GNU Linux-libre 6.7.9-gnu
[releases.git] / arch / x86 / events / intel / lbr.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7
8 #include "../perf_event.h"
9
10 /*
11  * Intel LBR_SELECT bits
12  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
13  *
14  * Hardware branch filter (not available on all CPUs)
15  */
16 #define LBR_KERNEL_BIT          0 /* do not capture at ring0 */
17 #define LBR_USER_BIT            1 /* do not capture at ring > 0 */
18 #define LBR_JCC_BIT             2 /* do not capture conditional branches */
19 #define LBR_REL_CALL_BIT        3 /* do not capture relative calls */
20 #define LBR_IND_CALL_BIT        4 /* do not capture indirect calls */
21 #define LBR_RETURN_BIT          5 /* do not capture near returns */
22 #define LBR_IND_JMP_BIT         6 /* do not capture indirect jumps */
23 #define LBR_REL_JMP_BIT         7 /* do not capture relative jumps */
24 #define LBR_FAR_BIT             8 /* do not capture far branches */
25 #define LBR_CALL_STACK_BIT      9 /* enable call stack */
26
27 /*
28  * Following bit only exists in Linux; we mask it out before writing it to
29  * the actual MSR. But it helps the constraint perf code to understand
30  * that this is a separate configuration.
31  */
32 #define LBR_NO_INFO_BIT        63 /* don't read LBR_INFO. */
33
34 #define LBR_KERNEL      (1 << LBR_KERNEL_BIT)
35 #define LBR_USER        (1 << LBR_USER_BIT)
36 #define LBR_JCC         (1 << LBR_JCC_BIT)
37 #define LBR_REL_CALL    (1 << LBR_REL_CALL_BIT)
38 #define LBR_IND_CALL    (1 << LBR_IND_CALL_BIT)
39 #define LBR_RETURN      (1 << LBR_RETURN_BIT)
40 #define LBR_REL_JMP     (1 << LBR_REL_JMP_BIT)
41 #define LBR_IND_JMP     (1 << LBR_IND_JMP_BIT)
42 #define LBR_FAR         (1 << LBR_FAR_BIT)
43 #define LBR_CALL_STACK  (1 << LBR_CALL_STACK_BIT)
44 #define LBR_NO_INFO     (1ULL << LBR_NO_INFO_BIT)
45
46 #define LBR_PLM (LBR_KERNEL | LBR_USER)
47
48 #define LBR_SEL_MASK    0x3ff   /* valid bits in LBR_SELECT */
49 #define LBR_NOT_SUPP    -1      /* LBR filter not supported */
50 #define LBR_IGN         0       /* ignored */
51
52 #define LBR_ANY          \
53         (LBR_JCC        |\
54          LBR_REL_CALL   |\
55          LBR_IND_CALL   |\
56          LBR_RETURN     |\
57          LBR_REL_JMP    |\
58          LBR_IND_JMP    |\
59          LBR_FAR)
60
61 #define LBR_FROM_FLAG_MISPRED   BIT_ULL(63)
62 #define LBR_FROM_FLAG_IN_TX     BIT_ULL(62)
63 #define LBR_FROM_FLAG_ABORT     BIT_ULL(61)
64
65 #define LBR_FROM_SIGNEXT_2MSB   (BIT_ULL(60) | BIT_ULL(59))
66
67 /*
68  * Intel LBR_CTL bits
69  *
70  * Hardware branch filter for Arch LBR
71  */
72 #define ARCH_LBR_KERNEL_BIT             1  /* capture at ring0 */
73 #define ARCH_LBR_USER_BIT               2  /* capture at ring > 0 */
74 #define ARCH_LBR_CALL_STACK_BIT         3  /* enable call stack */
75 #define ARCH_LBR_JCC_BIT                16 /* capture conditional branches */
76 #define ARCH_LBR_REL_JMP_BIT            17 /* capture relative jumps */
77 #define ARCH_LBR_IND_JMP_BIT            18 /* capture indirect jumps */
78 #define ARCH_LBR_REL_CALL_BIT           19 /* capture relative calls */
79 #define ARCH_LBR_IND_CALL_BIT           20 /* capture indirect calls */
80 #define ARCH_LBR_RETURN_BIT             21 /* capture near returns */
81 #define ARCH_LBR_OTHER_BRANCH_BIT       22 /* capture other branches */
82
83 #define ARCH_LBR_KERNEL                 (1ULL << ARCH_LBR_KERNEL_BIT)
84 #define ARCH_LBR_USER                   (1ULL << ARCH_LBR_USER_BIT)
85 #define ARCH_LBR_CALL_STACK             (1ULL << ARCH_LBR_CALL_STACK_BIT)
86 #define ARCH_LBR_JCC                    (1ULL << ARCH_LBR_JCC_BIT)
87 #define ARCH_LBR_REL_JMP                (1ULL << ARCH_LBR_REL_JMP_BIT)
88 #define ARCH_LBR_IND_JMP                (1ULL << ARCH_LBR_IND_JMP_BIT)
89 #define ARCH_LBR_REL_CALL               (1ULL << ARCH_LBR_REL_CALL_BIT)
90 #define ARCH_LBR_IND_CALL               (1ULL << ARCH_LBR_IND_CALL_BIT)
91 #define ARCH_LBR_RETURN                 (1ULL << ARCH_LBR_RETURN_BIT)
92 #define ARCH_LBR_OTHER_BRANCH           (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
93
94 #define ARCH_LBR_ANY                     \
95         (ARCH_LBR_JCC                   |\
96          ARCH_LBR_REL_JMP               |\
97          ARCH_LBR_IND_JMP               |\
98          ARCH_LBR_REL_CALL              |\
99          ARCH_LBR_IND_CALL              |\
100          ARCH_LBR_RETURN                |\
101          ARCH_LBR_OTHER_BRANCH)
102
103 #define ARCH_LBR_CTL_MASK                       0x7f000e
104
105 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
106
107 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
108 {
109         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
110                 return !!(config & ARCH_LBR_CALL_STACK);
111
112         return !!(config & LBR_CALL_STACK);
113 }
114
115 /*
116  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
117  * otherwise it becomes near impossible to get a reliable stack.
