450         /* Check our cache first: */
451         if (smca_bank_addrs[bank][block] != -1)
452                 return smca_bank_addrs[bank][block];
453
454         /*
455          * For SMCA enabled processors, BLKPTR field of the first MISC register
456          * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
457          */
458         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
459                 goto out;
460
461         if (!(low & MCI_CONFIG_MCAX))
462                 goto out;
463
464         if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
465             (low & MASK_BLKPTR_LO))
466                 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
467
468 out:
469         smca_bank_addrs[bank][block] = addr;
470         return addr;
471 }
472
473 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
474                              unsigned int bank, unsigned int block)
475 {
476         u32 addr = 0, offset = 0;
477
478         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
479                 return addr;
480
481         if (mce_flags.smca)
482                 return smca_get_block_address(cpu, bank, block);
483
484         /* Fall back to method we used for older processors: */
485         switch (block) {
486         case 0:
487                 addr = msr_ops.misc(bank);
488                 break;
489         case 1:
490                 offset = ((low & MASK_BLKPTR_LO) >> 21);
491                 if (offset)
492                         addr = MCG_XBLK_ADDR + offset;
493                 break;
494         default:
495                 addr = ++current_addr;
496         }
497         return addr;
498 }
499
500 static int
501 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
502                         int offset, u32 misc_high)
503 {
504         unsigned int cpu = smp_processor_id();
505         u32 smca_low, smca_high;
506         struct threshold_block b;
507         int new;
508
509         if (!block)
510                 per_cpu(bank_map, cpu) |= (1 << bank);
511
512         memset(&b, 0, sizeof(b));
513         b.cpu                   = cpu;
514         b.bank                  = bank;
515         b.block                 = block;
516         b.address               = addr;
517         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
518
519         if (!b.interrupt_capable)
520                 goto done;
521
522         b.interrupt_enable = 1;
523
524         if (!mce_flags.smca) {
525                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
526                 goto set_offset;
527         }
528
529         /* Gather LVT offset for thresholding: */
530         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
531                 goto out;
532
533         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
534
535 set_offset:
536         offset = setup_APIC_mce_threshold(offset, new);
537         if (offset == new)
538                 thresholding_irq_en = true;
539
540 done:
541         mce_threshold_block_init(&b, offset);
542
543 out:
544         return offset;
545 }
546
547 /*
548  * Turn off MC4_MISC thresholding banks on all family 0x15 models since
549  * they're not supported there.
550  */
551 void disable_err_thresholding(struct cpuinfo_x86 *c)
552 {
553         int i;
554         u64 hwcr;
555         bool need_toggle;
556         u32 msrs[] = {
557                 0x00000413, /* MC4_MISC0 */
558                 0xc0000408, /* MC4_MISC1 */
559         };
560
561         if (c->x86 != 0x15)
562                 return;
563
564         rdmsrl(MSR_K7_HWCR, hwcr);
565
566         /* McStatusWrEn has to be set */
567         need_toggle = !(hwcr & BIT(18));
568
569         if (need_toggle)
570                 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
571
572         /* Clear CntP bit safely */
573         for (i = 0; i < ARRAY_SIZE(msrs); i++)
574                 msr_clear_bit(msrs[i], 62);
575
576         /* restore old settings */
577         if (need_toggle)
578                 wrmsrl(MSR_K7_HWCR, hwcr);
579 }
580
581 /* cpu init entry point, called from mce.c with preempt off */
582 void mce_amd_feature_init(struct cpuinfo_x86 *c)
583 {
584         u32 low = 0, high = 0, address = 0;
585         unsigned int bank, block, cpu = smp_processor_id();
586         int offset = -1;
587
588         disable_err_thresholding(c);
589
590         for (bank = 0; bank < mca_cfg.banks; ++bank) {
591                 if (mce_flags.smca)
592                         smca_configure(bank, cpu);
593
594                 for (block = 0; block < NR_BLOCKS; ++block) {
595                         address = get_block_address(cpu, address, low, high, bank, block);
596                         if (!address)
597                                 break;
598
