GNU Linux-libre 4.14.265-gnu1
[releases.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75
76 /* correctly size the local cpu masks */
77 void __init setup_cpu_local_masks(void)
78 {
79         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80         alloc_bootmem_cpumask_var(&cpu_callin_mask);
81         alloc_bootmem_cpumask_var(&cpu_callout_mask);
82         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84
85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88         cpu_detect_cache_sizes(c);
89 #else
90         /* Not much we can do here... */
91         /* Check if at least it has cpuid */
92         if (c->cpuid_level == -1) {
93                 /* No cpuid. It must be an ancient CPU */
94                 if (c->x86 == 4)
95                         strcpy(c->x86_model_id, "486");
96                 else if (c->x86 == 3)
97                         strcpy(c->x86_model_id, "386");
98         }
99 #endif
100 }
101
102 static const struct cpu_dev default_cpu = {
103         .c_init         = default_init,
104         .c_vendor       = "Unknown",
105         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
106 };
107
108 static const struct cpu_dev *this_cpu = &default_cpu;
109
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112         /*
113          * We need valid kernel segments for data and code in long mode too
114          * IRET will check the segment types  kkeil 2000/10/28
115          * Also sysret mandates a special GDT layout
116          *
117          * TLS descriptors are currently at a different place compared to i386.
118          * Hopefully nobody expects them at a fixed place (Wine?)
119          */
120         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131         /*
132          * Segments used for calling PnP BIOS have byte granularity.
133          * They code segments and data segments have fixed 64k limits,
134          * the transfer segment sizes are set at run time.
135          */
136         /* 32-bit code */
137         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138         /* 16-bit code */
139         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140         /* 16-bit data */
141         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142         /* 16-bit data */
143         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
144         /* 16-bit data */
145         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
146         /*
147          * The APM segments have byte granularity and their bases
148          * are set at run time.  All have 64k limits.
149          */
150         /* 32-bit code */
151         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152         /* 16-bit code */
153         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154         /* data */
155         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156
157         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159         GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163
164 static int __init x86_mpx_setup(char *s)
165 {
166         /* require an exact match without trailing characters */
167         if (strlen(s))
168                 return 0;
169
170         /* do not emit a message if the feature is not present */
171         if (!boot_cpu_has(X86_FEATURE_MPX))
172                 return 1;
173
174         setup_clear_cpu_cap(X86_FEATURE_MPX);
175         pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176         return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179
180 #ifdef CONFIG_X86_64
181 static int __init x86_nopcid_setup(char *s)
182 {
183         /* nopcid doesn't accept parameters */
184         if (s)
185                 return -EINVAL;
186
187         /* do not emit a message if the feature is not present */
188         if (!boot_cpu_has(X86_FEATURE_PCID))
189                 return 0;
190
191         setup_clear_cpu_cap(X86_FEATURE_PCID);
192         pr_info("nopcid: PCID feature disabled\n");
193         return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197
198 static int __init x86_noinvpcid_setup(char *s)
199 {
200         /* noinvpcid doesn't accept parameters */
201         if (s)
202                 return -EINVAL;
203
204         /* do not emit a message if the feature is not present */
205         if (!boot_cpu_has(X86_FEATURE_INVPCID))
206                 return 0;
207
208         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209         pr_info("noinvpcid: INVPCID feature disabled\n");
210         return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217
218 static int __init cachesize_setup(char *str)
219 {
220         get_option(&str, &cachesize_override);
221         return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224
225 static int __init x86_sep_setup(char *s)
226 {
227         setup_clear_cpu_cap(X86_FEATURE_SEP);
228         return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231
232 /* Standard macro to see if a specific flag is changeable */
233 static inline int flag_is_changeable_p(u32 flag)
234 {
235         u32 f1, f2;
236
237         /*
238          * Cyrix and IDT cpus allow disabling of CPUID
239          * so the code below may return different results
240          * when it is executed before and after enabling
241          * the CPUID. Add "volatile" to not allow gcc to
242          * optimize the subsequent calls to this function.
243          */
244         asm volatile ("pushfl           \n\t"
245                       "pushfl           \n\t"
246                       "popl %0          \n\t"
247                       "movl %0, %1      \n\t"
248                       "xorl %2, %0      \n\t"
249                       "pushl %0         \n\t"
250                       "popfl            \n\t"
251                       "pushfl           \n\t"
252                       "popl %0          \n\t"
253                       "popfl            \n\t"
254
255                       : "=&r" (f1), "=&r" (f2)
256                       : "ir" (flag));
257
258         return ((f1^f2) & flag) != 0;
259 }
260
261 /* Probe for the CPUID instruction */
262 int have_cpuid_p(void)
263 {
264         return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266
267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269         unsigned long lo, hi;
270
271         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272                 return;
273
274         /* Disable processor serial number: */
275
276         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277         lo |= 0x200000;
278         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279
280         pr_notice("CPU serial number disabled.\n");
281         clear_cpu_cap(c, X86_FEATURE_PN);
282
283         /* Disabling the serial number may affect the cpuid level */
284         c->cpuid_level = cpuid_eax(0);
285 }
286
287 static int __init x86_serial_nr_setup(char *s)
288 {
289         disable_x86_serial_nr = 0;
290         return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
294 static inline int flag_is_changeable_p(u32 flag)
295 {
296         return 1;
297 }
298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302
303 static __init int setup_disable_smep(char *arg)
304 {
305         setup_clear_cpu_cap(X86_FEATURE_SMEP);
306         /* Check for things that depend on SMEP being enabled: */
307         check_mpx_erratum(&boot_cpu_data);
308         return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311
312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314         if (cpu_has(c, X86_FEATURE_SMEP))
315                 cr4_set_bits(X86_CR4_SMEP);
316 }
317
318 static __init int setup_disable_smap(char *arg)
319 {
320         setup_clear_cpu_cap(X86_FEATURE_SMAP);
321         return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324
325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327         unsigned long eflags = native_save_fl();
328
329         /* This should have been cleared long ago */
330         BUG_ON(eflags & X86_EFLAGS_AC);
331
332         if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334                 cr4_set_bits(X86_CR4_SMAP);
335 #else
336                 cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338         }
339 }
340
341 /*
342  * Protection Keys are not available in 32-bit mode.
343  */
344 static bool pku_disabled;
345
346 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
347 {
348         /* check the boot processor, plus compile options for PKU: */
349         if (!cpu_feature_enabled(X86_FEATURE_PKU))
350                 return;
351         /* checks the actual processor's cpuid bits: */
352         if (!cpu_has(c, X86_FEATURE_PKU))
353                 return;
354         if (pku_disabled)
355                 return;
356
357         cr4_set_bits(X86_CR4_PKE);
358         /*
359          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
360          * cpuid bit to be set.  We need to ensure that we
361          * update that bit in this CPU's "cpu_info".
