GNU Linux-libre 6.7.9-gnu
[releases.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6
7 #include <asm/cpu_entry_area.h>
8 #include <asm/perf_event.h>
9 #include <asm/tlbflush.h>
10 #include <asm/insn.h>
11 #include <asm/io.h>
12 #include <asm/timer.h>
13
14 #include "../perf_event.h"
15
16 /* Waste a full page so it can be mapped into the cpu_entry_area */
17 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
18
19 /* The size of a BTS record in bytes: */
20 #define BTS_RECORD_SIZE         24
21
22 #define PEBS_FIXUP_SIZE         PAGE_SIZE
23
24 /*
25  * pebs_record_32 for p4 and core not supported
26
27 struct pebs_record_32 {
28         u32 flags, ip;
29         u32 ax, bc, cx, dx;
30         u32 si, di, bp, sp;
31 };
32
33  */
34
35 union intel_x86_pebs_dse {
36         u64 val;
37         struct {
38                 unsigned int ld_dse:4;
39                 unsigned int ld_stlb_miss:1;
40                 unsigned int ld_locked:1;
41                 unsigned int ld_data_blk:1;
42                 unsigned int ld_addr_blk:1;
43                 unsigned int ld_reserved:24;
44         };
45         struct {
46                 unsigned int st_l1d_hit:1;
47                 unsigned int st_reserved1:3;
48                 unsigned int st_stlb_miss:1;
49                 unsigned int st_locked:1;
50                 unsigned int st_reserved2:26;
51         };
52         struct {
53                 unsigned int st_lat_dse:4;
54                 unsigned int st_lat_stlb_miss:1;
55                 unsigned int st_lat_locked:1;
56                 unsigned int ld_reserved3:26;
57         };
58         struct {
59                 unsigned int mtl_dse:5;
60                 unsigned int mtl_locked:1;
61                 unsigned int mtl_stlb_miss:1;
62                 unsigned int mtl_fwd_blk:1;
63                 unsigned int ld_reserved4:24;
64         };
65 };
66
67
68 /*
69  * Map PEBS Load Latency Data Source encodings to generic
70  * memory data source information
71  */
72 #define P(a, b) PERF_MEM_S(a, b)
73 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
74 #define LEVEL(x) P(LVLNUM, x)
75 #define REM P(REMOTE, REMOTE)
76 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
77
78 /* Version for Sandy Bridge and later */
79 static u64 pebs_data_source[] = {
80         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
81         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
82         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
83         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
84         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
85         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
86         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
87         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
88         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
89         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
90         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
91         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
92         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
93         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
94         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
95         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
96 };
97
98 /* Patch up minor differences in the bits */
99 void __init intel_pmu_pebs_data_source_nhm(void)
100 {
101         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
102         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
103         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
104 }
105
106 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
107 {
108         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
109
110         data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
111         data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
112         data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
113         data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
114         data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
115 }
116
117 void __init intel_pmu_pebs_data_source_skl(bool pmem)
118 {
119         __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
120 }
121
122 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
123 {
124         data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
125         data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
126         data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
127 }
128
129 void __init intel_pmu_pebs_data_source_grt(void)
130 {
131         __intel_pmu_pebs_data_source_grt(pebs_data_source);
132 }
133
134 void __init intel_pmu_pebs_data_source_adl(void)
135 {
136         u64 *data_source;
137
138         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
139         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
140         __intel_pmu_pebs_data_source_skl(false, data_source);
141
142         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
143         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
144         __intel_pmu_pebs_data_source_grt(data_source);
145 }
146
147 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
148 {
149         data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
150         data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
151         data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