599                         if (rdmsr_safe(address, &low, &high))
600                                 break;
601
602                         if (!(high & MASK_VALID_HI))
603                                 continue;
604
605                         if (!(high & MASK_CNTP_HI)  ||
606                              (high & MASK_LOCKED_HI))
607                                 continue;
608
609                         offset = prepare_threshold_block(bank, block, address, offset, high);
610                 }
611         }
612
613         if (mce_flags.succor)
614                 deferred_error_interrupt_enable(c);
615 }
616
617 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
618 {
619         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
620         /* We start from the normalized address */
621         u64 ret_addr = norm_addr;
622
623         u32 tmp;
624
625         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
626         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
627         u8 intlv_addr_sel, intlv_addr_bit;
628         u8 num_intlv_bits, hashed_bit;
629         u8 lgcy_mmio_hole_en, base = 0;
630         u8 cs_mask, cs_id = 0;
631         bool hash_enabled = false;
632
633         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
634         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
635                 goto out_err;
636
637         /* Remove HiAddrOffset from normalized address, if enabled: */
638         if (tmp & BIT(0)) {
639                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
640
641                 if (norm_addr >= hi_addr_offset) {
642                         ret_addr -= hi_addr_offset;
643                         base = 1;
644                 }
645         }
646
647         /* Read D18F0x110 (DramBaseAddress). */
648         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
649                 goto out_err;
650
651         /* Check if address range is valid. */
652         if (!(tmp & BIT(0))) {
653                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
654                         __func__, tmp);
655                 goto out_err;
656         }
657
658         lgcy_mmio_hole_en = tmp & BIT(1);
659         intlv_num_chan    = (tmp >> 4) & 0xF;
660         intlv_addr_sel    = (tmp >> 8) & 0x7;
661         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
662
663         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
664         if (intlv_addr_sel > 3) {
665                 pr_err("%s: Invalid interleave address select %d.\n",
666                         __func__, intlv_addr_sel);
667                 goto out_err;
668         }
669
670         /* Read D18F0x114 (DramLimitAddress). */
671         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
672                 goto out_err;
673
674         intlv_num_sockets = (tmp >> 8) & 0x1;
675         intlv_num_dies    = (tmp >> 10) & 0x3;
676         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
677
678         intlv_addr_bit = intlv_addr_sel + 8;
679
680         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
681         switch (intlv_num_chan) {
682         case 0: intlv_num_chan = 0; break;
683         case 1: intlv_num_chan = 1; break;
684         case 3: intlv_num_chan = 2; break;
685         case 5: intlv_num_chan = 3; break;
686         case 7: intlv_num_chan = 4; break;
687
688         case 8: intlv_num_chan = 1;
689                 hash_enabled = true;
690                 break;
691         default:
692                 pr_err("%s: Invalid number of interleaved channels %d.\n",
693                         __func__, intlv_num_chan);
694                 goto out_err;
695         }
696
697         num_intlv_bits = intlv_num_chan;
698
699         if (intlv_num_dies > 2) {
700                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
701                         __func__, intlv_num_dies);
702                 goto out_err;
703         }
704
705         num_intlv_bits += intlv_num_dies;
706
707         /* Add a bit if sockets are interleaved. */
708         num_intlv_bits += intlv_num_sockets;
709
710         /* Assert num_intlv_bits <= 4 */
711         if (num_intlv_bits > 4) {
712                 pr_err("%s: Invalid interleave bits %d.\n",
713                         __func__, num_intlv_bits);
714                 goto out_err;
715         }
716
717         if (num_intlv_bits > 0) {
718                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
719                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
720
721                 /*
722                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
723                  * This is the fabric id for this coherent slave. Use
724                  * umc/channel# as instance id of the coherent slave
725                  * for FICAA.