362          */
363         set_cpu_cap(c, X86_FEATURE_OSPKE);
364 }
365
366 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
367 static __init int setup_disable_pku(char *arg)
368 {
369         /*
370          * Do not clear the X86_FEATURE_PKU bit.  All of the
371          * runtime checks are against OSPKE so clearing the
372          * bit does nothing.
373          *
374          * This way, we will see "pku" in cpuinfo, but not
375          * "ospke", which is exactly what we want.  It shows
376          * that the CPU has PKU, but the OS has not enabled it.
377          * This happens to be exactly how a system would look
378          * if we disabled the config option.
379          */
380         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
381         pku_disabled = true;
382         return 1;
383 }
384 __setup("nopku", setup_disable_pku);
385 #endif /* CONFIG_X86_64 */
386
387 /*
388  * Some CPU features depend on higher CPUID levels, which may not always
389  * be available due to CPUID level capping or broken virtualization
390  * software.  Add those features to this table to auto-disable them.
391  */
392 struct cpuid_dependent_feature {
393         u32 feature;
394         u32 level;
395 };
396
397 static const struct cpuid_dependent_feature
398 cpuid_dependent_features[] = {
399         { X86_FEATURE_MWAIT,            0x00000005 },
400         { X86_FEATURE_DCA,              0x00000009 },
401         { X86_FEATURE_XSAVE,            0x0000000d },
402         { 0, 0 }
403 };
404
405 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
406 {
407         const struct cpuid_dependent_feature *df;
408
409         for (df = cpuid_dependent_features; df->feature; df++) {
410
411                 if (!cpu_has(c, df->feature))
412                         continue;
413                 /*
414                  * Note: cpuid_level is set to -1 if unavailable, but
415                  * extended_extended_level is set to 0 if unavailable
416                  * and the legitimate extended levels are all negative
417                  * when signed; hence the weird messing around with
418                  * signs here...
419                  */
420                 if (!((s32)df->level < 0 ?
421                      (u32)df->level > (u32)c->extended_cpuid_level :
422                      (s32)df->level > (s32)c->cpuid_level))
423                         continue;
424
425                 clear_cpu_cap(c, df->feature);
426                 if (!warn)
427                         continue;
428
429                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
430                         x86_cap_flag(df->feature), df->level);
431         }
432 }
433
434 /*
435  * Naming convention should be: <Name> [(<Codename>)]
436  * This table only is used unless init_<vendor>() below doesn't set it;
437  * in particular, if CPUID levels 0x80000002..4 are supported, this
438  * isn't used
439  */
440
441 /* Look up CPU names by table lookup. */
442 static const char *table_lookup_model(struct cpuinfo_x86 *c)
443 {
444 #ifdef CONFIG_X86_32
445         const struct legacy_cpu_model_info *info;
446
447         if (c->x86_model >= 16)
448                 return NULL;    /* Range check */
449
450         if (!this_cpu)
451                 return NULL;
452
453         info = this_cpu->legacy_models;
454
455         while (info->family) {
456                 if (info->family == c->x86)
457                         return info->model_names[c->x86_model];
458                 info++;
459         }
460 #endif
461         return NULL;            /* Not found */
462 }
463
464 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
465 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
466
467 void load_percpu_segment(int cpu)
468 {
469 #ifdef CONFIG_X86_32
470         loadsegment(fs, __KERNEL_PERCPU);
471 #else
472         __loadsegment_simple(gs, 0);
473         wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
474 #endif
475         load_stack_canary_segment();
476 }
477
478 #ifdef CONFIG_X86_32
479 /* The 32-bit entry code needs to find cpu_entry_area. */
480 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
481 #endif
482
483 #ifdef CONFIG_X86_64
484 /*
485  * Special IST stacks which the CPU switches to when it calls
486  * an IST-marked descriptor entry. Up to 7 stacks (hardware
487  * limit), all of them are 4K, except the debug stack which
488  * is 8K.
489  */
490 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
491           [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
492           [DEBUG_STACK - 1]                     = DEBUG_STKSZ
493 };
494 #endif
495
496 /* Load the original GDT from the per-cpu structure */
497 void load_direct_gdt(int cpu)
498 {
499         struct desc_ptr gdt_descr;
500
501         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
502         gdt_descr.size = GDT_SIZE - 1;
503         load_gdt(&gdt_descr);
504 }
505 EXPORT_SYMBOL_GPL(load_direct_gdt);
506
507 /* Load a fixmap remapping of the per-cpu GDT */
508 void load_fixmap_gdt(int cpu)
509 {
510         struct desc_ptr gdt_descr;
511
512         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
513         gdt_descr.size = GDT_SIZE - 1;
514         load_gdt(&gdt_descr);
515 }
516 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
517
518 /*
519  * Current gdt points %fs at the "master" per-cpu area: after this,
520  * it's on the real one.