118  */
119
120 static void __intel_pmu_lbr_enable(bool pmi)
121 {
122         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
123         u64 debugctl, lbr_select = 0, orig_debugctl;
124
125         /*
126          * No need to unfreeze manually, as v4 can do that as part
127          * of the GLOBAL_STATUS ack.
128          */
129         if (pmi && x86_pmu.version >= 4)
130                 return;
131
132         /*
133          * No need to reprogram LBR_SELECT in a PMI, as it
134          * did not change.
135          */
136         if (cpuc->lbr_sel)
137                 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
138         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
139                 wrmsrl(MSR_LBR_SELECT, lbr_select);
140
141         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
142         orig_debugctl = debugctl;
143
144         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
145                 debugctl |= DEBUGCTLMSR_LBR;
146         /*
147          * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
148          * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
149          * may cause superfluous increase/decrease of LBR_TOS.
150          */
151         if (is_lbr_call_stack_bit_set(lbr_select))
152                 debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
153         else
154                 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
155
156         if (orig_debugctl != debugctl)
157                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
158
159         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
160                 wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
161 }
162
163 void intel_pmu_lbr_reset_32(void)
164 {
165         int i;
166
167         for (i = 0; i < x86_pmu.lbr_nr; i++)
168                 wrmsrl(x86_pmu.lbr_from + i, 0);
169 }
170
171 void intel_pmu_lbr_reset_64(void)
172 {
173         int i;
174
175         for (i = 0; i < x86_pmu.lbr_nr; i++) {
176                 wrmsrl(x86_pmu.lbr_from + i, 0);
177                 wrmsrl(x86_pmu.lbr_to   + i, 0);
178                 if (x86_pmu.lbr_has_info)
179                         wrmsrl(x86_pmu.lbr_info + i, 0);
180         }
181 }
182
183 static void intel_pmu_arch_lbr_reset(void)
184 {
185         /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
186         wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
187 }
188
189 void intel_pmu_lbr_reset(void)
190 {
191         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
192
193         if (!x86_pmu.lbr_nr)
194                 return;
195
196         x86_pmu.lbr_reset();
197
198         cpuc->last_task_ctx = NULL;
199         cpuc->last_log_id = 0;
200         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
201                 wrmsrl(MSR_LBR_SELECT, 0);
202 }
203
204 /*
205  * TOS = most recently recorded branch
206  */
207 static inline u64 intel_pmu_lbr_tos(void)
208 {
209         u64 tos;
210
211         rdmsrl(x86_pmu.lbr_tos, tos);
212         return tos;
213 }
214
215 enum {
216         LBR_NONE,
217         LBR_VALID,
218 };
219
220 /*
221  * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
222  * are the TSX flags when TSX is supported, but when TSX is not supported
223  * they have no consistent behavior:
224  *
225  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
226  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
227  *     part of the sign extension.
228  *
229  * Therefore, if:
230  *
231  *   1) LBR format LBR_FORMAT_EIP_FLAGS2
232  *   2) CPU has no TSX support enabled
233  *
234  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
235  * value from rdmsr() must be converted to have a 61 bits sign extension,
236  * ignoring the TSX flags.
237  */
238 static inline bool lbr_from_signext_quirk_needed(void)
239 {
240         bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
241                            boot_cpu_has(X86_FEATURE_RTM);
242
243         return !tsx_support;
244 }
245
246 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
247
248 /* If quirk is enabled, ensure sign extension is 63 bits: */
249 inline u64 lbr_from_signext_quirk_wr(u64 val)
250 {
251         if (static_branch_unlikely(&lbr_from_quirk_key)) {
252                 /*
253                  * Sign extend into bits 61:62 while preserving bit 63.
254                  *
255                  * Quirk is enabled when TSX is disabled. Therefore TSX bits
256                  * in val are always OFF and must be changed to be sign
257                  * extension bits. Since bits 59:60 are guaranteed to be
258                  * part of the sign extension bits, we can just copy them
259                  * to 61:62.
260                  */
261                 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
262         }
263         return val;
264 }
265
266 /*
267  * If quirk is needed, ensure sign extension is 61 bits:
268  */
269 static u64 lbr_from_signext_quirk_rd(u64 val)
270 {
271         if (static_branch_unlikely(&lbr_from_quirk_key)) {
272                 /*
273                  * Quirk is on when TSX is not enabled. Therefore TSX
274                  * flags must be read as OFF.