726                  */
727                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
728                         goto out_err;
729
730                 cs_fabric_id = (tmp >> 8) & 0xFF;
731                 die_id_bit   = 0;
732
733                 /* If interleaved over more than 1 channel: */
734                 if (intlv_num_chan) {
735                         die_id_bit = intlv_num_chan;
736                         cs_mask    = (1 << die_id_bit) - 1;
737                         cs_id      = cs_fabric_id & cs_mask;
738                 }
739
740                 sock_id_bit = die_id_bit;
741
742                 /* Read D18F1x208 (SystemFabricIdMask). */
743                 if (intlv_num_dies || intlv_num_sockets)
744                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
745                                 goto out_err;
746
747                 /* If interleaved over more than 1 die. */
748                 if (intlv_num_dies) {
749                         sock_id_bit  = die_id_bit + intlv_num_dies;
750                         die_id_shift = (tmp >> 24) & 0xF;
751                         die_id_mask  = (tmp >> 8) & 0xFF;
752
753                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
754                 }
755
756                 /* If interleaved over more than 1 socket. */
757                 if (intlv_num_sockets) {
758                         socket_id_shift = (tmp >> 28) & 0xF;
759                         socket_id_mask  = (tmp >> 16) & 0xFF;
760
761                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
762                 }
763
764                 /*
765                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
766                  * where III is the ID for this CS, and XXXXXXYYYYY are the
767                  * address bits from the post-interleaved address.
768                  * "num_intlv_bits" has been calculated to tell us how many "I"
769                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
770                  * there are (where "I" starts).
771                  */
772                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
773                 temp_addr_i = (cs_id << intlv_addr_bit);
774                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
775                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
776         }
777
778         /* Add dram base address */
779         ret_addr += dram_base_addr;
780
781         /* If legacy MMIO hole enabled */
782         if (lgcy_mmio_hole_en) {
783                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
784                         goto out_err;
785
786                 dram_hole_base = tmp & GENMASK(31, 24);
787                 if (ret_addr >= dram_hole_base)
788                         ret_addr += (BIT_ULL(32) - dram_hole_base);
789         }
790
791         if (hash_enabled) {
792                 /* Save some parentheses and grab ls-bit at the end. */
793                 hashed_bit =    (ret_addr >> 12) ^
794                                 (ret_addr >> 18) ^
795                                 (ret_addr >> 21) ^
796                                 (ret_addr >> 30) ^
797                                 cs_id;
798
799                 hashed_bit &= BIT(0);
800
801                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
802                         ret_addr ^= BIT(intlv_addr_bit);
803         }
804
805         /* Is calculated system address is above DRAM limit address? */
806         if (ret_addr > dram_limit_addr)
807                 goto out_err;
808
809         *sys_addr = ret_addr;
810         return 0;
811
812 out_err:
813         return -EINVAL;
814 }
815 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
816
817 bool amd_mce_is_memory_error(struct mce *m)
818 {
819         /* ErrCodeExt[20:16] */
820         u8 xec = (m->status >> 16) & 0x1f;
821
822         if (mce_flags.smca)
823                 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
824
825         return m->bank == 4 && xec == 0x8;
826 }
827
828 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
829 {
830         struct mce m;
831
832         mce_setup(&m);
833
834         m.status = status;
835         m.misc   = misc;
836         m.bank   = bank;
837         m.tsc    = rdtsc();
838
839         if (m.status & MCI_STATUS_ADDRV) {
840                 m.addr = addr;
841
842                 /*
843                  * Extract [55:<lsb>] where lsb is the least significant
844                  * *valid* bit of the address bits.
845                  */
846                 if (mce_flags.smca) {
847                         u8 lsb = (m.addr >> 56) & 0x3f;
848
849                         m.addr &= GENMASK_ULL(55, lsb);
850                 }
851         }
852
853         if (mce_flags.smca) {
854                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
855
856                 if (m.status & MCI_STATUS_SYNDV)
857                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
858         }
859
860         mce_log(&m);
861 }
862
863 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
864 {
865         entering_irq();
866         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
867         inc_irq_stat(irq_deferred_error_count);
868         deferred_error_int_vector();
869         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
870         exiting_ack_irq();
871 }
872
873 /*
874  * Returns true if the logged error is deferred. False, otherwise.