521  */
522 void switch_to_new_gdt(int cpu)
523 {
524         /* Load the original GDT */
525         load_direct_gdt(cpu);
526         /* Reload the per-cpu base */
527         load_percpu_segment(cpu);
528 }
529
530 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
531
532 static void get_model_name(struct cpuinfo_x86 *c)
533 {
534         unsigned int *v;
535         char *p, *q, *s;
536
537         if (c->extended_cpuid_level < 0x80000004)
538                 return;
539
540         v = (unsigned int *)c->x86_model_id;
541         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
542         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
543         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
544         c->x86_model_id[48] = 0;
545
546         /* Trim whitespace */
547         p = q = s = &c->x86_model_id[0];
548
549         while (*p == ' ')
550                 p++;
551
552         while (*p) {
553                 /* Note the last non-whitespace index */
554                 if (!isspace(*p))
555                         s = q;
556
557                 *q++ = *p++;
558         }
559
560         *(s + 1) = '\0';
561 }
562
563 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
564 {
565         unsigned int n, dummy, ebx, ecx, edx, l2size;
566
567         n = c->extended_cpuid_level;
568
569         if (n >= 0x80000005) {
570                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
571                 c->x86_cache_size = (ecx>>24) + (edx>>24);
572 #ifdef CONFIG_X86_64
573                 /* On K8 L1 TLB is inclusive, so don't count it */
574                 c->x86_tlbsize = 0;
575 #endif
576         }
577
578         if (n < 0x80000006)     /* Some chips just has a large L1. */
579                 return;
580
581         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
582         l2size = ecx >> 16;
583
584 #ifdef CONFIG_X86_64
585         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
586 #else
587         /* do processor-specific cache resizing */
588         if (this_cpu->legacy_cache_size)
589                 l2size = this_cpu->legacy_cache_size(c, l2size);
590
591         /* Allow user to override all this if necessary. */
592         if (cachesize_override != -1)
593                 l2size = cachesize_override;
594
595         if (l2size == 0)
596                 return;         /* Again, no L2 cache is possible */
597 #endif
598
599         c->x86_cache_size = l2size;
600 }
601
602 u16 __read_mostly tlb_lli_4k[NR_INFO];
603 u16 __read_mostly tlb_lli_2m[NR_INFO];
604 u16 __read_mostly tlb_lli_4m[NR_INFO];
605 u16 __read_mostly tlb_lld_4k[NR_INFO];
606 u16 __read_mostly tlb_lld_2m[NR_INFO];
607 u16 __read_mostly tlb_lld_4m[NR_INFO];
608 u16 __read_mostly tlb_lld_1g[NR_INFO];
609
610 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
611 {
612         if (this_cpu->c_detect_tlb)
613                 this_cpu->c_detect_tlb(c);
614
615         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
616                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
617                 tlb_lli_4m[ENTRIES]);
618
619         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
620                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
621                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
622 }
623
624 int detect_ht_early(struct cpuinfo_x86 *c)
625 {
626 #ifdef CONFIG_SMP
627         u32 eax, ebx, ecx, edx;
628
629         if (!cpu_has(c, X86_FEATURE_HT))
630                 return -1;
631
632         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
633                 return -1;
634
635         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
636                 return -1;
637
638         cpuid(1, &eax, &ebx, &ecx, &edx);
639
640         smp_num_siblings = (ebx & 0xff0000) >> 16;
641         if (smp_num_siblings == 1)
642                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
643 #endif
644         return 0;
645 }
646
647 void detect_ht(struct cpuinfo_x86 *c)
648 {
649 #ifdef CONFIG_SMP
650         int index_msb, core_bits;
651
652         if (detect_ht_early(c) < 0)
653                 return;
654
655         index_msb = get_count_order(smp_num_siblings);
656         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
657
658         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
659
660         index_msb = get_count_order(smp_num_siblings);
661
662         core_bits = get_count_order(c->x86_max_cores);
663
664         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
665                                        ((1 << core_bits) - 1);
666 #endif
667 }
668
669 static void get_cpu_vendor(struct cpuinfo_x86 *c)
670 {
671         char *v = c->x86_vendor_id;
672         int i;
673
674         for (i = 0; i < X86_VENDOR_NUM; i++) {
675                 if (!cpu_devs[i])
676                         break;
677
678                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
679                     (cpu_devs[i]->c_ident[1] &&
680                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
681
682                         this_cpu = cpu_devs[i];
683                         c->x86_vendor = this_cpu->c_x86_vendor;
684                         return;
685                 }
686         }
687
688         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
689                     "CPU: Your system may be unstable.\n", v);
690
691         c->x86_vendor = X86_VENDOR_UNKNOWN;
692         this_cpu = &default_cpu;
693 }
694
695 void cpu_detect(struct cpuinfo_x86 *c)
696 {
697         /* Get vendor name */
698         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
699               (unsigned int *)&c->x86_vendor_id[0],
700               (unsigned int *)&c->x86_vendor_id[8],
701               (unsigned int *)&c->x86_vendor_id[4]);
702
703         c->x86 = 4;
704         /* Intel-defined flags: level 0x00000001 */
705         if (c->cpuid_level >= 0x00000001) {
706                 u32 junk, tfms, cap0, misc;
707
708                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
709                 c->x86          = x86_family(tfms);
710                 c->x86_model    = x86_model(tfms);
711                 c->x86_stepping = x86_stepping(tfms);
712
713                 if (cap0 & (1<<19)) {
714                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
715                         c->x86_cache_alignment = c->x86_clflush_size;
716                 }
717         }
718 }
719
720 static void apply_forced_caps(struct cpuinfo_x86 *c)
721 {
722         int i;
723
724         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
725                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
726                 c->x86_capability[i] |= cpu_caps_set[i];
727         }
728 }
729
730 static void init_speculation_control(struct cpuinfo_x86 *c)
731 {
732         /*
733          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
734          * and they also have a different bit for STIBP support. Also,
735          * a hypervisor might have set the individual AMD bits even on
736          * Intel CPUs, for finer-grained selection of what's available.
737          */
738         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
739                 set_cpu_cap(c, X86_FEATURE_IBRS);
740                 set_cpu_cap(c, X86_FEATURE_IBPB);
741                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
742         }
743
744         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
745                 set_cpu_cap(c, X86_FEATURE_STIBP);
746
747         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
748             cpu_has(c, X86_FEATURE_VIRT_SSBD))
749                 set_cpu_cap(c, X86_FEATURE_SSBD);
750
751         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
752                 set_cpu_cap(c, X86_FEATURE_IBRS);
753                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
754         }
755
756         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
757                 set_cpu_cap(c, X86_FEATURE_IBPB);
758
759         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
760                 set_cpu_cap(c, X86_FEATURE_STIBP);
761                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
762         }
763
764         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
765                 set_cpu_cap(c, X86_FEATURE_SSBD);
766                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
767                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
768         }
769 }
770
771 static void init_cqm(struct cpuinfo_x86 *c)
772 {
773         if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
774                 c->x86_cache_max_rmid  = -1;
775                 c->x86_cache_occ_scale = -1;
776                 return;
777         }
778
779         /* will be overridden if occupancy monitoring exists */
780         c->x86_cache_max_rmid = cpuid_ebx(0xf);
781
782         if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
783             cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
784             cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
785                 u32 eax, ebx, ecx, edx;
786
787                 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
788                 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
789
790                 c->x86_cache_max_rmid  = ecx;
791                 c->x86_cache_occ_scale = ebx;
792         }
793 }
794
795 void get_cpu_cap(struct cpuinfo_x86 *c)
796 {
797         u32 eax, ebx, ecx, edx;
798
799         /* Intel-defined flags: level 0x00000001 */
800         if (c->cpuid_level >= 0x00000001) {
801                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
802
803                 c->x86_capability[CPUID_1_ECX] = ecx;
804                 c->x86_capability[CPUID_1_EDX] = edx;
805         }
806
807         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
808         if (c->cpuid_level >= 0x00000006)
809                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
810
811         /* Additional Intel-defined flags: level 0x00000007 */
812         if (c->cpuid_level >= 0x00000007) {
813                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
814                 c->x86_capability[CPUID_7_0_EBX] = ebx;
815                 c->x86_capability[CPUID_7_ECX] = ecx;
816                 c->x86_capability[CPUID_7_EDX] = edx;
817         }
818
819         /* Extended state features: level 0x0000000d */
820         if (c->cpuid_level >= 0x0000000d) {
821                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
822
823                 c->x86_capability[CPUID_D_1_EAX] = eax;
824         }
825
826         /* AMD-defined flags: level 0x80000001 */
827         eax = cpuid_eax(0x80000000);
828         c->extended_cpuid_level = eax;
829
830         if ((eax & 0xffff0000) == 0x80000000) {
831                 if (eax >= 0x80000001) {
832                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
833
834                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
835                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
836                 }
837         }
838
839         if (c->extended_cpuid_level >= 0x80000007) {
840                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
841
842                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
843                 c->x86_power = edx;
844         }
845
846         if (c->extended_cpuid_level >= 0x80000008) {
847                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
848
849                 c->x86_virt_bits = (eax >> 8) & 0xff;
850                 c->x86_phys_bits = eax & 0xff;
851                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
852         }
853 #ifdef CONFIG_X86_32
854         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
855                 c->x86_phys_bits = 36;
856 #endif
857         c->x86_cache_bits = c->x86_phys_bits;
858
859         if (c->extended_cpuid_level >= 0x8000000a)
860                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
861
862         init_scattered_cpuid_features(c);
863         init_speculation_control(c);
864         init_cqm(c);
865
866         /*
867          * Clear/Set all flags overridden by options, after probe.