152         data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
153         data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
154         data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
155 }
156
157 void __init intel_pmu_pebs_data_source_mtl(void)
158 {
159         u64 *data_source;
160
161         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
162         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
163         __intel_pmu_pebs_data_source_skl(false, data_source);
164
165         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
166         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
167         __intel_pmu_pebs_data_source_cmt(data_source);
168 }
169
170 void __init intel_pmu_pebs_data_source_cmt(void)
171 {
172         __intel_pmu_pebs_data_source_cmt(pebs_data_source);
173 }
174
175 static u64 precise_store_data(u64 status)
176 {
177         union intel_x86_pebs_dse dse;
178         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
179
180         dse.val = status;
181
182         /*
183          * bit 4: TLB access
184          * 1 = stored missed 2nd level TLB
185          *
186          * so it either hit the walker or the OS
187          * otherwise hit 2nd level TLB
188          */
189         if (dse.st_stlb_miss)
190                 val |= P(TLB, MISS);
191         else
192                 val |= P(TLB, HIT);
193
194         /*
195          * bit 0: hit L1 data cache
196          * if not set, then all we know is that
197          * it missed L1D
198          */
199         if (dse.st_l1d_hit)
200                 val |= P(LVL, HIT);
201         else
202                 val |= P(LVL, MISS);
203
204         /*
205          * bit 5: Locked prefix
206          */
207         if (dse.st_locked)
208                 val |= P(LOCK, LOCKED);
209
210         return val;
211 }
212
213 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
214 {
215         union perf_mem_data_src dse;
216
217         dse.val = PERF_MEM_NA;
218
219         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
220                 dse.mem_op = PERF_MEM_OP_STORE;
221         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
222                 dse.mem_op = PERF_MEM_OP_LOAD;
223
224         /*
225          * L1 info only valid for following events:
226          *
227          * MEM_UOPS_RETIRED.STLB_MISS_STORES
228          * MEM_UOPS_RETIRED.LOCK_STORES
229          * MEM_UOPS_RETIRED.SPLIT_STORES
230          * MEM_UOPS_RETIRED.ALL_STORES
231          */
232         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
233                 if (status & 1)
234                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
235                 else
236                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
237         }
238         return dse.val;
239 }
240
241 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
242 {
243         /*
244          * TLB access
245          * 0 = did not miss 2nd level TLB
246          * 1 = missed 2nd level TLB
247          */
248         if (tlb)
249                 *val |= P(TLB, MISS) | P(TLB, L2);
250         else
251                 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
252
253         /* locked prefix */
254         if (lock)
255                 *val |= P(LOCK, LOCKED);
256 }
257
258 /* Retrieve the latency data for e-core of ADL */
259 static u64 __adl_latency_data_small(struct perf_event *event, u64 status,
260                                      u8 dse, bool tlb, bool lock, bool blk)
261 {
262         u64 val;
263
264         WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
265
266         dse &= PERF_PEBS_DATA_SOURCE_MASK;
267         val = hybrid_var(event->pmu, pebs_data_source)[dse];
268
269         pebs_set_tlb_lock(&val, tlb, lock);
270
271         if (blk)
272                 val |= P(BLK, DATA);
273         else
274                 val |= P(BLK, NA);
275
276         return val;
277 }
278
279 u64 adl_latency_data_small(struct perf_event *event, u64 status)
280 {
281         union intel_x86_pebs_dse dse;
282
283         dse.val = status;
284
285         return __adl_latency_data_small(event, status, dse.ld_dse,
286                                         dse.ld_locked, dse.ld_stlb_miss,
287                                         dse.ld_data_blk);
288 }
289
290 /* Retrieve the latency data for e-core of MTL */
291 u64 mtl_latency_data_small(struct perf_event *event, u64 status)
292 {
293         union intel_x86_pebs_dse dse;
294
295         dse.val = status;
296
297         return __adl_latency_data_small(event, status, dse.mtl_dse,
298                                         dse.mtl_stlb_miss, dse.mtl_locked,
299                                         dse.mtl_fwd_blk);
300 }
301
302 static u64 load_latency_data(struct perf_event *event, u64 status)
303 {
304         union intel_x86_pebs_dse dse;
305         u64 val;
306
307         dse.val = status;
308
309         /*
310          * use the mapping table for bit 0-3
311          */
312         val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
313
314         /*
315          * Nehalem models do not support TLB, Lock infos
316          */
317         if (x86_pmu.pebs_no_tlb) {
318                 val |= P(TLB, NA) | P(LOCK, NA);
319                 return val;
320         }
321
322         pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
323
324         /*
325          * Ice Lake and earlier models do not support block infos.