875  */
876 static inline bool
877 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
878 {
879         u64 status, addr = 0;
880
881         rdmsrl(msr_stat, status);
882         if (!(status & MCI_STATUS_VAL))
883                 return false;
884
885         if (status & MCI_STATUS_ADDRV)
886                 rdmsrl(msr_addr, addr);
887
888         __log_error(bank, status, addr, misc);
889
890         wrmsrl(msr_stat, 0);
891
892         return status & MCI_STATUS_DEFERRED;
893 }
894
895 /*
896  * We have three scenarios for checking for Deferred errors:
897  *
898  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
899  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
900  *    clear MCA_DESTAT.
901  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
902  *    log it.
903  */
904 static void log_error_deferred(unsigned int bank)
905 {
906         bool defrd;
907
908         defrd = _log_error_bank(bank, msr_ops.status(bank),
909                                         msr_ops.addr(bank), 0);
910
911         if (!mce_flags.smca)
912                 return;
913
914         /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
915         if (defrd) {
916                 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
917                 return;
918         }
919
920         /*
921          * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
922          * for a valid error.
923          */
924         _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
925                               MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
926 }
927
928 /* APIC interrupt handler for deferred errors */
929 static void amd_deferred_error_interrupt(void)
930 {
931         unsigned int bank;
932
933         for (bank = 0; bank < mca_cfg.banks; ++bank)
934                 log_error_deferred(bank);
935 }
936
937 static void log_error_thresholding(unsigned int bank, u64 misc)
938 {
939         _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
940 }
941
942 static void log_and_reset_block(struct threshold_block *block)
943 {
944         struct thresh_restart tr;
945         u32 low = 0, high = 0;
946
947         if (!block)
948                 return;
949
950         if (rdmsr_safe(block->address, &low, &high))
951                 return;
952
953         if (!(high & MASK_OVERFLOW_HI))
954                 return;
955
956         /* Log the MCE which caused the threshold event. */
957         log_error_thresholding(block->bank, ((u64)high << 32) | low);
958
959         /* Reset threshold block after logging error. */
960         memset(&tr, 0, sizeof(tr));
961         tr.b = block;
962         threshold_restart_bank(&tr);
963 }
964
965 /*
966  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
967  * goes off when error_count reaches threshold_limit.
968  */
969 static void amd_threshold_interrupt(void)
970 {
971         struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
972         unsigned int bank, cpu = smp_processor_id();
973
974         for (bank = 0; bank < mca_cfg.banks; ++bank) {
975                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
976                         continue;
977
978                 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
979                 if (!first_block)
980                         continue;
981
982                 /*
983                  * The first block is also the head of the list. Check it first
984                  * before iterating over the rest.
985                  */
986                 log_and_reset_block(first_block);
987                 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
988                         log_and_reset_block(block);
989         }
990 }
991
992 /*
993  * Sysfs Interface
994  */
995
996 struct threshold_attr {
997         struct attribute attr;
998         ssize_t (*show) (struct threshold_block *, char *);
999         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1000 };
1001
1002 #define SHOW_FIELDS(name)                                               \
1003 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
1004 {                                                                       \
1005         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
1006 }
1007 SHOW_FIELDS(interrupt_enable)
1008 SHOW_FIELDS(threshold_limit)
1009
1010 static ssize_t
1011 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1012 {
1013         struct thresh_restart tr;
1014         unsigned long new;
1015
1016         if (!b->interrupt_capable)
1017                 return -EINVAL;
1018
1019         if (kstrtoul(buf, 0, &new) < 0)
1020                 return -EINVAL;
1021
1022         b->interrupt_enable = !!new;
1023
1024         memset(&tr, 0, sizeof(tr));
1025         tr.b            = b;
1026
1027         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1028
1029         return size;
1030 }
1031
1032 static ssize_t
1033 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1034 {
1035         struct thresh_restart tr;
1036         unsigned long new;
1037
1038         if (kstrtoul(buf, 0, &new) < 0)
1039                 return -EINVAL;
1040
1041         if (new > THRESHOLD_MAX)
1042                 new = THRESHOLD_MAX;
1043         if (new < 1)
1044                 new = 1;
1045
1046         memset(&tr, 0, sizeof(tr));
1047         tr.old_limit = b->threshold_limit;
1048         b->threshold_limit = new;
1049         tr.b = b;
1050