868          * This needs to happen each time we re-probe, which may happen
869          * several times during CPU initialization.
870          */
871         apply_forced_caps(c);
872 }
873
874 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
875 {
876 #ifdef CONFIG_X86_32
877         int i;
878
879         /*
880          * First of all, decide if this is a 486 or higher
881          * It's a 486 if we can modify the AC flag
882          */
883         if (flag_is_changeable_p(X86_EFLAGS_AC))
884                 c->x86 = 4;
885         else
886                 c->x86 = 3;
887
888         for (i = 0; i < X86_VENDOR_NUM; i++)
889                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
890                         c->x86_vendor_id[0] = 0;
891                         cpu_devs[i]->c_identify(c);
892                         if (c->x86_vendor_id[0]) {
893                                 get_cpu_vendor(c);
894                                 break;
895                         }
896                 }
897 #endif
898 }
899
900 #define NO_SPECULATION          BIT(0)
901 #define NO_MELTDOWN             BIT(1)
902 #define NO_SSB                  BIT(2)
903 #define NO_L1TF                 BIT(3)
904 #define NO_MDS                  BIT(4)
905 #define MSBDS_ONLY              BIT(5)
906 #define NO_SWAPGS               BIT(6)
907 #define NO_ITLB_MULTIHIT        BIT(7)
908
909 #define VULNWL(_vendor, _family, _model, _whitelist)    \
910         { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
911
912 #define VULNWL_INTEL(model, whitelist)          \
913         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
914
915 #define VULNWL_AMD(family, whitelist)           \
916         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
917
918 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
919         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
920         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
921         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
922         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
923
924         /* Intel Family 6 */
925         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
926         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
927         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
928         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
929         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
930
931         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
932         VULNWL_INTEL(ATOM_SILVERMONT_X,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
933         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
934         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
935         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
936         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
937
938         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
939
940         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
941
942         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
943         VULNWL_INTEL(ATOM_GOLDMONT_X,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
944         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
945
946         /*
947          * Technically, swapgs isn't serializing on AMD (despite it previously
948          * being documented as such in the APM).  But according to AMD, %gs is
949          * updated non-speculatively, and the issuing of %gs-relative memory
950          * operands will be blocked until the %gs update completes, which is
951          * good enough for our purposes.
952          */
953
954         VULNWL_INTEL(ATOM_TREMONT_X,            NO_ITLB_MULTIHIT),
955
956         /* AMD Family 0xf - 0x12 */
957         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
958         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
959         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
960         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
961
962         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
963         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
964         {}
965 };
966
967 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
968         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
969                                             INTEL_FAM6_##model, steppings, \
970                                             X86_FEATURE_ANY, issues)
971
972 #define SRBDS           BIT(0)
973
974 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
975         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
976         VULNBL_INTEL_STEPPINGS(HASWELL_CORE,    X86_STEPPING_ANY,               SRBDS),
977         VULNBL_INTEL_STEPPINGS(HASWELL_ULT,     X86_STEPPING_ANY,               SRBDS),
978         VULNBL_INTEL_STEPPINGS(HASWELL_GT3E,    X86_STEPPING_ANY,               SRBDS),
979         VULNBL_INTEL_STEPPINGS(BROADWELL_GT3E,  X86_STEPPING_ANY,               SRBDS),
980         VULNBL_INTEL_STEPPINGS(BROADWELL_CORE,  X86_STEPPING_ANY,               SRBDS),
981         VULNBL_INTEL_STEPPINGS(SKYLAKE_MOBILE,  X86_STEPPING_ANY,               SRBDS),
982         VULNBL_INTEL_STEPPINGS(SKYLAKE_DESKTOP, X86_STEPPING_ANY,               SRBDS),
983         VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPINGS(0x0, 0xC),        SRBDS),
984         VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPINGS(0x0, 0xD),        SRBDS),
985         {}
986 };
987
988 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
989 {
990         const struct x86_cpu_id *m = x86_match_cpu(table);
991
992         return m && !!(m->driver_data & which);
993 }
994
995 u64 x86_read_arch_cap_msr(void)
996 {
997         u64 ia32_cap = 0;
998
999         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1000                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1001
1002         return ia32_cap;
1003 }
1004
1005 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1006 {
1007         u64 ia32_cap = x86_read_arch_cap_msr();
1008
1009         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1010         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1011             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1012                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1013
1014         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1015                 return;
1016
1017         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1018         setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1019
1020         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1021             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1022            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1023                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1024
1025         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1026                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1027
1028         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1029             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1030                 setup_force_cpu_bug(X86_BUG_MDS);
1031                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1032                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1033         }
1034
1035         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1036                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1037
1038         /*
1039          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1040          *      - TSX is supported or
1041          *      - TSX_CTRL is present
1042          *
1043          * TSX_CTRL check is needed for cases when TSX could be disabled before
1044          * the kernel boot e.g. kexec.