275                  */
276                 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
277         }
278         return val;
279 }
280
281 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
282 {
283         val = lbr_from_signext_quirk_wr(val);
284         wrmsrl(x86_pmu.lbr_from + idx, val);
285 }
286
287 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
288 {
289         wrmsrl(x86_pmu.lbr_to + idx, val);
290 }
291
292 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
293 {
294         wrmsrl(x86_pmu.lbr_info + idx, val);
295 }
296
297 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
298 {
299         u64 val;
300
301         if (lbr)
302                 return lbr->from;
303
304         rdmsrl(x86_pmu.lbr_from + idx, val);
305
306         return lbr_from_signext_quirk_rd(val);
307 }
308
309 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
310 {
311         u64 val;
312
313         if (lbr)
314                 return lbr->to;
315
316         rdmsrl(x86_pmu.lbr_to + idx, val);
317
318         return val;
319 }
320
321 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
322 {
323         u64 val;
324
325         if (lbr)
326                 return lbr->info;
327
328         rdmsrl(x86_pmu.lbr_info + idx, val);
329
330         return val;
331 }
332
333 static inline void
334 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
335 {
336         wrlbr_from(idx, lbr->from);
337         wrlbr_to(idx, lbr->to);
338         if (need_info)
339                 wrlbr_info(idx, lbr->info);
340 }
341
342 static inline bool
343 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
344 {
345         u64 from = rdlbr_from(idx, NULL);
346
347         /* Don't read invalid entry */
348         if (!from)
349                 return false;
350
351         lbr->from = from;
352         lbr->to = rdlbr_to(idx, NULL);
353         if (need_info)
354                 lbr->info = rdlbr_info(idx, NULL);
355
356         return true;
357 }
358
359 void intel_pmu_lbr_restore(void *ctx)
360 {
361         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362         struct x86_perf_task_context *task_ctx = ctx;
363         bool need_info = x86_pmu.lbr_has_info;
364         u64 tos = task_ctx->tos;
365         unsigned lbr_idx, mask;
366         int i;
367
368         mask = x86_pmu.lbr_nr - 1;
369         for (i = 0; i < task_ctx->valid_lbrs; i++) {
370                 lbr_idx = (tos - i) & mask;
371                 wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
372         }
373
374         for (; i < x86_pmu.lbr_nr; i++) {
375                 lbr_idx = (tos - i) & mask;
376                 wrlbr_from(lbr_idx, 0);
377                 wrlbr_to(lbr_idx, 0);
378                 if (need_info)
379                         wrlbr_info(lbr_idx, 0);
380         }
381
382         wrmsrl(x86_pmu.lbr_tos, tos);
383
384         if (cpuc->lbr_select)
385                 wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
386 }
387
388 static void intel_pmu_arch_lbr_restore(void *ctx)
389 {
390         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
391         struct lbr_entry *entries = task_ctx->entries;
392         int i;
393
394         /* Fast reset the LBRs before restore if the call stack is not full. */
395         if (!entries[x86_pmu.lbr_nr - 1].from)
396                 intel_pmu_arch_lbr_reset();
397
398         for (i = 0; i < x86_pmu.lbr_nr; i++) {
399                 if (!entries[i].from)
400                         break;
401                 wrlbr_all(&entries[i], i, true);
402         }
403 }
404
405 /*
406  * Restore the Architecture LBR state from the xsave area in the perf
407  * context data for the task via the XRSTORS instruction.
408  */
409 static void intel_pmu_arch_lbr_xrstors(void *ctx)
410 {
411         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
412
413         xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
414 }
415
416 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
417 {
418         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
419                 return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
420
421         return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
422 }
423
424 static void __intel_pmu_lbr_restore(void *ctx)
425 {
426         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
427
428         if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
429             task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
430                 intel_pmu_lbr_reset();
431                 return;
432         }
433
434         /*
435          * Does not restore the LBR registers, if
436          * - No one else touched them, and
437          * - Was not cleared in Cstate
438          */
439         if ((ctx == cpuc->last_task_ctx) &&
440             (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
441             !lbr_is_reset_in_cstate(ctx)) {
442                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
443                 return;
444         }
445
446         x86_pmu.lbr_restore(ctx);
447
448         task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
449 }
450
451 void intel_pmu_lbr_save(void *ctx)
452 {
453         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
454         struct x86_perf_task_context *task_ctx = ctx;
455         bool need_info = x86_pmu.lbr_has_info;
456         unsigned lbr_idx, mask;
457         u64 tos;
458         int i;
459
460         mask = x86_pmu.lbr_nr - 1;
461         tos = intel_pmu_lbr_tos();
462         for (i = 0; i < x86_pmu.lbr_nr; i++) {
463                 lbr_idx = (tos - i) & mask;
464                 if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
465                         break;
466         }
467         task_ctx->valid_lbrs = i;
468         task_ctx->tos = tos;
469
470         if (cpuc->lbr_select)
471                 rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
472 }
473
474 static void intel_pmu_arch_lbr_save(void *ctx)
475 {
476         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
477         struct lbr_entry *entries = task_ctx->entries;
478         int i;
479
480         for (i = 0; i < x86_pmu.lbr_nr; i++) {
481                 if (!rdlbr_all(&entries[i], i, true))
482                         break;
483         }
484
485         /* LBR call stack is not full. Reset is required in restore. */
486         if (i < x86_pmu.lbr_nr)
487                 entries[x86_pmu.lbr_nr - 1].from = 0;
488 }
489
490 /*
491  * Save the Architecture LBR state to the xsave area in the perf
492  * context data for the task via the XSAVES instruction.
493  */
494 static void intel_pmu_arch_lbr_xsaves(void *ctx)
495 {
496         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
497
498         xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
499 }
500
501 static void __intel_pmu_lbr_save(void *ctx)
502 {
503         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
504
505         if (task_context_opt(ctx)->lbr_callstack_users == 0) {
506                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
507                 return;
508         }
509
510         x86_pmu.lbr_save(ctx);
511
512         task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
513
514         cpuc->last_task_ctx = ctx;
515         cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
516 }
517
518 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
519                                  struct perf_event_pmu_context *next_epc)
520 {
521         void *prev_ctx_data, *next_ctx_data;
522
523         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
524
525         /*
526          * Architecture specific synchronization makes sense in case
527          * both prev_epc->task_ctx_data and next_epc->task_ctx_data
528          * pointers are allocated.
529          */
530
531         prev_ctx_data = next_epc->task_ctx_data;
532         next_ctx_data = prev_epc->task_ctx_data;
533
534         if (!prev_ctx_data || !next_ctx_data)
535                 return;
536
537         swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
538              task_context_opt(next_ctx_data)->lbr_callstack_users);
539 }
540
541 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
542 {
543         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
544         void *task_ctx;
545
546         if (!cpuc->lbr_users)
547                 return;
548
549         /*
550          * If LBR callstack feature is enabled and the stack was saved when
551          * the task was scheduled out, restore the stack. Otherwise flush
552          * the LBR stack.
553          */
554         task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
555         if (task_ctx) {
556                 if (sched_in)
557                         __intel_pmu_lbr_restore(task_ctx);
558                 else
559                         __intel_pmu_lbr_save(task_ctx);
560                 return;
561         }
562
563         /*
564          * Since a context switch can flip the address space and LBR entries
565          * are not tagged with an identifier, we need to wipe the LBR, even for
566          * per-cpu events. You simply cannot resolve the branches from the old
567          * address space.