1051         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1052
1053         return size;
1054 }
1055
1056 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1057 {
1058         u32 lo, hi;
1059
1060         rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1061
1062         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1063                                      (THRESHOLD_MAX - b->threshold_limit)));
1064 }
1065
1066 static struct threshold_attr error_count = {
1067         .attr = {.name = __stringify(error_count), .mode = 0444 },
1068         .show = show_error_count,
1069 };
1070
1071 #define RW_ATTR(val)                                                    \
1072 static struct threshold_attr val = {                                    \
1073         .attr   = {.name = __stringify(val), .mode = 0644 },            \
1074         .show   = show_## val,                                          \
1075         .store  = store_## val,                                         \
1076 };
1077
1078 RW_ATTR(interrupt_enable);
1079 RW_ATTR(threshold_limit);
1080
1081 static struct attribute *default_attrs[] = {
1082         &threshold_limit.attr,
1083         &error_count.attr,
1084         NULL,   /* possibly interrupt_enable if supported, see below */
1085         NULL,
1086 };
1087
1088 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1089 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1090
1091 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1092 {
1093         struct threshold_block *b = to_block(kobj);
1094         struct threshold_attr *a = to_attr(attr);
1095         ssize_t ret;
1096
1097         ret = a->show ? a->show(b, buf) : -EIO;
1098
1099         return ret;
1100 }
1101
1102 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1103                      const char *buf, size_t count)
1104 {
1105         struct threshold_block *b = to_block(kobj);
1106         struct threshold_attr *a = to_attr(attr);
1107         ssize_t ret;
1108
1109         ret = a->store ? a->store(b, buf, count) : -EIO;
1110
1111         return ret;
1112 }
1113
1114 static const struct sysfs_ops threshold_ops = {
1115         .show                   = show,
1116         .store                  = store,
1117 };
1118
1119 static void threshold_block_release(struct kobject *kobj);
1120
1121 static struct kobj_type threshold_ktype = {
1122         .sysfs_ops              = &threshold_ops,
1123         .default_attrs          = default_attrs,
1124         .release                = threshold_block_release,
1125 };
1126
1127 static const char *get_name(unsigned int bank, struct threshold_block *b)
1128 {
1129         enum smca_bank_types bank_type;
1130
1131         if (!mce_flags.smca) {
1132                 if (b && bank == 4)
1133                         return bank4_names(b);
1134
1135                 return th_names[bank];
1136         }
1137
1138         bank_type = smca_get_bank_type(bank);
1139         if (bank_type >= N_SMCA_BANK_TYPES)
1140                 return NULL;
1141
1142         if (b && bank_type == SMCA_UMC) {
1143                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1144                         return smca_umc_block_names[b->block];
1145                 return NULL;
1146         }
1147
1148         if (smca_banks[bank].hwid->count == 1)
1149                 return smca_get_name(bank_type);
1150
1151         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1152                  "%s_%x", smca_get_name(bank_type),
1153                           smca_banks[bank].sysfs_id);
1154         return buf_mcatype;
1155 }
1156
1157 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1158                                      unsigned int bank, unsigned int block,
1159                                      u32 address)
1160 {
1161         struct threshold_block *b = NULL;
1162         u32 low, high;
1163         int err;
1164
1165         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1166                 return 0;
1167
1168         if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1169                 return 0;
1170
1171         if (!(high & MASK_VALID_HI)) {
1172                 if (block)
1173                         goto recurse;
1174                 else
1175                         return 0;
1176         }
1177
1178         if (!(high & MASK_CNTP_HI)  ||
1179              (high & MASK_LOCKED_HI))
1180                 goto recurse;
1181
1182         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1183         if (!b)
1184                 return -ENOMEM;
1185
1186         b->block                = block;
1187         b->bank                 = bank;
1188         b->cpu                  = cpu;
1189         b->address              = address;
1190         b->interrupt_enable     = 0;
1191         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1192         b->threshold_limit      = THRESHOLD_MAX;
1193
1194         if (b->interrupt_capable) {
1195                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1196                 b->interrupt_enable = 1;
1197         } else {
1198                 threshold_ktype.default_attrs[2] = NULL;
1199         }
1200
1201         INIT_LIST_HEAD(&b->miscj);
1202
1203         if (tb->blocks)
1204                 list_add(&b->miscj, &tb->blocks->miscj);
1205         else
1206                 tb->blocks = b;
1207
1208         err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1209         if (err)