1045          * TSX_CTRL check alone is not sufficient for cases when the microcode
1046          * update is not present or running as guest that don't get TSX_CTRL.
1047          */
1048         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1049             (cpu_has(c, X86_FEATURE_RTM) ||
1050              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1051                 setup_force_cpu_bug(X86_BUG_TAA);
1052
1053         /*
1054          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1055          * in the vulnerability blacklist.
1056          */
1057         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1058              cpu_has(c, X86_FEATURE_RDSEED)) &&
1059             cpu_matches(cpu_vuln_blacklist, SRBDS))
1060                     setup_force_cpu_bug(X86_BUG_SRBDS);
1061
1062         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1063                 return;
1064
1065         /* Rogue Data Cache Load? No! */
1066         if (ia32_cap & ARCH_CAP_RDCL_NO)
1067                 return;
1068
1069         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1070
1071         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1072                 return;
1073
1074         setup_force_cpu_bug(X86_BUG_L1TF);
1075 }
1076
1077 /*
1078  * Do minimum CPU detection early.
1079  * Fields really needed: vendor, cpuid_level, family, model, mask,
1080  * cache alignment.
1081  * The others are not touched to avoid unwanted side effects.
1082  *
1083  * WARNING: this function is only called on the BP.  Don't add code here
1084  * that is supposed to run on all CPUs.
1085  */
1086 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1087 {
1088 #ifdef CONFIG_X86_64
1089         c->x86_clflush_size = 64;
1090         c->x86_phys_bits = 36;
1091         c->x86_virt_bits = 48;
1092 #else
1093         c->x86_clflush_size = 32;
1094         c->x86_phys_bits = 32;
1095         c->x86_virt_bits = 32;
1096 #endif
1097         c->x86_cache_alignment = c->x86_clflush_size;
1098
1099         memset(&c->x86_capability, 0, sizeof c->x86_capability);
1100         c->extended_cpuid_level = 0;
1101
1102         if (!have_cpuid_p())
1103                 identify_cpu_without_cpuid(c);
1104
1105         /* cyrix could have cpuid enabled via c_identify()*/
1106         if (have_cpuid_p()) {
1107                 cpu_detect(c);
1108                 get_cpu_vendor(c);
1109                 get_cpu_cap(c);
1110                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1111
1112                 if (this_cpu->c_early_init)
1113                         this_cpu->c_early_init(c);
1114
1115                 c->cpu_index = 0;
1116                 filter_cpuid_features(c, false);
1117
1118                 if (this_cpu->c_bsp_init)
1119                         this_cpu->c_bsp_init(c);
1120         } else {
1121                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1122         }
1123
1124         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1125
1126         cpu_set_bug_bits(c);
1127
1128         fpu__init_system(c);
1129
1130 #ifdef CONFIG_X86_32
1131         /*
1132          * Regardless of whether PCID is enumerated, the SDM says
1133          * that it can't be enabled in 32-bit mode.
1134          */
1135         setup_clear_cpu_cap(X86_FEATURE_PCID);
1136 #endif
1137 }
1138
1139 void __init early_cpu_init(void)
1140 {
1141         const struct cpu_dev *const *cdev;
1142         int count = 0;
1143
1144 #ifdef CONFIG_PROCESSOR_SELECT
1145         pr_info("KERNEL supported cpus:\n");
1146 #endif
1147
1148         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1149                 const struct cpu_dev *cpudev = *cdev;
1150
1151                 if (count >= X86_VENDOR_NUM)
1152                         break;
1153                 cpu_devs[count] = cpudev;
1154                 count++;
1155
1156 #ifdef CONFIG_PROCESSOR_SELECT
1157                 {
1158                         unsigned int j;
1159
1160                         for (j = 0; j < 2; j++) {
1161                                 if (!cpudev->c_ident[j])
1162                                         continue;
1163                                 pr_info("  %s %s\n", cpudev->c_vendor,
1164                                         cpudev->c_ident[j]);
1165                         }
1166                 }
1167 #endif
1168         }
1169         early_identify_cpu(&boot_cpu_data);
1170 }
1171
1172 /*
1173  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1174  * unfortunately, that's not true in practice because of early VIA
1175  * chips and (more importantly) broken virtualizers that are not easy
1176  * to detect. In the latter case it doesn't even *fail* reliably, so
1177  * probing for it doesn't even work. Disable it completely on 32-bit
1178  * unless we can find a reliable way to detect all the broken cases.
1179  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1180  */
1181 static void detect_nopl(struct cpuinfo_x86 *c)
1182 {
1183 #ifdef CONFIG_X86_32
1184         clear_cpu_cap(c, X86_FEATURE_NOPL);
1185 #else
1186         set_cpu_cap(c, X86_FEATURE_NOPL);
1187 #endif
1188 }
1189
1190 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1191 {
1192 #ifdef CONFIG_X86_64
1193         /*
1194          * Empirically, writing zero to a segment selector on AMD does
1195          * not clear the base, whereas writing zero to a segment
1196          * selector on Intel does clear the base.  Intel's behavior
1197          * allows slightly faster context switches in the common case
1198          * where GS is unused by the prev and next threads.
1199          *
1200          * Since neither vendor documents this anywhere that I can see,
1201          * detect it directly instead of hardcoding the choice by
1202          * vendor.
1203          *
1204          * I've designated AMD's behavior as the "bug" because it's
1205          * counterintuitive and less friendly.
1206          */
1207
1208         unsigned long old_base, tmp;
1209         rdmsrl(MSR_FS_BASE, old_base);
1210         wrmsrl(MSR_FS_BASE, 1);
1211         loadsegment(fs, 0);
1212         rdmsrl(MSR_FS_BASE, tmp);
1213         if (tmp != 0)
1214                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1215         wrmsrl(MSR_FS_BASE, old_base);
1216 #endif
1217 }
1218
1219 static void generic_identify(struct cpuinfo_x86 *c)
1220 {
1221         c->extended_cpuid_level = 0;
1222
1223         if (!have_cpuid_p())
1224                 identify_cpu_without_cpuid(c);
1225
1226         /* cyrix could have cpuid enabled via c_identify()*/
1227         if (!have_cpuid_p())
1228                 return;
1229
1230         cpu_detect(c);
1231
1232         get_cpu_vendor(c);
1233
1234         get_cpu_cap(c);
1235
1236         if (c->cpuid_level >= 0x00000001) {
1237                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1238 #ifdef CONFIG_X86_32
1239 # ifdef CONFIG_SMP
1240                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1241 # else
1242                 c->apicid = c->initial_apicid;
1243 # endif
1244 #endif
1245                 c->phys_proc_id = c->initial_apicid;
1246         }
1247
1248         get_model_name(c); /* Default name */
1249
1250         detect_nopl(c);
1251
1252         detect_null_seg_behavior(c);
1253
1254         /*
1255          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1256          * systems that run Linux at CPL > 0 may or may not have the
1257          * issue, but, even if they have the issue, there's absolutely
1258          * nothing we can do about it because we can't use the real IRET
1259          * instruction.