326          */
327         if (!x86_pmu.pebs_block) {
328                 val |= P(BLK, NA);
329                 return val;
330         }
331         /*
332          * bit 6: load was blocked since its data could not be forwarded
333          *        from a preceding store
334          */
335         if (dse.ld_data_blk)
336                 val |= P(BLK, DATA);
337
338         /*
339          * bit 7: load was blocked due to potential address conflict with
340          *        a preceding store
341          */
342         if (dse.ld_addr_blk)
343                 val |= P(BLK, ADDR);
344
345         if (!dse.ld_data_blk && !dse.ld_addr_blk)
346                 val |= P(BLK, NA);
347
348         return val;
349 }
350
351 static u64 store_latency_data(struct perf_event *event, u64 status)
352 {
353         union intel_x86_pebs_dse dse;
354         union perf_mem_data_src src;
355         u64 val;
356
357         dse.val = status;
358
359         /*
360          * use the mapping table for bit 0-3
361          */
362         val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
363
364         pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
365
366         val |= P(BLK, NA);
367
368         /*
369          * the pebs_data_source table is only for loads
370          * so override the mem_op to say STORE instead
371          */
372         src.val = val;
373         src.mem_op = P(OP,STORE);
374
375         return src.val;
376 }
377
378 struct pebs_record_core {
379         u64 flags, ip;
380         u64 ax, bx, cx, dx;
381         u64 si, di, bp, sp;
382         u64 r8,  r9,  r10, r11;
383         u64 r12, r13, r14, r15;
384 };
385
386 struct pebs_record_nhm {
387         u64 flags, ip;
388         u64 ax, bx, cx, dx;
389         u64 si, di, bp, sp;
390         u64 r8,  r9,  r10, r11;
391         u64 r12, r13, r14, r15;
392         u64 status, dla, dse, lat;
393 };
394
395 /*
396  * Same as pebs_record_nhm, with two additional fields.
397  */
398 struct pebs_record_hsw {
399         u64 flags, ip;
400         u64 ax, bx, cx, dx;
401         u64 si, di, bp, sp;
402         u64 r8,  r9,  r10, r11;
403         u64 r12, r13, r14, r15;
404         u64 status, dla, dse, lat;
405         u64 real_ip, tsx_tuning;
406 };
407
408 union hsw_tsx_tuning {
409         struct {
410                 u32 cycles_last_block     : 32,
411                     hle_abort             : 1,
412                     rtm_abort             : 1,
413                     instruction_abort     : 1,
414                     non_instruction_abort : 1,
415                     retry                 : 1,
416                     data_conflict         : 1,
417                     capacity_writes       : 1,
418                     capacity_reads        : 1;
419         };
420         u64         value;
421 };
422
423 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
424
425 /* Same as HSW, plus TSC */
426
427 struct pebs_record_skl {
428         u64 flags, ip;
429         u64 ax, bx, cx, dx;
430         u64 si, di, bp, sp;
431         u64 r8,  r9,  r10, r11;
432         u64 r12, r13, r14, r15;
433         u64 status, dla, dse, lat;
434         u64 real_ip, tsx_tuning;
435         u64 tsc;
436 };
437
438 void init_debug_store_on_cpu(int cpu)
439 {
440         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
441
442         if (!ds)
443                 return;
444
445         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
446                      (u32)((u64)(unsigned long)ds),
447                      (u32)((u64)(unsigned long)ds >> 32));
448 }
449
450 void fini_debug_store_on_cpu(int cpu)
451 {
452         if (!per_cpu(cpu_hw_events, cpu).ds)
453                 return;
454
455         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
456 }
457
458 static DEFINE_PER_CPU(void *, insn_buffer);
459
460 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
461 {
462         unsigned long start = (unsigned long)cea;
463         phys_addr_t pa;
464         size_t msz = 0;
465
466         pa = virt_to_phys(addr);
467
468         preempt_disable();
469         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
470                 cea_set_pte(cea, pa, prot);
471
472         /*
473          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
474          * all TLB entries for it.