1210                 goto out_free;
1211 recurse:
1212         address = get_block_address(cpu, address, low, high, bank, ++block);
1213         if (!address)
1214                 return 0;
1215
1216         err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1217         if (err)
1218                 goto out_free;
1219
1220         if (b)
1221                 kobject_uevent(&b->kobj, KOBJ_ADD);
1222
1223         return err;
1224
1225 out_free:
1226         if (b) {
1227                 kobject_put(&b->kobj);
1228                 list_del(&b->miscj);
1229                 kfree(b);
1230         }
1231         return err;
1232 }
1233
1234 static int __threshold_add_blocks(struct threshold_bank *b)
1235 {
1236         struct list_head *head = &b->blocks->miscj;
1237         struct threshold_block *pos = NULL;
1238         struct threshold_block *tmp = NULL;
1239         int err = 0;
1240
1241         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1242         if (err)
1243                 return err;
1244
1245         list_for_each_entry_safe(pos, tmp, head, miscj) {
1246
1247                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1248                 if (err) {
1249                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1250                                 kobject_del(&pos->kobj);
1251
1252                         return err;
1253                 }
1254         }
1255         return err;
1256 }
1257
1258 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1259 {
1260         struct device *dev = per_cpu(mce_device, cpu);
1261         struct amd_northbridge *nb = NULL;
1262         struct threshold_bank *b = NULL;
1263         const char *name = get_name(bank, NULL);
1264         int err = 0;
1265
1266         if (!dev)
1267                 return -ENODEV;
1268
1269         if (is_shared_bank(bank)) {
1270                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1271
1272                 /* threshold descriptor already initialized on this node? */
1273                 if (nb && nb->bank4) {
1274                         /* yes, use it */
1275                         b = nb->bank4;
1276                         err = kobject_add(b->kobj, &dev->kobj, name);
1277                         if (err)
1278                                 goto out;
1279
1280                         per_cpu(threshold_banks, cpu)[bank] = b;
1281                         refcount_inc(&b->cpus);
1282
1283                         err = __threshold_add_blocks(b);
1284
1285                         goto out;
1286                 }
1287         }
1288
1289         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1290         if (!b) {
1291                 err = -ENOMEM;
1292                 goto out;
1293         }
1294
1295         b->kobj = kobject_create_and_add(name, &dev->kobj);
1296         if (!b->kobj) {
1297                 err = -EINVAL;
1298                 goto out_free;
1299         }
1300
1301         if (is_shared_bank(bank)) {
1302                 refcount_set(&b->cpus, 1);
1303
1304                 /* nb is already initialized, see above */
1305                 if (nb) {
1306                         WARN_ON(nb->bank4);
1307                         nb->bank4 = b;
1308                 }
1309         }
1310
1311         err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank));
1312         if (err)
1313                 goto out_free;
1314
1315         per_cpu(threshold_banks, cpu)[bank] = b;
1316
1317         return 0;
1318
1319  out_free:
1320         kfree(b);
1321
1322  out:
1323         return err;
1324 }
1325
1326 static void threshold_block_release(struct kobject *kobj)
1327 {
1328         kfree(to_block(kobj));
1329 }
1330
1331 static void deallocate_threshold_block(unsigned int cpu, unsigned int bank)
1332 {
1333         struct threshold_block *pos = NULL;
1334         struct threshold_block *tmp = NULL;
1335         struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1336
1337         if (!head)
1338                 return;
1339
1340         list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1341                 list_del(&pos->miscj);
1342                 kobject_put(&pos->kobj);
1343         }
1344
1345         kobject_put(&head->blocks->kobj);
1346 }
1347
1348 static void __threshold_remove_blocks(struct threshold_bank *b)
1349 {
1350         struct threshold_block *pos = NULL;
1351         struct threshold_block *tmp = NULL;
1352
1353         kobject_del(b->kobj);
1354
1355         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1356                 kobject_del(&pos->kobj);
1357 }
1358
1359 static void threshold_remove_bank(unsigned int cpu, int bank)
1360 {
1361         struct amd_northbridge *nb;
1362         struct threshold_bank *b;
1363
1364         b = per_cpu(threshold_banks, cpu)[bank];
1365         if (!b)
1366                 return;
1367
1368         if (!b->blocks)
1369                 goto free_out;
1370
1371         if (is_shared_bank(bank)) {
1372                 if (!refcount_dec_and_test(&b->cpus)) {
1373                         __threshold_remove_blocks(b);
1374                         per_cpu(threshold_banks, cpu)[bank] = NULL;
1375                         return;
1376                 } else {
1377                         /*
1378                          * the last CPU on this node using the shared bank is
1379                          * going away, remove that bank now.