1260          *
1261          * NB: For the time being, only 32-bit kernels support
1262          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1263          * whether to apply espfix using paravirt hooks.  If any
1264          * non-paravirt system ever shows up that does *not* have the
1265          * ESPFIX issue, we can change this.
1266          */
1267 #ifdef CONFIG_X86_32
1268 # ifdef CONFIG_PARAVIRT
1269         do {
1270                 extern void native_iret(void);
1271                 if (pv_cpu_ops.iret == native_iret)
1272                         set_cpu_bug(c, X86_BUG_ESPFIX);
1273         } while (0);
1274 # else
1275         set_cpu_bug(c, X86_BUG_ESPFIX);
1276 # endif
1277 #endif
1278 }
1279
1280 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1281 {
1282         /*
1283          * The heavy lifting of max_rmid and cache_occ_scale are handled
1284          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1285          * in case CQM bits really aren't there in this CPU.
1286          */
1287         if (c != &boot_cpu_data) {
1288                 boot_cpu_data.x86_cache_max_rmid =
1289                         min(boot_cpu_data.x86_cache_max_rmid,
1290                             c->x86_cache_max_rmid);
1291         }
1292 }
1293
1294 /*
1295  * Validate that ACPI/mptables have the same information about the
1296  * effective APIC id and update the package map.
1297  */
1298 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1299 {
1300 #ifdef CONFIG_SMP
1301         unsigned int apicid, cpu = smp_processor_id();
1302
1303         apicid = apic->cpu_present_to_apicid(cpu);
1304
1305         if (apicid != c->apicid) {
1306                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1307                        cpu, apicid, c->initial_apicid);
1308         }
1309         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1310 #else
1311         c->logical_proc_id = 0;
1312 #endif
1313 }
1314
1315 /*
1316  * This does the hard work of actually picking apart the CPU stuff...
1317  */
1318 static void identify_cpu(struct cpuinfo_x86 *c)
1319 {
1320         int i;
1321
1322         c->loops_per_jiffy = loops_per_jiffy;
1323         c->x86_cache_size = 0;
1324         c->x86_vendor = X86_VENDOR_UNKNOWN;
1325         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1326         c->x86_vendor_id[0] = '\0'; /* Unset */
1327         c->x86_model_id[0] = '\0';  /* Unset */
1328         c->x86_max_cores = 1;
1329         c->x86_coreid_bits = 0;
1330         c->cu_id = 0xff;
1331 #ifdef CONFIG_X86_64
1332         c->x86_clflush_size = 64;
1333         c->x86_phys_bits = 36;
1334         c->x86_virt_bits = 48;
1335 #else
1336         c->cpuid_level = -1;    /* CPUID not detected */
1337         c->x86_clflush_size = 32;
1338         c->x86_phys_bits = 32;
1339         c->x86_virt_bits = 32;
1340 #endif
1341         c->x86_cache_alignment = c->x86_clflush_size;
1342         memset(&c->x86_capability, 0, sizeof c->x86_capability);
1343
1344         generic_identify(c);
1345
1346         if (this_cpu->c_identify)
1347                 this_cpu->c_identify(c);
1348
1349         /* Clear/Set all flags overridden by options, after probe */
1350         apply_forced_caps(c);
1351
1352 #ifdef CONFIG_X86_64
1353         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1354 #endif
1355
1356         /*
1357          * Vendor-specific initialization.  In this section we
1358          * canonicalize the feature flags, meaning if there are
1359          * features a certain CPU supports which CPUID doesn't
1360          * tell us, CPUID claiming incorrect flags, or other bugs,
1361          * we handle them here.
1362          *
1363          * At the end of this section, c->x86_capability better
1364          * indicate the features this CPU genuinely supports!
1365          */
1366         if (this_cpu->c_init)
1367                 this_cpu->c_init(c);
1368
1369         /* Disable the PN if appropriate */
1370         squash_the_stupid_serial_number(c);
1371
1372         /* Set up SMEP/SMAP */
1373         setup_smep(c);
1374         setup_smap(c);
1375
1376         /*
1377          * The vendor-specific functions might have changed features.
1378          * Now we do "generic changes."
1379          */
1380
1381         /* Filter out anything that depends on CPUID levels we don't have */
1382         filter_cpuid_features(c, true);
1383
1384         /* If the model name is still unset, do table lookup. */
1385         if (!c->x86_model_id[0]) {
1386                 const char *p;
1387                 p = table_lookup_model(c);
1388                 if (p)
1389                         strcpy(c->x86_model_id, p);
1390                 else
1391                         /* Last resort... */
1392                         sprintf(c->x86_model_id, "%02x/%02x",
1393                                 c->x86, c->x86_model);
1394         }
1395
1396 #ifdef CONFIG_X86_64
1397         detect_ht(c);
1398 #endif
1399
1400         x86_init_rdrand(c);
1401         x86_init_cache_qos(c);
1402         setup_pku(c);
1403
1404         /*
1405          * Clear/Set all flags overridden by options, need do it
1406          * before following smp all cpus cap AND.
1407          */
1408         apply_forced_caps(c);
1409
1410         /*
1411          * On SMP, boot_cpu_data holds the common feature set between
1412          * all CPUs; so make sure that we indicate which features are
1413          * common between the CPUs.  The first time this routine gets
1414          * executed, c == &boot_cpu_data.
1415          */
1416         if (c != &boot_cpu_data) {
1417                 /* AND the already accumulated flags with these */
1418                 for (i = 0; i < NCAPINTS; i++)
1419                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1420
1421                 /* OR, i.e. replicate the bug flags */
1422                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1423                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1424         }
1425
1426         /* Init Machine Check Exception if available. */
1427         mcheck_cpu_init(c);
1428
1429         select_idle_routine(c);
1430
1431 #ifdef CONFIG_NUMA
1432         numa_add_cpu(smp_processor_id());
1433 #endif
1434 }
1435
1436 /*
1437  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1438  * on 32-bit kernels:
1439  */
1440 #ifdef CONFIG_X86_32
1441 void enable_sep_cpu(void)
1442 {
1443         struct tss_struct *tss;
1444         int cpu;
1445
1446         if (!boot_cpu_has(X86_FEATURE_SEP))
1447                 return;
1448
1449         cpu = get_cpu();
1450         tss = &per_cpu(cpu_tss_rw, cpu);
1451
1452         /*
1453          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1454          * see the big comment in struct x86_hw_tss's definition.