568          */
569         if (sched_in)
570                 intel_pmu_lbr_reset();
571 }
572
573 static inline bool branch_user_callstack(unsigned br_sel)
574 {
575         return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
576 }
577
578 void intel_pmu_lbr_add(struct perf_event *event)
579 {
580         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
581
582         if (!x86_pmu.lbr_nr)
583                 return;
584
585         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
586                 cpuc->lbr_select = 1;
587
588         cpuc->br_sel = event->hw.branch_reg.reg;
589
590         if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data)
591                 task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users++;
592
593         /*
594          * Request pmu::sched_task() callback, which will fire inside the
595          * regular perf event scheduling, so that call will:
596          *
597          *  - restore or wipe; when LBR-callstack,
598          *  - wipe; otherwise,
599          *
600          * when this is from __perf_event_task_sched_in().
601          *
602          * However, if this is from perf_install_in_context(), no such callback
603          * will follow and we'll need to reset the LBR here if this is the
604          * first LBR event.
605          *
606          * The problem is, we cannot tell these cases apart... but we can
607          * exclude the biggest chunk of cases by looking at
608          * event->total_time_running. An event that has accrued runtime cannot
609          * be 'new'. Conversely, a new event can get installed through the
610          * context switch path for the first time.
611          */
612         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
613                 cpuc->lbr_pebs_users++;
614         perf_sched_cb_inc(event->pmu);
615         if (!cpuc->lbr_users++ && !event->total_time_running)
616                 intel_pmu_lbr_reset();
617 }
618
619 void release_lbr_buffers(void)
620 {
621         struct kmem_cache *kmem_cache;
622         struct cpu_hw_events *cpuc;
623         int cpu;
624
625         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
626                 return;
627
628         for_each_possible_cpu(cpu) {
629                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
630                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
631                 if (kmem_cache && cpuc->lbr_xsave) {
632                         kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
633                         cpuc->lbr_xsave = NULL;
634                 }
635         }
636 }
637
638 void reserve_lbr_buffers(void)
639 {
640         struct kmem_cache *kmem_cache;
641         struct cpu_hw_events *cpuc;
642         int cpu;
643
644         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
645                 return;
646
647         for_each_possible_cpu(cpu) {
648                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
649                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
650                 if (!kmem_cache || cpuc->lbr_xsave)
651                         continue;
652
653                 cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
654                                                         GFP_KERNEL | __GFP_ZERO,
655                                                         cpu_to_node(cpu));
656         }
657 }
658
659 void intel_pmu_lbr_del(struct perf_event *event)
660 {
661         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
662
663         if (!x86_pmu.lbr_nr)
664                 return;
665
666         if (branch_user_callstack(cpuc->br_sel) &&
667             event->pmu_ctx->task_ctx_data)
668                 task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users--;
669
670         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
671                 cpuc->lbr_select = 0;
672
673         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
674                 cpuc->lbr_pebs_users--;
675         cpuc->lbr_users--;
676         WARN_ON_ONCE(cpuc->lbr_users < 0);
677         WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
678         perf_sched_cb_dec(event->pmu);
679 }
680
681 static inline bool vlbr_exclude_host(void)
682 {
683         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
684
685         return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
686                 (unsigned long *)&cpuc->intel_ctrl_guest_mask);
687 }
688
689 void intel_pmu_lbr_enable_all(bool pmi)
690 {
691         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
692
693         if (cpuc->lbr_users && !vlbr_exclude_host())
694                 __intel_pmu_lbr_enable(pmi);
695 }
696
697 void intel_pmu_lbr_disable_all(void)
698 {
699         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
700
701         if (cpuc->lbr_users && !vlbr_exclude_host()) {
702                 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
703                         return __intel_pmu_arch_lbr_disable();
704
705                 __intel_pmu_lbr_disable();
706         }
707 }
708
709 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
710 {
711         unsigned long mask = x86_pmu.lbr_nr - 1;
712         struct perf_branch_entry *br = cpuc->lbr_entries;
713         u64 tos = intel_pmu_lbr_tos();
714         int i;
715
716         for (i = 0; i < x86_pmu.lbr_nr; i++) {
717                 unsigned long lbr_idx = (tos - i) & mask;
718                 union {
719                         struct {
720                                 u32 from;
721                                 u32 to;
722                         };
723                         u64     lbr;
724                 } msr_lastbranch;
725
726                 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
727
728                 perf_clear_branch_entry_bitfields(br);
729
730                 br->from        = msr_lastbranch.from;
731                 br->to          = msr_lastbranch.to;
732                 br++;
733         }
734         cpuc->lbr_stack.nr = i;
735         cpuc->lbr_stack.hw_idx = tos;
736 }
737
738 /*
739  * Due to lack of segmentation in Linux the effective address (offset)
740  * is the same as the linear address, allowing us to merge the LIP and EIP
741  * LBR formats.
742  */
743 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
744 {
745         bool need_info = false, call_stack = false;
746         unsigned long mask = x86_pmu.lbr_nr - 1;
747         struct perf_branch_entry *br = cpuc->lbr_entries;
748         u64 tos = intel_pmu_lbr_tos();
749         int i;
750         int out = 0;
751         int num = x86_pmu.lbr_nr;
752
753         if (cpuc->lbr_sel) {
754                 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
755                 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
756                         call_stack = true;
757         }
758
759         for (i = 0; i < num; i++) {
760                 unsigned long lbr_idx = (tos - i) & mask;
761                 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
762                 u16 cycles = 0;
763
764                 from = rdlbr_from(lbr_idx, NULL);
765                 to   = rdlbr_to(lbr_idx, NULL);
766
767                 /*
768                  * Read LBR call stack entries
769                  * until invalid entry (0s) is detected.