475          */
476         flush_tlb_kernel_range(start, start + size);
477         preempt_enable();
478 }
479
480 static void ds_clear_cea(void *cea, size_t size)
481 {
482         unsigned long start = (unsigned long)cea;
483         size_t msz = 0;
484
485         preempt_disable();
486         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
487                 cea_set_pte(cea, 0, PAGE_NONE);
488
489         flush_tlb_kernel_range(start, start + size);
490         preempt_enable();
491 }
492
493 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
494 {
495         unsigned int order = get_order(size);
496         int node = cpu_to_node(cpu);
497         struct page *page;
498
499         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
500         return page ? page_address(page) : NULL;
501 }
502
503 static void dsfree_pages(const void *buffer, size_t size)
504 {
505         if (buffer)
506                 free_pages((unsigned long)buffer, get_order(size));
507 }
508
509 static int alloc_pebs_buffer(int cpu)
510 {
511         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
512         struct debug_store *ds = hwev->ds;
513         size_t bsiz = x86_pmu.pebs_buffer_size;
514         int max, node = cpu_to_node(cpu);
515         void *buffer, *insn_buff, *cea;
516
517         if (!x86_pmu.pebs)
518                 return 0;
519
520         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
521         if (unlikely(!buffer))
522                 return -ENOMEM;
523
524         /*
525          * HSW+ already provides us the eventing ip; no need to allocate this
526          * buffer then.
527          */
528         if (x86_pmu.intel_cap.pebs_format < 2) {
529                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
530                 if (!insn_buff) {
531                         dsfree_pages(buffer, bsiz);
532                         return -ENOMEM;
533                 }
534                 per_cpu(insn_buffer, cpu) = insn_buff;
535         }
536         hwev->ds_pebs_vaddr = buffer;
537         /* Update the cpu entry area mapping */
538         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
539         ds->pebs_buffer_base = (unsigned long) cea;
540         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
541         ds->pebs_index = ds->pebs_buffer_base;
542         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
543         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
544         return 0;
545 }
546
547 static void release_pebs_buffer(int cpu)
548 {
549         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
550         void *cea;
551
552         if (!x86_pmu.pebs)
553                 return;
554
555         kfree(per_cpu(insn_buffer, cpu));
556         per_cpu(insn_buffer, cpu) = NULL;
557
558         /* Clear the fixmap */
559         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
560         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
561         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
562         hwev->ds_pebs_vaddr = NULL;
563 }
564
565 static int alloc_bts_buffer(int cpu)
566 {
567         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
568         struct debug_store *ds = hwev->ds;
569         void *buffer, *cea;
570         int max;
571
572         if (!x86_pmu.bts)
573                 return 0;
574
575         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
576         if (unlikely(!buffer)) {
577                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
578                 return -ENOMEM;
579         }
580         hwev->ds_bts_vaddr = buffer;
581         /* Update the fixmap */
582         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
583         ds->bts_buffer_base = (unsigned long) cea;
584         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
585         ds->bts_index = ds->bts_buffer_base;
586         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
587         ds->bts_absolute_maximum = ds->bts_buffer_base +
588                                         max * BTS_RECORD_SIZE;
589         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
590                                         (max / 16) * BTS_RECORD_SIZE;
591         return 0;
592 }
593
594 static void release_bts_buffer(int cpu)
595 {
596         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
597         void *cea;
598
599         if (!x86_pmu.bts)
600                 return;
601
602         /* Clear the fixmap */
603         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
604         ds_clear_cea(cea, BTS_BUFFER_SIZE);
605         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
606         hwev->ds_bts_vaddr = NULL;
607 }
608
609 static int alloc_ds_buffer(int cpu)
610 {
611         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
612
613         memset(ds, 0, sizeof(*ds));
614         per_cpu(cpu_hw_events, cpu).ds = ds;
615         return 0;
616 }
617
618 static void release_ds_buffer(int cpu)
619 {
620         per_cpu(cpu_hw_events, cpu).ds = NULL;
621 }
622
623 void release_ds_buffers(void)
624 {
625         int cpu;
626
627         if (!x86_pmu.bts && !x86_pmu.pebs)
628                 return;
629
630         for_each_possible_cpu(cpu)
631                 release_ds_buffer(cpu);
632
633         for_each_possible_cpu(cpu) {
634                 /*
635                  * Again, ignore errors from offline CPUs, they will no longer
636                  * observe cpu_hw_events.ds and not program the DS_AREA when
637                  * they come up.