1455          */
1456
1457         tss->x86_tss.ss1 = __KERNEL_CS;
1458         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1459         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1460         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1461
1462         put_cpu();
1463 }
1464 #endif
1465
1466 void __init identify_boot_cpu(void)
1467 {
1468         identify_cpu(&boot_cpu_data);
1469 #ifdef CONFIG_X86_32
1470         sysenter_setup();
1471         enable_sep_cpu();
1472 #endif
1473         cpu_detect_tlb(&boot_cpu_data);
1474         tsx_init();
1475 }
1476
1477 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1478 {
1479         BUG_ON(c == &boot_cpu_data);
1480         identify_cpu(c);
1481 #ifdef CONFIG_X86_32
1482         enable_sep_cpu();
1483 #endif
1484         mtrr_ap_init();
1485         validate_apic_and_package_id(c);
1486         x86_spec_ctrl_setup_ap();
1487         update_srbds_msr();
1488 }
1489
1490 static __init int setup_noclflush(char *arg)
1491 {
1492         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1493         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1494         return 1;
1495 }
1496 __setup("noclflush", setup_noclflush);
1497
1498 void print_cpu_info(struct cpuinfo_x86 *c)
1499 {
1500         const char *vendor = NULL;
1501
1502         if (c->x86_vendor < X86_VENDOR_NUM) {
1503                 vendor = this_cpu->c_vendor;
1504         } else {
1505                 if (c->cpuid_level >= 0)
1506                         vendor = c->x86_vendor_id;
1507         }
1508
1509         if (vendor && !strstr(c->x86_model_id, vendor))
1510                 pr_cont("%s ", vendor);
1511
1512         if (c->x86_model_id[0])
1513                 pr_cont("%s", c->x86_model_id);
1514         else
1515                 pr_cont("%d86", c->x86);
1516
1517         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1518
1519         if (c->x86_stepping || c->cpuid_level >= 0)
1520                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1521         else
1522                 pr_cont(")\n");
1523 }
1524
1525 /*
1526  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1527  * But we need to keep a dummy __setup around otherwise it would
1528  * show up as an environment variable for init.
1529  */
1530 static __init int setup_clearcpuid(char *arg)
1531 {
1532         return 1;
1533 }
1534 __setup("clearcpuid=", setup_clearcpuid);
1535
1536 #ifdef CONFIG_X86_64
1537 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1538                      irq_stack_union) __aligned(PAGE_SIZE) __visible;
1539
1540 /*
1541  * The following percpu variables are hot.  Align current_task to
1542  * cacheline size such that they fall in the same cacheline.
1543  */
1544 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1545         &init_task;
1546 EXPORT_PER_CPU_SYMBOL(current_task);
1547
1548 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1549         init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1550
1551 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1552
1553 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1554 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1555
1556 /* May not be marked __init: used by software suspend */
1557 void syscall_init(void)
1558 {
1559         extern char _entry_trampoline[];
1560         extern char entry_SYSCALL_64_trampoline[];
1561
1562         int cpu = smp_processor_id();
1563         unsigned long SYSCALL64_entry_trampoline =
1564                 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1565                 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1566
1567         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1568         if (static_cpu_has(X86_FEATURE_PTI))
1569                 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1570         else
1571                 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1572
1573 #ifdef CONFIG_IA32_EMULATION
1574         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1575         /*
1576          * This only works on Intel CPUs.
1577          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1578          * This does not cause SYSENTER to jump to the wrong location, because
1579          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1580          */
1581         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1582         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1583         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1584 #else
1585         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1586         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1587         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1588         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1589 #endif
1590
1591         /* Flags to clear on syscall */
1592         wrmsrl(MSR_SYSCALL_MASK,
1593                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1594                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1595 }
1596
1597 /*
1598  * Copies of the original ist values from the tss are only accessed during
1599  * debugging, no special alignment required.
1600  */
1601 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1602
1603 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1604 DEFINE_PER_CPU(int, debug_stack_usage);
1605
1606 int is_debug_stack(unsigned long addr)
1607 {
1608         return __this_cpu_read(debug_stack_usage) ||
1609                 (addr <= __this_cpu_read(debug_stack_addr) &&
1610                  addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1611 }
1612 NOKPROBE_SYMBOL(is_debug_stack);
1613
1614 DEFINE_PER_CPU(u32, debug_idt_ctr);
1615
1616 void debug_stack_set_zero(void)
1617 {
1618         this_cpu_inc(debug_idt_ctr);
1619         load_current_idt();
1620 }
1621 NOKPROBE_SYMBOL(debug_stack_set_zero);
1622
1623 void debug_stack_reset(void)
1624 {
1625         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1626                 return;
1627         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1628                 load_current_idt();
1629 }
1630 NOKPROBE_SYMBOL(debug_stack_reset);
1631
1632 #else   /* CONFIG_X86_64 */
1633
1634 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1635 EXPORT_PER_CPU_SYMBOL(current_task);
1636 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1637 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1638
1639 /*
1640  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1641  * the top of the kernel stack.  Use an extra percpu variable to track the
1642  * top of the kernel stack directly.
1643  */
1644 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1645         (unsigned long)&init_thread_union + THREAD_SIZE;
1646 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1647
1648 #ifdef CONFIG_CC_STACKPROTECTOR
1649 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1650 #endif
1651
1652 #endif  /* CONFIG_X86_64 */
1653
1654 /*
1655  * Clear all 6 debug registers:
1656  */
1657 static void clear_all_debug_regs(void)
1658 {
1659         int i;
1660
1661         for (i = 0; i < 8; i++) {
1662                 /* Ignore db4, db5 */
1663                 if ((i == 4) || (i == 5))
1664                         continue;
1665
1666                 set_debugreg(0, i);
1667         }
1668 }
1669
1670 #ifdef CONFIG_KGDB
1671 /*
1672  * Restore debug regs if using kgdbwait and you have a kernel debugger
1673  * connection established.