770                  */
771                 if (call_stack && !from)
772                         break;
773
774                 if (x86_pmu.lbr_has_info) {
775                         if (need_info) {
776                                 u64 info;
777
778                                 info = rdlbr_info(lbr_idx, NULL);
779                                 mis = !!(info & LBR_INFO_MISPRED);
780                                 pred = !mis;
781                                 cycles = (info & LBR_INFO_CYCLES);
782                                 if (x86_pmu.lbr_has_tsx) {
783                                         in_tx = !!(info & LBR_INFO_IN_TX);
784                                         abort = !!(info & LBR_INFO_ABORT);
785                                 }
786                         }
787                 } else {
788                         int skip = 0;
789
790                         if (x86_pmu.lbr_from_flags) {
791                                 mis = !!(from & LBR_FROM_FLAG_MISPRED);
792                                 pred = !mis;
793                                 skip = 1;
794                         }
795                         if (x86_pmu.lbr_has_tsx) {
796                                 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
797                                 abort = !!(from & LBR_FROM_FLAG_ABORT);
798                                 skip = 3;
799                         }
800                         from = (u64)((((s64)from) << skip) >> skip);
801
802                         if (x86_pmu.lbr_to_cycles) {
803                                 cycles = ((to >> 48) & LBR_INFO_CYCLES);
804                                 to = (u64)((((s64)to) << 16) >> 16);
805                         }
806                 }
807
808                 /*
809                  * Some CPUs report duplicated abort records,
810                  * with the second entry not having an abort bit set.
811                  * Skip them here. This loop runs backwards,
812                  * so we need to undo the previous record.
813                  * If the abort just happened outside the window
814                  * the extra entry cannot be removed.
815                  */
816                 if (abort && x86_pmu.lbr_double_abort && out > 0)
817                         out--;
818
819                 perf_clear_branch_entry_bitfields(br+out);
820                 br[out].from     = from;
821                 br[out].to       = to;
822                 br[out].mispred  = mis;
823                 br[out].predicted = pred;
824                 br[out].in_tx    = in_tx;
825                 br[out].abort    = abort;
826                 br[out].cycles   = cycles;
827                 out++;
828         }
829         cpuc->lbr_stack.nr = out;
830         cpuc->lbr_stack.hw_idx = tos;
831 }
832
833 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
834 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
835 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
836
837 static __always_inline int get_lbr_br_type(u64 info)
838 {
839         int type = 0;
840
841         if (static_branch_likely(&x86_lbr_type))
842                 type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
843
844         return type;
845 }
846
847 static __always_inline bool get_lbr_mispred(u64 info)
848 {
849         bool mispred = 0;
850
851         if (static_branch_likely(&x86_lbr_mispred))
852                 mispred = !!(info & LBR_INFO_MISPRED);
853
854         return mispred;
855 }
856
857 static __always_inline u16 get_lbr_cycles(u64 info)
858 {
859         u16 cycles = info & LBR_INFO_CYCLES;
860
861         if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
862             (!static_branch_likely(&x86_lbr_cycles) ||
863              !(info & LBR_INFO_CYC_CNT_VALID)))
864                 cycles = 0;
865
866         return cycles;
867 }
868
869 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
870                                 struct lbr_entry *entries)
871 {
872         struct perf_branch_entry *e;
873         struct lbr_entry *lbr;
874         u64 from, to, info;
875         int i;
876
877         for (i = 0; i < x86_pmu.lbr_nr; i++) {
878                 lbr = entries ? &entries[i] : NULL;
879                 e = &cpuc->lbr_entries[i];
880
881                 from = rdlbr_from(i, lbr);
882                 /*
883                  * Read LBR entries until invalid entry (0s) is detected.
884                  */
885                 if (!from)
886                         break;
887
888                 to = rdlbr_to(i, lbr);
889                 info = rdlbr_info(i, lbr);
890
891                 perf_clear_branch_entry_bitfields(e);
892
893                 e->from         = from;
894                 e->to           = to;
895                 e->mispred      = get_lbr_mispred(info);
896                 e->predicted    = !e->mispred;
897                 e->in_tx        = !!(info & LBR_INFO_IN_TX);
898                 e->abort        = !!(info & LBR_INFO_ABORT);
899                 e->cycles       = get_lbr_cycles(info);
900                 e->type         = get_lbr_br_type(info);
901         }
902
903         cpuc->lbr_stack.nr = i;
904 }
905
906 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
907 {
908         intel_pmu_store_lbr(cpuc, NULL);
909 }
910
911 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
912 {
913         struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
914
915         if (!xsave) {
916                 intel_pmu_store_lbr(cpuc, NULL);
917                 return;
918         }
919         xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
920
921         intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
922 }
923
924 void intel_pmu_lbr_read(void)
925 {
926         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
927
928         /*
929          * Don't read when all LBRs users are using adaptive PEBS.
930          *
931          * This could be smarter and actually check the event,
932          * but this simple approach seems to work for now.