638                  */
639                 fini_debug_store_on_cpu(cpu);
640         }
641
642         for_each_possible_cpu(cpu) {
643                 release_pebs_buffer(cpu);
644                 release_bts_buffer(cpu);
645         }
646 }
647
648 void reserve_ds_buffers(void)
649 {
650         int bts_err = 0, pebs_err = 0;
651         int cpu;
652
653         x86_pmu.bts_active = 0;
654         x86_pmu.pebs_active = 0;
655
656         if (!x86_pmu.bts && !x86_pmu.pebs)
657                 return;
658
659         if (!x86_pmu.bts)
660                 bts_err = 1;
661
662         if (!x86_pmu.pebs)
663                 pebs_err = 1;
664
665         for_each_possible_cpu(cpu) {
666                 if (alloc_ds_buffer(cpu)) {
667                         bts_err = 1;
668                         pebs_err = 1;
669                 }
670
671                 if (!bts_err && alloc_bts_buffer(cpu))
672                         bts_err = 1;
673
674                 if (!pebs_err && alloc_pebs_buffer(cpu))
675                         pebs_err = 1;
676
677                 if (bts_err && pebs_err)
678                         break;
679         }
680
681         if (bts_err) {
682                 for_each_possible_cpu(cpu)
683                         release_bts_buffer(cpu);
684         }
685
686         if (pebs_err) {
687                 for_each_possible_cpu(cpu)
688                         release_pebs_buffer(cpu);
689         }
690
691         if (bts_err && pebs_err) {
692                 for_each_possible_cpu(cpu)
693                         release_ds_buffer(cpu);
694         } else {
695                 if (x86_pmu.bts && !bts_err)
696                         x86_pmu.bts_active = 1;
697
698                 if (x86_pmu.pebs && !pebs_err)
699                         x86_pmu.pebs_active = 1;
700
701                 for_each_possible_cpu(cpu) {
702                         /*
703                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
704                          * will get this call through intel_pmu_cpu_starting().
705                          */
706                         init_debug_store_on_cpu(cpu);
707                 }
708         }
709 }
710
711 /*
712  * BTS
713  */
714
715 struct event_constraint bts_constraint =
716         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
717
718 void intel_pmu_enable_bts(u64 config)
719 {
720         unsigned long debugctlmsr;
721
722         debugctlmsr = get_debugctlmsr();
723
724         debugctlmsr |= DEBUGCTLMSR_TR;
725         debugctlmsr |= DEBUGCTLMSR_BTS;
726         if (config & ARCH_PERFMON_EVENTSEL_INT)
727                 debugctlmsr |= DEBUGCTLMSR_BTINT;
728
729         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
730                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
731
732         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
733                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
734
735         update_debugctlmsr(debugctlmsr);
736 }
737
738 void intel_pmu_disable_bts(void)
739 {
740         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
741         unsigned long debugctlmsr;
742
743         if (!cpuc->ds)
744                 return;
745
746         debugctlmsr = get_debugctlmsr();
747
748         debugctlmsr &=
749                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
750                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
751
752         update_debugctlmsr(debugctlmsr);
753 }
754
755 int intel_pmu_drain_bts_buffer(void)
756 {
757         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
758         struct debug_store *ds = cpuc->ds;
759         struct bts_record {
760                 u64     from;
761                 u64     to;
762                 u64     flags;
763         };
764         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
765         struct bts_record *at, *base, *top;
766         struct perf_output_handle handle;
767         struct perf_event_header header;
768         struct perf_sample_data data;
769         unsigned long skip = 0;
770         struct pt_regs regs;
771
772         if (!event)
773                 return 0;
774
775         if (!x86_pmu.bts_active)
776                 return 0;
777
778         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
779         top  = (struct bts_record *)(unsigned long)ds->bts_index;
780
781         if (top <= base)
782                 return 0;
783
784         memset(&regs, 0, sizeof(regs));
785
786         ds->bts_index = ds->bts_buffer_base;
787
788         perf_sample_data_init(&data, 0, event->hw.last_period);
789
790         /*
791          * BTS leaks kernel addresses in branches across the cpl boundary,
792          * such as traps or system calls, so unless the user is asking for
793          * kernel tracing (and right now it's not possible), we'd need to
794          * filter them out. But first we need to count how many of those we
795          * have in the current batch. This is an extra O(n) pass, however,
796          * it's much faster than the other one especially considering that
797          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
798          * alloc_bts_buffer()).
