GNU Linux-libre 5.19-rc6-gnu
[releases.git] / arch / x86 / hyperv / hv_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <linux/bitfield.h>
13 #include <linux/io.h>
14 #include <asm/apic.h>
15 #include <asm/desc.h>
16 #include <asm/sev.h>
17 #include <asm/hypervisor.h>
18 #include <asm/hyperv-tlfs.h>
19 #include <asm/mshyperv.h>
20 #include <asm/idtentry.h>
21 #include <linux/kexec.h>
22 #include <linux/version.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/hyperv.h>
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/cpuhotplug.h>
29 #include <linux/syscore_ops.h>
30 #include <clocksource/hyperv_timer.h>
31 #include <linux/highmem.h>
32 #include <linux/swiotlb.h>
33
34 int hyperv_init_cpuhp;
35 u64 hv_current_partition_id = ~0ull;
36 EXPORT_SYMBOL_GPL(hv_current_partition_id);
37
38 void *hv_hypercall_pg;
39 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
40
41 union hv_ghcb * __percpu *hv_ghcb_pg;
42
43 /* Storage to save the hypercall page temporarily for hibernation */
44 static void *hv_hypercall_pg_saved;
45
46 struct hv_vp_assist_page **hv_vp_assist_page;
47 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
48
49 static int hyperv_init_ghcb(void)
50 {
51         u64 ghcb_gpa;
52         void *ghcb_va;
53         void **ghcb_base;
54
55         if (!hv_isolation_type_snp())
56                 return 0;
57
58         if (!hv_ghcb_pg)
59                 return -EINVAL;
60
61         /*
62          * GHCB page is allocated by paravisor. The address
63          * returned by MSR_AMD64_SEV_ES_GHCB is above shared
64          * memory boundary and map it here.
65          */
66         rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
67         ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
68         if (!ghcb_va)
69                 return -ENOMEM;
70
71         ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
72         *ghcb_base = ghcb_va;
73
74         return 0;
75 }
76
77 static int hv_cpu_init(unsigned int cpu)
78 {
79         union hv_vp_assist_msr_contents msr = { 0 };
80         struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
81         int ret;
82
83         ret = hv_common_cpu_init(cpu);
84         if (ret)
85                 return ret;
86
87         if (!hv_vp_assist_page)
88                 return 0;
89
90         if (!*hvp) {
91                 if (hv_root_partition) {
92                         /*
93                          * For root partition we get the hypervisor provided VP assist
94                          * page, instead of allocating a new page.
95                          */
96                         rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
97                         *hvp = memremap(msr.pfn <<
98                                         HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
99                                         PAGE_SIZE, MEMREMAP_WB);
100                 } else {
101                         /*
102                          * The VP assist page is an "overlay" page (see Hyper-V TLFS's
103                          * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
104                          * out to make sure we always write the EOI MSR in
105                          * hv_apic_eoi_write() *after* the EOI optimization is disabled
106                          * in hv_cpu_die(), otherwise a CPU may not be stopped in the
107                          * case of CPU offlining and the VM will hang.
108                          */
109                         *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
110                         if (*hvp)
111                                 msr.pfn = vmalloc_to_pfn(*hvp);
112                 }
113                 WARN_ON(!(*hvp));
114                 if (*hvp) {
115                         msr.enable = 1;
116                         wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
117                 }
118         }
119
120         return hyperv_init_ghcb();
121 }
122
123 static void (*hv_reenlightenment_cb)(void);
124
125 static void hv_reenlightenment_notify(struct work_struct *dummy)
126 {
127         struct hv_tsc_emulation_status emu_status;
128
129         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
130
131         /* Don't issue the callback if TSC accesses are not emulated */
132         if (hv_reenlightenment_cb && emu_status.inprogress)
133                 hv_reenlightenment_cb();
134 }
135 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
136
137 void hyperv_stop_tsc_emulation(void)
138 {
139         u64 freq;
140         struct hv_tsc_emulation_status emu_status;
141
142         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
143         emu_status.inprogress = 0;
144         wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
145
146         rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
147         tsc_khz = div64_u64(freq, 1000);
148 }
149 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
150
151 static inline bool hv_reenlightenment_available(void)
152 {
153         /*
154          * Check for required features and privileges to make TSC frequency
155          * change notifications work.