933          */
934         if (!cpuc->lbr_users || vlbr_exclude_host() ||
935             cpuc->lbr_users == cpuc->lbr_pebs_users)
936                 return;
937
938         x86_pmu.lbr_read(cpuc);
939
940         intel_pmu_lbr_filter(cpuc);
941 }
942
943 /*
944  * SW filter is used:
945  * - in case there is no HW filter
946  * - in case the HW filter has errata or limitations
947  */
948 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
949 {
950         u64 br_type = event->attr.branch_sample_type;
951         int mask = 0;
952
953         if (br_type & PERF_SAMPLE_BRANCH_USER)
954                 mask |= X86_BR_USER;
955
956         if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
957                 mask |= X86_BR_KERNEL;
958
959         /* we ignore BRANCH_HV here */
960
961         if (br_type & PERF_SAMPLE_BRANCH_ANY)
962                 mask |= X86_BR_ANY;
963
964         if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
965                 mask |= X86_BR_ANY_CALL;
966
967         if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
968                 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
969
970         if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
971                 mask |= X86_BR_IND_CALL;
972
973         if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
974                 mask |= X86_BR_ABORT;
975
976         if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
977                 mask |= X86_BR_IN_TX;
978
979         if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
980                 mask |= X86_BR_NO_TX;
981
982         if (br_type & PERF_SAMPLE_BRANCH_COND)
983                 mask |= X86_BR_JCC;
984
985         if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
986                 if (!x86_pmu_has_lbr_callstack())
987                         return -EOPNOTSUPP;
988                 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
989                         return -EINVAL;
990                 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
991                         X86_BR_CALL_STACK;
992         }
993
994         if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
995                 mask |= X86_BR_IND_JMP;
996
997         if (br_type & PERF_SAMPLE_BRANCH_CALL)
998                 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
999
1000         if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1001                 mask |= X86_BR_TYPE_SAVE;
1002
1003         /*
1004          * stash actual user request into reg, it may
1005          * be used by fixup code for some CPU
1006          */
1007         event->hw.branch_reg.reg = mask;
1008         return 0;
1009 }
1010
1011 /*
1012  * setup the HW LBR filter
1013  * Used only when available, may not be enough to disambiguate
1014  * all branches, may need the help of the SW filter
1015  */
1016 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1017 {
1018         struct hw_perf_event_extra *reg;
1019         u64 br_type = event->attr.branch_sample_type;
1020         u64 mask = 0, v;
1021         int i;
1022
1023         for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1024                 if (!(br_type & (1ULL << i)))
1025                         continue;
1026
1027                 v = x86_pmu.lbr_sel_map[i];
1028                 if (v == LBR_NOT_SUPP)
1029                         return -EOPNOTSUPP;
1030
1031                 if (v != LBR_IGN)
1032                         mask |= v;
1033         }
1034
1035         reg = &event->hw.branch_reg;
1036         reg->idx = EXTRA_REG_LBR;
1037
1038         if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1039                 reg->config = mask;
1040
1041                 /*
1042                  * The Arch LBR HW can retrieve the common branch types
1043                  * from the LBR_INFO. It doesn't require the high overhead
1044                  * SW disassemble.
1045                  * Enable the branch type by default for the Arch LBR.
1046                  */
1047                 reg->reg |= X86_BR_TYPE_SAVE;
1048                 return 0;
1049         }
1050
1051         /*
1052          * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1053          * in suppress mode. So LBR_SELECT should be set to
1054          * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1055          * But the 10th bit LBR_CALL_STACK does not operate
1056          * in suppress mode.
1057          */
1058         reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1059
1060         if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1061             (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1062             x86_pmu.lbr_has_info)
1063                 reg->config |= LBR_NO_INFO;
1064
1065         return 0;
1066 }
1067
1068 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1069 {
1070         int ret = 0;
1071
1072         /*
1073          * no LBR on this PMU
1074          */
1075         if (!x86_pmu.lbr_nr)
1076                 return -EOPNOTSUPP;
1077
1078         /*
1079          * setup SW LBR filter
1080          */
1081         ret = intel_pmu_setup_sw_lbr_filter(event);
1082         if (ret)
1083                 return ret;
1084
1085         /*
1086          * setup HW LBR filter, if any
1087          */
1088         if (x86_pmu.lbr_sel_map)
1089                 ret = intel_pmu_setup_hw_lbr_filter(event);
1090
1091         return ret;
1092 }
1093
1094 enum {
1095         ARCH_LBR_BR_TYPE_JCC                    = 0,
1096         ARCH_LBR_BR_TYPE_NEAR_IND_JMP           = 1,
1097         ARCH_LBR_BR_TYPE_NEAR_REL_JMP           = 2,
1098         ARCH_LBR_BR_TYPE_NEAR_IND_CALL          = 3,
1099         ARCH_LBR_BR_TYPE_NEAR_REL_CALL          = 4,
1100         ARCH_LBR_BR_TYPE_NEAR_RET               = 5,
1101         ARCH_LBR_BR_TYPE_KNOWN_MAX              = ARCH_LBR_BR_TYPE_NEAR_RET,
1102
1103         ARCH_LBR_BR_TYPE_MAP_MAX                = 16,
1104 };
1105
1106 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1107         [ARCH_LBR_BR_TYPE_JCC]                  = X86_BR_JCC,
1108         [ARCH_LBR_BR_TYPE_NEAR_IND_JMP]         = X86_BR_IND_JMP,
1109         [ARCH_LBR_BR_TYPE_NEAR_REL_JMP]         = X86_BR_JMP,
1110         [ARCH_LBR_BR_TYPE_NEAR_IND_CALL]        = X86_BR_IND_CALL,
1111         [ARCH_LBR_BR_TYPE_NEAR_REL_CALL]        = X86_BR_CALL,
1112         [ARCH_LBR_BR_TYPE_NEAR_RET]             = X86_BR_RET,
1113 };
1114
1115 /*
1116  * implement actual branch filter based on user demand.
1117  * Hardware may not exactly satisfy that request, thus
1118  * we need to inspect opcodes. Mismatched branches are
1119  * discarded. Therefore, the number of branches returned
1120  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1121  */
1122 static void
1123 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1124 {
1125         u64 from, to;
1126         int br_sel = cpuc->br_sel;
1127         int i, j, type, to_plm;
1128         bool compress = false;
1129
1130         /* if sampling all branches, then nothing to filter */
1131         if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1132             ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1133                 return;
1134
1135         for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1136
1137                 from = cpuc->lbr_entries[i].from;
1138                 to = cpuc->lbr_entries[i].to;
1139                 type = cpuc->lbr_entries[i].type;
1140
1141                 /*
1142                  * Parse the branch type recorded in LBR_x_INFO MSR.
1143                  * Doesn't support OTHER_BRANCH decoding for now.
1144                  * OTHER_BRANCH branch type still rely on software decoding.