799          */
800         for (at = base; at < top; at++) {
801                 /*
802                  * Note that right now *this* BTS code only works if
803                  * attr::exclude_kernel is set, but let's keep this extra
804                  * check here in case that changes.
805                  */
806                 if (event->attr.exclude_kernel &&
807                     (kernel_ip(at->from) || kernel_ip(at->to)))
808                         skip++;
809         }
810
811         /*
812          * Prepare a generic sample, i.e. fill in the invariant fields.
813          * We will overwrite the from and to address before we output
814          * the sample.
815          */
816         rcu_read_lock();
817         perf_prepare_sample(&data, event, &regs);
818         perf_prepare_header(&header, &data, event, &regs);
819
820         if (perf_output_begin(&handle, &data, event,
821                               header.size * (top - base - skip)))
822                 goto unlock;
823
824         for (at = base; at < top; at++) {
825                 /* Filter out any records that contain kernel addresses. */
826                 if (event->attr.exclude_kernel &&
827                     (kernel_ip(at->from) || kernel_ip(at->to)))
828                         continue;
829
830                 data.ip         = at->from;
831                 data.addr       = at->to;
832
833                 perf_output_sample(&handle, &header, &data, event);
834         }
835
836         perf_output_end(&handle);
837
838         /* There's new data available. */
839         event->hw.interrupts++;
840         event->pending_kill = POLL_IN;
841 unlock:
842         rcu_read_unlock();
843         return 1;
844 }
845
846 static inline void intel_pmu_drain_pebs_buffer(void)
847 {
848         struct perf_sample_data data;
849
850         x86_pmu.drain_pebs(NULL, &data);
851 }
852
853 /*
854  * PEBS
855  */
856 struct event_constraint intel_core2_pebs_event_constraints[] = {
857         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
858         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
859         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
860         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
861         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
862         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
863         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
864         EVENT_CONSTRAINT_END
865 };
866
867 struct event_constraint intel_atom_pebs_event_constraints[] = {
868         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
869         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
870         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
871         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
872         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
873         /* Allow all events as PEBS with no flags */
874         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
875         EVENT_CONSTRAINT_END
876 };
877
878 struct event_constraint intel_slm_pebs_event_constraints[] = {
879         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
880         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
881         /* Allow all events as PEBS with no flags */
882         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
883         EVENT_CONSTRAINT_END
884 };
885
886 struct event_constraint intel_glm_pebs_event_constraints[] = {
887         /* Allow all events as PEBS with no flags */
888         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
889         EVENT_CONSTRAINT_END
890 };
891
892 struct event_constraint intel_grt_pebs_event_constraints[] = {
893         /* Allow all events as PEBS with no flags */
894         INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
895         INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
896         EVENT_CONSTRAINT_END
897 };
898
899 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
900         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
901         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
902         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
903         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
904         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
905         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
906         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
907         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
908         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
909         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
910         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
911         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
912         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
913         EVENT_CONSTRAINT_END
914 };
915
916 struct event_constraint intel_westmere_pebs_event_constraints[] = {
917         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
918         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
919         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
920         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
921         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
922         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
923         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
924         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
925         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
926         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
927         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
928         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
929         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
930         EVENT_CONSTRAINT_END
931 };
932
933 struct event_constraint intel_snb_pebs_event_constraints[] = {
934         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
935         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
936         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
937         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
938         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
939         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
940         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
941         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
942         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
943         /* Allow all events as PEBS with no flags */
944         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
945         EVENT_CONSTRAINT_END
946 };
947
948 struct event_constraint intel_ivb_pebs_event_constraints[] = {
949         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
950         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
951         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
952         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
953         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
954         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
955         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
956         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
957         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
958         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
959         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
960         /* Allow all events as PEBS with no flags */
961         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
962         EVENT_CONSTRAINT_END
963 };
964
965 struct event_constraint intel_hsw_pebs_event_constraints[] = {
966         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