156          */
157         return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
158                 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
159                 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
160 }
161
162 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
163 {
164         ack_APIC_irq();
165         inc_irq_stat(irq_hv_reenlightenment_count);
166         schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
167 }
168
169 void set_hv_tscchange_cb(void (*cb)(void))
170 {
171         struct hv_reenlightenment_control re_ctrl = {
172                 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
173                 .enabled = 1,
174         };
175         struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
176
177         if (!hv_reenlightenment_available()) {
178                 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
179                 return;
180         }
181
182         if (!hv_vp_index)
183                 return;
184
185         hv_reenlightenment_cb = cb;
186
187         /* Make sure callback is registered before we write to MSRs */
188         wmb();
189
190         re_ctrl.target_vp = hv_vp_index[get_cpu()];
191
192         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
193         wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
194
195         put_cpu();
196 }
197 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
198
199 void clear_hv_tscchange_cb(void)
200 {
201         struct hv_reenlightenment_control re_ctrl;
202
203         if (!hv_reenlightenment_available())
204                 return;
205
206         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
207         re_ctrl.enabled = 0;
208         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
209
210         hv_reenlightenment_cb = NULL;
211 }
212 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
213
214 static int hv_cpu_die(unsigned int cpu)
215 {
216         struct hv_reenlightenment_control re_ctrl;
217         unsigned int new_cpu;
218         void **ghcb_va;
219
220         if (hv_ghcb_pg) {
221                 ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
222                 if (*ghcb_va)
223                         memunmap(*ghcb_va);
224                 *ghcb_va = NULL;
225         }
226
227         hv_common_cpu_die(cpu);
228
229         if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
230                 union hv_vp_assist_msr_contents msr = { 0 };
231                 if (hv_root_partition) {
232                         /*
233                          * For root partition the VP assist page is mapped to
234                          * hypervisor provided page, and thus we unmap the
235                          * page here and nullify it, so that in future we have
236                          * correct page address mapped in hv_cpu_init.
237                          */
238                         memunmap(hv_vp_assist_page[cpu]);
239                         hv_vp_assist_page[cpu] = NULL;
240                         rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
241                         msr.enable = 0;
242                 }
243                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
244         }
245
246         if (hv_reenlightenment_cb == NULL)
247                 return 0;
248
249         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
250         if (re_ctrl.target_vp == hv_vp_index[cpu]) {
251                 /*
252                  * Reassign reenlightenment notifications to some other online
253                  * CPU or just disable the feature if there are no online CPUs
254                  * left (happens on hibernation).
255                  */
256                 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
257
258                 if (new_cpu < nr_cpu_ids)
259                         re_ctrl.target_vp = hv_vp_index[new_cpu];
260                 else
261                         re_ctrl.enabled = 0;
262
263                 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
264         }
265
266         return 0;
267 }
268
269 static int __init hv_pci_init(void)
270 {
271         int gen2vm = efi_enabled(EFI_BOOT);
272
273         /*
274          * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
275          * The purpose is to suppress the harmless warning:
276          * "PCI: Fatal: No config space access function found"
277          */
278         if (gen2vm)
279                 return 0;
280
281         /* For Generation-1 VM, we'll proceed in pci_arch_init().  */
282         return 1;
283 }
284
285 static int hv_suspend(void)
286 {
287         union hv_x64_msr_hypercall_contents hypercall_msr;
288         int ret;
289
290         if (hv_root_partition)
291                 return -EPERM;
292
293         /*
294          * Reset the hypercall page as it is going to be invalidated
295          * across hibernation. Setting hv_hypercall_pg to NULL ensures
296          * that any subsequent hypercall operation fails safely instead of
297          * crashing due to an access of an invalid page. The hypercall page
298          * pointer is restored on resume.