1145                  */
1146                 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1147                     type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1148                         to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1149                         type = arch_lbr_br_type_map[type] | to_plm;
1150                 } else
1151                         type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1152                 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1153                         if (cpuc->lbr_entries[i].in_tx)
1154                                 type |= X86_BR_IN_TX;
1155                         else
1156                                 type |= X86_BR_NO_TX;
1157                 }
1158
1159                 /* if type does not correspond, then discard */
1160                 if (type == X86_BR_NONE || (br_sel & type) != type) {
1161                         cpuc->lbr_entries[i].from = 0;
1162                         compress = true;
1163                 }
1164
1165                 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1166                         cpuc->lbr_entries[i].type = common_branch_type(type);
1167         }
1168
1169         if (!compress)
1170                 return;
1171
1172         /* remove all entries with from=0 */
1173         for (i = 0; i < cpuc->lbr_stack.nr; ) {
1174                 if (!cpuc->lbr_entries[i].from) {
1175                         j = i;
1176                         while (++j < cpuc->lbr_stack.nr)
1177                                 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1178                         cpuc->lbr_stack.nr--;
1179                         if (!cpuc->lbr_entries[i].from)
1180                                 continue;
1181                 }
1182                 i++;
1183         }
1184 }
1185
1186 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1187 {
1188         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189
1190         /* Cannot get TOS for large PEBS and Arch LBR */
1191         if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1192             (cpuc->n_pebs == cpuc->n_large_pebs))
1193                 cpuc->lbr_stack.hw_idx = -1ULL;
1194         else
1195                 cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1196
1197         intel_pmu_store_lbr(cpuc, lbr);
1198         intel_pmu_lbr_filter(cpuc);
1199 }
1200
1201 /*
1202  * Map interface branch filters onto LBR filters
1203  */
1204 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1205         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1206         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1207         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1208         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1209         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_REL_JMP
1210                                                 | LBR_IND_JMP | LBR_FAR,
1211         /*
1212          * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1213          */
1214         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1215          LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1216         /*
1217          * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1218          */
1219         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1220         [PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1221         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1222 };
1223
1224 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1225         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1226         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1227         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1228         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1229         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1230         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1231                                                 | LBR_FAR,
1232         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1233         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1234         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1235         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1236 };
1237
1238 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1239         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1240         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1241         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1242         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1243         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1244         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1245                                                 | LBR_FAR,
1246         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1247         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1248         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = LBR_REL_CALL | LBR_IND_CALL
1249                                                 | LBR_RETURN | LBR_CALL_STACK,
1250         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1251         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1252 };
1253
1254 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1255         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = ARCH_LBR_ANY,
1256         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = ARCH_LBR_USER,
1257         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = ARCH_LBR_KERNEL,
1258         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1259         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = ARCH_LBR_RETURN |
1260                                                   ARCH_LBR_OTHER_BRANCH,
1261         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL |
1262                                                   ARCH_LBR_IND_CALL |
1263                                                   ARCH_LBR_OTHER_BRANCH,
1264         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL,
1265         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC,
1266         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL |
1267                                                   ARCH_LBR_IND_CALL |
1268                                                   ARCH_LBR_RETURN |
1269                                                   ARCH_LBR_CALL_STACK,
1270         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = ARCH_LBR_IND_JMP,
1271         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = ARCH_LBR_REL_CALL,
1272 };
1273
1274 /* core */
1275 void __init intel_pmu_lbr_init_core(void)
1276 {
1277         x86_pmu.lbr_nr     = 4;
1278         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1279         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1280         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1281
1282         /*
1283          * SW branch filter usage:
1284          * - compensate for lack of HW filter
1285          */
1286 }
1287
1288 /* nehalem/westmere */
1289 void __init intel_pmu_lbr_init_nhm(void)
1290 {
1291         x86_pmu.lbr_nr     = 16;
1292         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1293         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1294         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1295
1296         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1297         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1298
1299         /*
1300          * SW branch filter usage:
1301          * - workaround LBR_SEL errata (see above)
1302          * - support syscall, sysret capture.
1303          *   That requires LBR_FAR but that means far
1304          *   jmp need to be filtered out
1305          */
1306 }
1307
1308 /* sandy bridge */
1309 void __init intel_pmu_lbr_init_snb(void)
1310 {
1311         x86_pmu.lbr_nr   = 16;
1312         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1313         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1314         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1315
1316         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1317         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1318
1319         /*
1320          * SW branch filter usage:
1321          * - support syscall, sysret capture.
1322          *   That requires LBR_FAR but that means far
1323          *   jmp need to be filtered out
1324          */
1325 }
1326
1327 static inline struct kmem_cache *
1328 create_lbr_kmem_cache(size_t size, size_t align)
1329 {
1330         return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1331 }
1332
1333 /* haswell */
1334 void intel_pmu_lbr_init_hsw(void)
1335 {
1336         size_t size = sizeof(struct x86_perf_task_context);
1337
1338         x86_pmu.lbr_nr   = 16;
1339         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1340         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1341         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1342
1343         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1344         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1345
1346         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1347 }
1348
1349 /* skylake */
1350 __init void intel_pmu_lbr_init_skl(void)
1351 {
1352         size_t size = sizeof(struct x86_perf_task_context);
1353
1354         x86_pmu.lbr_nr   = 32;
1355         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1356         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1357         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1358         x86_pmu.lbr_info = MSR_LBR_INFO_0;
1359
1360         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1361         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1362
1363         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1364
1365         /*
1366          * SW branch filter usage:
1367          * - support syscall, sysret capture.