967         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
968         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
969         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
970         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
971         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
972         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
973         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
974         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
975         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
976         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
977         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
978         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
979         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
980         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
981         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
982         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
983         /* Allow all events as PEBS with no flags */
984         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
985         EVENT_CONSTRAINT_END
986 };
987
988 struct event_constraint intel_bdw_pebs_event_constraints[] = {
989         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
990         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
991         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
992         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
993         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
994         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
995         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
996         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
997         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
998         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
999         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1000         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1001         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1002         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1003         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1004         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1005         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1006         /* Allow all events as PEBS with no flags */
1007         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1008         EVENT_CONSTRAINT_END
1009 };
1010
1011
1012 struct event_constraint intel_skl_pebs_event_constraints[] = {
1013         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
1014         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1015         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1016         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1017         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1018         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
1019         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1020         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1021         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1022         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1023         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1024         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1025         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1026         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1027         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1028         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1029         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1030         /* Allow all events as PEBS with no flags */
1031         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1032         EVENT_CONSTRAINT_END
1033 };
1034
1035 struct event_constraint intel_icl_pebs_event_constraints[] = {
1036         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),  /* old INST_RETIRED.PREC_DIST */
1037         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),  /* INST_RETIRED.PREC_DIST */
1038         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
1039
1040         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
1041         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1042         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_STORES */
1043         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),   /* MEM_INST_RETIRED.LOCK_LOADS */
1044         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_LOADS */
1045         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_STORES */
1046         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),   /* MEM_INST_RETIRED.ALL_LOADS */
1047         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),   /* MEM_INST_RETIRED.ALL_STORES */
1048
1049         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1050
1051         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
1052
1053         /*
1054          * Everything else is handled by PMU_FL_PEBS_ALL, because we
1055          * need the full constraints from the main table.
1056          */
1057
1058         EVENT_CONSTRAINT_END
1059 };
1060
1061 struct event_constraint intel_glc_pebs_event_constraints[] = {
1062         INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
1063         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1064
1065         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1066         INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1067         INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1068         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1069         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_STORES */
1070         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),   /* MEM_INST_RETIRED.LOCK_LOADS */
1071         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_LOADS */
1072         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_STORES */
1073         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),   /* MEM_INST_RETIRED.ALL_LOADS */
1074         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),   /* MEM_INST_RETIRED.ALL_STORES */
1075
1076         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1077
1078         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1079
1080         /*
1081          * Everything else is handled by PMU_FL_PEBS_ALL, because we
1082          * need the full constraints from the main table.
1083          */
1084
1085         EVENT_CONSTRAINT_END
1086 };
1087
1088 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1089 {
1090         struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1091         struct event_constraint *c;
1092
1093         if (!event->attr.precise_ip)
1094                 return NULL;
1095
1096         if (pebs_constraints) {
1097                 for_each_event_constraint(c, pebs_constraints) {
1098                         if (constraint_match(c, event->hw.config)) {
1099                                 event->hw.flags |= c->flags;
1100                                 return c;
1101                         }
1102                 }
1103         }
1104
1105         /*
1106          * Extended PEBS support
1107          * Makes the PEBS code search the normal constraints.
1108          */
1109         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1110                 return NULL;
1111
1112         return &emptyconstraint;
1113 }
1114
1115 /*
1116  * We need the sched_task callback even for per-cpu events when we use
1117  * the large interrupt threshold, such that we can provide PID and TID
1118  * to PEBS samples.