299          */
300         hv_hypercall_pg_saved = hv_hypercall_pg;
301         hv_hypercall_pg = NULL;
302
303         /* Disable the hypercall page in the hypervisor */
304         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
305         hypercall_msr.enable = 0;
306         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
307
308         ret = hv_cpu_die(0);
309         return ret;
310 }
311
312 static void hv_resume(void)
313 {
314         union hv_x64_msr_hypercall_contents hypercall_msr;
315         int ret;
316
317         ret = hv_cpu_init(0);
318         WARN_ON(ret);
319
320         /* Re-enable the hypercall page */
321         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
322         hypercall_msr.enable = 1;
323         hypercall_msr.guest_physical_address =
324                 vmalloc_to_pfn(hv_hypercall_pg_saved);
325         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
326
327         hv_hypercall_pg = hv_hypercall_pg_saved;
328         hv_hypercall_pg_saved = NULL;
329
330         /*
331          * Reenlightenment notifications are disabled by hv_cpu_die(0),
332          * reenable them here if hv_reenlightenment_cb was previously set.
333          */
334         if (hv_reenlightenment_cb)
335                 set_hv_tscchange_cb(hv_reenlightenment_cb);
336 }
337
338 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
339 static struct syscore_ops hv_syscore_ops = {
340         .suspend        = hv_suspend,
341         .resume         = hv_resume,
342 };
343
344 static void (* __initdata old_setup_percpu_clockev)(void);
345
346 static void __init hv_stimer_setup_percpu_clockev(void)
347 {
348         /*
349          * Ignore any errors in setting up stimer clockevents
350          * as we can run with the LAPIC timer as a fallback.
351          */
352         (void)hv_stimer_alloc(false);
353
354         /*
355          * Still register the LAPIC timer, because the direct-mode STIMER is
356          * not supported by old versions of Hyper-V. This also allows users
357          * to switch to LAPIC timer via /sys, if they want to.
358          */
359         if (old_setup_percpu_clockev)
360                 old_setup_percpu_clockev();
361 }
362
363 static void __init hv_get_partition_id(void)
364 {
365         struct hv_get_partition_id *output_page;
366         u64 status;
367         unsigned long flags;
368
369         local_irq_save(flags);
370         output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
371         status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
372         if (!hv_result_success(status)) {
373                 /* No point in proceeding if this failed */
374                 pr_err("Failed to get partition ID: %lld\n", status);
375                 BUG();
376         }
377         hv_current_partition_id = output_page->partition_id;
378         local_irq_restore(flags);
379 }
380
381 /*
382  * This function is to be invoked early in the boot sequence after the
383  * hypervisor has been detected.
384  *
385  * 1. Setup the hypercall page.
386  * 2. Register Hyper-V specific clocksource.
387  * 3. Setup Hyper-V specific APIC entry points.
388  */
389 void __init hyperv_init(void)
390 {
391         u64 guest_id;
392         union hv_x64_msr_hypercall_contents hypercall_msr;
393         int cpuhp;
394
395         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
396                 return;
397
398         if (hv_common_init())
399                 return;
400
401         hv_vp_assist_page = kcalloc(num_possible_cpus(),
402                                     sizeof(*hv_vp_assist_page), GFP_KERNEL);
403         if (!hv_vp_assist_page) {
404                 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
405                 goto common_free;
406         }
407
408         if (hv_isolation_type_snp()) {
409                 /* Negotiate GHCB Version. */
410                 if (!hv_ghcb_negotiate_protocol())
411                         hv_ghcb_terminate(SEV_TERM_SET_GEN,
412                                           GHCB_SEV_ES_PROT_UNSUPPORTED);
413
414                 hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
415                 if (!hv_ghcb_pg)
416                         goto free_vp_assist_page;
417         }
418
419         cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
420                                   hv_cpu_init, hv_cpu_die);
421         if (cpuhp < 0)
422                 goto free_ghcb_page;
423
424         /*
425          * Setup the hypercall page and enable hypercalls.
426          * 1. Register the guest ID
427          * 2. Enable the hypercall and register the hypercall page
428          */
429         guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
430         wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
431
432         /* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
433         hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
434
435         hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
436                         VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
437                         VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
438                         __builtin_return_address(0));
439         if (hv_hypercall_pg == NULL)
440                 goto clean_guest_os_id;
441
442         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
443         hypercall_msr.enable = 1;
444
445         if (hv_root_partition) {
446                 struct page *pg;
447                 void *src, *dst;
448
449                 /*
450                  * For the root partition, the hypervisor will set up its
451                  * hypercall page. The hypervisor guarantees it will not show
452                  * up in the root's address space. The root can't change the
453                  * location of the hypercall page.
454                  *
455                  * Order is important here. We must enable the hypercall page
456                  * so it is populated with code, then copy the code to an
457                  * executable page.