1368          *   That requires LBR_FAR but that means far
1369          *   jmp need to be filtered out
1370          */
1371 }
1372
1373 /* atom */
1374 void __init intel_pmu_lbr_init_atom(void)
1375 {
1376         /*
1377          * only models starting at stepping 10 seems
1378          * to have an operational LBR which can freeze
1379          * on PMU interrupt
1380          */
1381         if (boot_cpu_data.x86_model == 28
1382             && boot_cpu_data.x86_stepping < 10) {
1383                 pr_cont("LBR disabled due to erratum");
1384                 return;
1385         }
1386
1387         x86_pmu.lbr_nr     = 8;
1388         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1389         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1390         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1391
1392         /*
1393          * SW branch filter usage:
1394          * - compensate for lack of HW filter
1395          */
1396 }
1397
1398 /* slm */
1399 void __init intel_pmu_lbr_init_slm(void)
1400 {
1401         x86_pmu.lbr_nr     = 8;
1402         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1403         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1404         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1405
1406         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1407         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1408
1409         /*
1410          * SW branch filter usage:
1411          * - compensate for lack of HW filter
1412          */
1413         pr_cont("8-deep LBR, ");
1414 }
1415
1416 /* Knights Landing */
1417 void intel_pmu_lbr_init_knl(void)
1418 {
1419         x86_pmu.lbr_nr     = 8;
1420         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1421         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1422         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1423
1424         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1425         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1426
1427         /* Knights Landing does have MISPREDICT bit */
1428         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1429                 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1430 }
1431
1432 void intel_pmu_lbr_init(void)
1433 {
1434         switch (x86_pmu.intel_cap.lbr_format) {
1435         case LBR_FORMAT_EIP_FLAGS2:
1436                 x86_pmu.lbr_has_tsx = 1;
1437                 x86_pmu.lbr_from_flags = 1;
1438                 if (lbr_from_signext_quirk_needed())
1439                         static_branch_enable(&lbr_from_quirk_key);
1440                 break;
1441
1442         case LBR_FORMAT_EIP_FLAGS:
1443                 x86_pmu.lbr_from_flags = 1;
1444                 break;
1445
1446         case LBR_FORMAT_INFO:
1447                 x86_pmu.lbr_has_tsx = 1;
1448                 fallthrough;
1449         case LBR_FORMAT_INFO2:
1450                 x86_pmu.lbr_has_info = 1;
1451                 break;
1452
1453         case LBR_FORMAT_TIME:
1454                 x86_pmu.lbr_from_flags = 1;
1455                 x86_pmu.lbr_to_cycles = 1;
1456                 break;
1457         }
1458
1459         if (x86_pmu.lbr_has_info) {
1460                 /*
1461                  * Only used in combination with baseline pebs.
1462                  */
1463                 static_branch_enable(&x86_lbr_mispred);
1464                 static_branch_enable(&x86_lbr_cycles);
1465         }
1466 }
1467
1468 /*
1469  * LBR state size is variable based on the max number of registers.
1470  * This calculates the expected state size, which should match
1471  * what the hardware enumerates for the size of XFEATURE_LBR.
1472  */
1473 static inline unsigned int get_lbr_state_size(void)
1474 {
1475         return sizeof(struct arch_lbr_state) +
1476                x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1477 }
1478
1479 static bool is_arch_lbr_xsave_available(void)
1480 {
1481         if (!boot_cpu_has(X86_FEATURE_XSAVES))
1482                 return false;
1483
1484         /*
1485          * Check the LBR state with the corresponding software structure.
1486          * Disable LBR XSAVES support if the size doesn't match.
1487          */
1488         if (xfeature_size(XFEATURE_LBR) == 0)
1489                 return false;
1490
1491         if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1492                 return false;
1493
1494         return true;
1495 }
1496
1497 void __init intel_pmu_arch_lbr_init(void)
1498 {
1499         struct pmu *pmu = x86_get_pmu(smp_processor_id());
1500         union cpuid28_eax eax;
1501         union cpuid28_ebx ebx;
1502         union cpuid28_ecx ecx;
1503         unsigned int unused_edx;
1504         bool arch_lbr_xsave;
1505         size_t size;
1506         u64 lbr_nr;
1507
1508         /* Arch LBR Capabilities */
1509         cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1510
1511         lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1512         if (!lbr_nr)
1513                 goto clear_arch_lbr;
1514
1515         /* Apply the max depth of Arch LBR */
1516         if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1517                 goto clear_arch_lbr;
1518
1519         x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1520         x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1521         x86_pmu.lbr_lip = eax.split.lbr_lip;
1522         x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1523         x86_pmu.lbr_filter = ebx.split.lbr_filter;
1524         x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1525         x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1526         x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1527         x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1528         x86_pmu.lbr_nr = lbr_nr;
1529
1530         if (x86_pmu.lbr_mispred)
1531                 static_branch_enable(&x86_lbr_mispred);
1532         if (x86_pmu.lbr_timed_lbr)
1533                 static_branch_enable(&x86_lbr_cycles);
1534         if (x86_pmu.lbr_br_type)
1535                 static_branch_enable(&x86_lbr_type);
1536
1537         arch_lbr_xsave = is_arch_lbr_xsave_available();
1538         if (arch_lbr_xsave) {
1539                 size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1540                        get_lbr_state_size();
1541                 pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1542                                                             XSAVE_ALIGNMENT);
1543         }
1544
1545         if (!pmu->task_ctx_cache) {
1546                 arch_lbr_xsave = false;
1547
1548                 size = sizeof(struct x86_perf_task_context_arch_lbr) +
1549                        lbr_nr * sizeof(struct lbr_entry);
1550                 pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1551         }
1552
1553         x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1554         x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1555         x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1556
1557         /* LBR callstack requires both CPL and Branch Filtering support */
1558         if (!x86_pmu.lbr_cpl ||
1559             !x86_pmu.lbr_filter ||
1560             !x86_pmu.lbr_call_stack)
1561                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1562
1563         if (!x86_pmu.lbr_cpl) {
1564                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1565                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1566         } else if (!x86_pmu.lbr_filter) {
1567                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1568                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1569                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1570                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1571                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1572                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1573                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1574         }
1575
1576         x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1577         x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map;
1578
1579         if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1580                 x86_pmu.lbr_ctl_map = NULL;
1581
1582         x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1583         if (arch_lbr_xsave) {
1584                 x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1585                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1586                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1587                 pr_cont("XSAVE ");
1588         } else {
1589                 x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1590                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1591                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1592         }
1593
1594         pr_cont("Architectural LBR, ");
1595
1596         return;
1597
1598 clear_arch_lbr:
1599         setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1600 }
1601
1602 /**
1603  * x86_perf_get_lbr - get the LBR records information
1604  *
1605  * @lbr: the caller's memory to store the LBR records information
1606  */
1607 void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1608 {
1609         lbr->nr = x86_pmu.lbr_nr;
1610         lbr->from = x86_pmu.lbr_from;
1611         lbr->to = x86_pmu.lbr_to;
1612         lbr->info = x86_pmu.lbr_info;
1613 }
1614 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1615
1616 struct event_constraint vlbr_constraint =
1617         __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1618                           FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);