1380                          */
1381                         nb = node_to_amd_nb(amd_get_nb_id(cpu));
1382                         nb->bank4 = NULL;
1383                 }
1384         }
1385
1386         deallocate_threshold_block(cpu, bank);
1387
1388 free_out:
1389         kobject_del(b->kobj);
1390         kobject_put(b->kobj);
1391         kfree(b);
1392         per_cpu(threshold_banks, cpu)[bank] = NULL;
1393 }
1394
1395 int mce_threshold_remove_device(unsigned int cpu)
1396 {
1397         unsigned int bank;
1398
1399         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1400                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1401                         continue;
1402                 threshold_remove_bank(cpu, bank);
1403         }
1404         kfree(per_cpu(threshold_banks, cpu));
1405         per_cpu(threshold_banks, cpu) = NULL;
1406         return 0;
1407 }
1408
1409 /* create dir/files for all valid threshold banks */
1410 int mce_threshold_create_device(unsigned int cpu)
1411 {
1412         unsigned int bank;
1413         struct threshold_bank **bp;
1414         int err = 0;
1415
1416         bp = per_cpu(threshold_banks, cpu);
1417         if (bp)
1418                 return 0;
1419
1420         bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1421                      GFP_KERNEL);
1422         if (!bp)
1423                 return -ENOMEM;
1424
1425         per_cpu(threshold_banks, cpu) = bp;
1426
1427         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1428                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1429                         continue;
1430                 err = threshold_create_bank(cpu, bank);
1431                 if (err)
1432                         goto err;
1433         }
1434         return err;
1435 err:
1436         mce_threshold_remove_device(cpu);
1437         return err;
1438 }
1439
1440 static __init int threshold_init_device(void)
1441 {
1442         unsigned lcpu = 0;
1443
1444         /* to hit CPUs online before the notifier is up */
1445         for_each_online_cpu(lcpu) {
1446                 int err = mce_threshold_create_device(lcpu);
1447
1448                 if (err)
1449                         return err;
1450         }
1451
1452         if (thresholding_irq_en)
1453                 mce_threshold_vector = amd_threshold_interrupt;
1454
1455         return 0;
1456 }
1457 /*
1458  * there are 3 funcs which need to be _initcalled in a logic sequence:
1459  * 1. xen_late_init_mcelog
1460  * 2. mcheck_init_device
1461  * 3. threshold_init_device
1462  *
1463  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1464  * native mce_chrdev_device registration if running under xen platform;
1465  *
1466  * mcheck_init_device should be inited before threshold_init_device to
1467  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1468  *
1469  * so we use following _initcalls
1470  * 1. device_initcall(xen_late_init_mcelog);
1471  * 2. device_initcall_sync(mcheck_init_device);
1472  * 3. late_initcall(threshold_init_device);
1473  *
1474  * when running under xen, the initcall order is 1,2,3;
1475  * on baremetal, we skip 1 and we do only 2 and 3.
1476  */
1477 late_initcall(threshold_init_device);