458                  */
459                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
460
461                 pg = vmalloc_to_page(hv_hypercall_pg);
462                 dst = kmap(pg);
463                 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
464                                 MEMREMAP_WB);
465                 BUG_ON(!(src && dst));
466                 memcpy(dst, src, HV_HYP_PAGE_SIZE);
467                 memunmap(src);
468                 kunmap(pg);
469         } else {
470                 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
471                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
472         }
473
474         /*
475          * hyperv_init() is called before LAPIC is initialized: see
476          * apic_intr_mode_init() -> x86_platform.apic_post_init() and
477          * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
478          * depends on LAPIC, so hv_stimer_alloc() should be called from
479          * x86_init.timers.setup_percpu_clockev.
480          */
481         old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
482         x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
483
484         hv_apic_init();
485
486         x86_init.pci.arch_init = hv_pci_init;
487
488         register_syscore_ops(&hv_syscore_ops);
489
490         hyperv_init_cpuhp = cpuhp;
491
492         if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
493                 hv_get_partition_id();
494
495         BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
496
497 #ifdef CONFIG_PCI_MSI
498         /*
499          * If we're running as root, we want to create our own PCI MSI domain.
500          * We can't set this in hv_pci_init because that would be too late.
501          */
502         if (hv_root_partition)
503                 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
504 #endif
505
506         /* Query the VMs extended capability once, so that it can be cached. */
507         hv_query_ext_cap(0);
508
509 #ifdef CONFIG_SWIOTLB
510         /*
511          * Swiotlb bounce buffer needs to be mapped in extra address
512          * space. Map function doesn't work in the early place and so
513          * call swiotlb_update_mem_attributes() here.
514          */
515         if (hv_is_isolation_supported())
516                 swiotlb_update_mem_attributes();
517 #endif
518
519         return;
520
521 clean_guest_os_id:
522         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
523         hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
524         cpuhp_remove_state(cpuhp);
525 free_ghcb_page:
526         free_percpu(hv_ghcb_pg);
527 free_vp_assist_page:
528         kfree(hv_vp_assist_page);
529         hv_vp_assist_page = NULL;
530 common_free:
531         hv_common_free();
532 }
533
534 /*
535  * This routine is called before kexec/kdump, it does the required cleanup.
536  */
537 void hyperv_cleanup(void)
538 {
539         union hv_x64_msr_hypercall_contents hypercall_msr;
540
541         unregister_syscore_ops(&hv_syscore_ops);
542
543         /* Reset our OS id */
544         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
545         hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
546
547         /*
548          * Reset hypercall page reference before reset the page,
549          * let hypercall operations fail safely rather than
550          * panic the kernel for using invalid hypercall page
551          */
552         hv_hypercall_pg = NULL;
553
554         /* Reset the hypercall page */
555         hypercall_msr.as_uint64 = 0;
556         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
557
558         /* Reset the TSC page */
559         hypercall_msr.as_uint64 = 0;
560         wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
561 }
562
563 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
564 {
565         static bool panic_reported;
566         u64 guest_id;
567
568         if (in_die && !panic_on_oops)
569                 return;
570
571         /*
572          * We prefer to report panic on 'die' chain as we have proper
573          * registers to report, but if we miss it (e.g. on BUG()) we need
574          * to report it on 'panic'.
575          */
576         if (panic_reported)
577                 return;
578         panic_reported = true;
579
580         rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
581
582         wrmsrl(HV_X64_MSR_CRASH_P0, err);
583         wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
584         wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
585         wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
586         wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
587
588         /*
589          * Let Hyper-V know there is crash data available
590          */
591         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
592 }
593 EXPORT_SYMBOL_GPL(hyperv_report_panic);
594
595 bool hv_is_hyperv_initialized(void)
596 {
597         union hv_x64_msr_hypercall_contents hypercall_msr;
598
599         /*
600          * Ensure that we're really on Hyper-V, and not a KVM or Xen
601          * emulation of Hyper-V
602          */
603         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
604                 return false;
605
606         /*
607          * Verify that earlier initialization succeeded by checking
608          * that the hypercall page is setup
609          */
610         hypercall_msr.as_uint64 = 0;
611         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
612
613         return hypercall_msr.enable;
614 }
615 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);