1674  */
1675 static void dbg_restore_debug_regs(void)
1676 {
1677         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1678                 arch_kgdb_ops.correct_hw_break();
1679 }
1680 #else /* ! CONFIG_KGDB */
1681 #define dbg_restore_debug_regs()
1682 #endif /* ! CONFIG_KGDB */
1683
1684 static void wait_for_master_cpu(int cpu)
1685 {
1686 #ifdef CONFIG_SMP
1687         /*
1688          * wait for ACK from master CPU before continuing
1689          * with AP initialization
1690          */
1691         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1692         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1693                 cpu_relax();
1694 #endif
1695 }
1696
1697 /*
1698  * cpu_init() initializes state that is per-CPU. Some data is already
1699  * initialized (naturally) in the bootstrap process, such as the GDT
1700  * and IDT. We reload them nevertheless, this function acts as a
1701  * 'CPU state barrier', nothing should get across.
1702  * A lot of state is already set up in PDA init for 64 bit
1703  */
1704 #ifdef CONFIG_X86_64
1705
1706 void cpu_init(void)
1707 {
1708         struct orig_ist *oist;
1709         struct task_struct *me;
1710         struct tss_struct *t;
1711         unsigned long v;
1712         int cpu = raw_smp_processor_id();
1713         int i;
1714
1715         wait_for_master_cpu(cpu);
1716
1717         /*
1718          * Initialize the CR4 shadow before doing anything that could
1719          * try to read it.
1720          */
1721         cr4_init_shadow();
1722
1723         if (cpu)
1724                 load_ucode_ap();
1725
1726         t = &per_cpu(cpu_tss_rw, cpu);
1727         oist = &per_cpu(orig_ist, cpu);
1728
1729 #ifdef CONFIG_NUMA
1730         if (this_cpu_read(numa_node) == 0 &&
1731             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1732                 set_numa_node(early_cpu_to_node(cpu));
1733 #endif
1734
1735         me = current;
1736
1737         pr_debug("Initializing CPU#%d\n", cpu);
1738
1739         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1740
1741         /*
1742          * Initialize the per-CPU GDT with the boot GDT,
1743          * and set up the GDT descriptor:
1744          */
1745
1746         switch_to_new_gdt(cpu);
1747         loadsegment(fs, 0);
1748
1749         load_current_idt();
1750
1751         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1752         syscall_init();
1753
1754         wrmsrl(MSR_FS_BASE, 0);
1755         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1756         barrier();
1757
1758         x86_configure_nx();
1759         x2apic_setup();
1760
1761         /*
1762          * set up and load the per-CPU TSS
1763          */
1764         if (!oist->ist[0]) {
1765                 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1766
1767                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1768                         estacks += exception_stack_sizes[v];
1769                         oist->ist[v] = t->x86_tss.ist[v] =
1770                                         (unsigned long)estacks;
1771                         if (v == DEBUG_STACK-1)
1772                                 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1773                 }
1774         }
1775
1776         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1777
1778         /*
1779          * <= is required because the CPU will access up to
1780          * 8 bits beyond the end of the IO permission bitmap.
1781          */
1782         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1783                 t->io_bitmap[i] = ~0UL;
1784
1785         mmgrab(&init_mm);
1786         me->active_mm = &init_mm;
1787         BUG_ON(me->mm);
1788         initialize_tlbstate_and_flush();
1789         enter_lazy_tlb(&init_mm, me);
1790
1791         /*
1792          * Initialize the TSS.  sp0 points to the entry trampoline stack
1793          * regardless of what task is running.
1794          */
1795         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1796         load_TR_desc();
1797         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1798
1799         load_mm_ldt(&init_mm);
1800
1801         clear_all_debug_regs();
1802         dbg_restore_debug_regs();
1803
1804         fpu__init_cpu();
1805
1806         if (is_uv_system())
1807                 uv_cpu_init();
1808
1809         load_fixmap_gdt(cpu);
1810 }
1811
1812 #else
1813
1814 void cpu_init(void)
1815 {
1816         int cpu = smp_processor_id();
1817         struct task_struct *curr = current;
1818         struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1819
1820         wait_for_master_cpu(cpu);
1821
1822         /*
1823          * Initialize the CR4 shadow before doing anything that could
1824          * try to read it.
1825          */
1826         cr4_init_shadow();
1827
1828         show_ucode_info_early();
1829
1830         pr_info("Initializing CPU#%d\n", cpu);
1831
1832         if (cpu_feature_enabled(X86_FEATURE_VME) ||
1833             boot_cpu_has(X86_FEATURE_TSC) ||
1834             boot_cpu_has(X86_FEATURE_DE))
1835                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1836
1837         load_current_idt();
1838         switch_to_new_gdt(cpu);
1839
1840         /*
1841          * Set up and load the per-CPU TSS and LDT
1842          */
1843         mmgrab(&init_mm);
1844         curr->active_mm = &init_mm;
1845         BUG_ON(curr->mm);
1846         initialize_tlbstate_and_flush();
1847         enter_lazy_tlb(&init_mm, curr);
1848
1849         /*
1850          * Initialize the TSS.  Don't bother initializing sp0, as the initial
1851          * task never enters user mode.
1852          */
1853         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1854         load_TR_desc();
1855
1856         load_mm_ldt(&init_mm);
1857
1858         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1859
1860 #ifdef CONFIG_DOUBLEFAULT
1861         /* Set up doublefault TSS pointer in the GDT */
1862         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1863 #endif
1864
1865         clear_all_debug_regs();
1866         dbg_restore_debug_regs();
1867
1868         fpu__init_cpu();
1869
1870         load_fixmap_gdt(cpu);
1871 }
1872 #endif
1873
1874 static void bsp_resume(void)
1875 {
1876         if (this_cpu->c_bsp_resume)
1877                 this_cpu->c_bsp_resume(&boot_cpu_data);
1878 }
1879
1880 static struct syscore_ops cpu_syscore_ops = {
1881         .resume         = bsp_resume,
1882 };
1883
1884 static int __init init_cpu_syscore(void)
1885 {
1886         register_syscore_ops(&cpu_syscore_ops);
1887         return 0;
1888 }
1889 core_initcall(init_cpu_syscore);
1890
1891 /*
1892  * The microcode loader calls this upon late microcode load to recheck features,
1893  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1894  * hotplug lock.
1895  */
1896 void microcode_check(void)
1897 {
1898         struct cpuinfo_x86 info;
1899
1900         perf_check_microcode();
1901
1902         /* Reload CPUID max function as it might've changed. */
1903         info.cpuid_level = cpuid_eax(0);
1904
1905         /*
1906          * Copy all capability leafs to pick up the synthetic ones so that
1907          * memcmp() below doesn't fail on that. The ones coming from CPUID will
1908          * get overwritten in get_cpu_cap().
1909          */
1910         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1911
1912         get_cpu_cap(&info);
1913
1914         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1915                 return;
1916
1917         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1918         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1919 }