1119  */
1120 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1121 {
1122         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1123                 return false;
1124
1125         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1126 }
1127
1128 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1129 {
1130         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1131
1132         if (!sched_in && pebs_needs_sched_cb(cpuc))
1133                 intel_pmu_drain_pebs_buffer();
1134 }
1135
1136 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1137 {
1138         struct debug_store *ds = cpuc->ds;
1139         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1140         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1141         u64 threshold;
1142         int reserved;
1143
1144         if (cpuc->n_pebs_via_pt)
1145                 return;
1146
1147         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1148                 reserved = max_pebs_events + num_counters_fixed;
1149         else
1150                 reserved = max_pebs_events;
1151
1152         if (cpuc->n_pebs == cpuc->n_large_pebs) {
1153                 threshold = ds->pebs_absolute_maximum -
1154                         reserved * cpuc->pebs_record_size;
1155         } else {
1156                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1157         }
1158
1159         ds->pebs_interrupt_threshold = threshold;
1160 }
1161
1162 static void adaptive_pebs_record_size_update(void)
1163 {
1164         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1165         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1166         int sz = sizeof(struct pebs_basic);
1167
1168         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1169                 sz += sizeof(struct pebs_meminfo);
1170         if (pebs_data_cfg & PEBS_DATACFG_GP)
1171                 sz += sizeof(struct pebs_gprs);
1172         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1173                 sz += sizeof(struct pebs_xmm);
1174         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1175                 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1176
1177         cpuc->pebs_record_size = sz;
1178 }
1179
1180 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1181                                 PERF_SAMPLE_PHYS_ADDR |                      \
1182                                 PERF_SAMPLE_WEIGHT_TYPE |                    \
1183                                 PERF_SAMPLE_TRANSACTION |                    \
1184                                 PERF_SAMPLE_DATA_PAGE_SIZE)
1185
1186 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1187 {
1188         struct perf_event_attr *attr = &event->attr;
1189         u64 sample_type = attr->sample_type;
1190         u64 pebs_data_cfg = 0;
1191         bool gprs, tsx_weight;
1192
1193         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1194             attr->precise_ip > 1)
1195                 return pebs_data_cfg;
1196
1197         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1198                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1199
1200         /*
1201          * We need GPRs when:
1202          * + user requested them
1203          * + precise_ip < 2 for the non event IP
1204          * + For RTM TSX weight we need GPRs for the abort code.
1205          */
1206         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1207                (attr->sample_regs_intr & PEBS_GP_REGS);
1208
1209         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1210                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1211                       x86_pmu.rtm_abort_event);
1212
1213         if (gprs || (attr->precise_ip < 2) || tsx_weight)
1214                 pebs_data_cfg |= PEBS_DATACFG_GP;
1215
1216         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1217             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1218                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1219
1220         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1221                 /*
1222                  * For now always log all LBRs. Could configure this
1223                  * later.
1224                  */
1225                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1226                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1227         }
1228
1229         return pebs_data_cfg;
1230 }
1231
1232 static void
1233 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1234                   struct perf_event *event, bool add)
1235 {
1236         struct pmu *pmu = event->pmu;
1237
1238         /*
1239          * Make sure we get updated with the first PEBS
1240          * event. It will trigger also during removal, but
1241          * that does not hurt:
1242          */
1243         if (cpuc->n_pebs == 1)
1244                 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1245
1246         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1247                 if (!needed_cb)
1248                         perf_sched_cb_inc(pmu);
1249                 else
1250                         perf_sched_cb_dec(pmu);
1251
1252                 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1253         }
1254
1255         /*
1256          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1257          * iterating all remaining PEBS events to reconstruct the config.
1258          */
1259         if (x86_pmu.intel_cap.pebs_baseline && add) {
1260                 u64 pebs_data_cfg;
1261
1262                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1263                 /*
1264                  * Be sure to update the thresholds when we change the record.
1265                  */
1266                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1267                         cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1268         }
1269 }
1270
1271 void intel_pmu_pebs_add(struct perf_event *event)
1272 {
1273         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1274         struct hw_perf_event *hwc = &event->hw;
1275         bool needed_cb = pebs_needs_sched_cb(cpuc);
1276
1277         cpuc->n_pebs++;
1278         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1279                 cpuc->n_large_pebs++;
1280         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1281                 cpuc->n_pebs_via_pt++;
1282
1283         pebs_update_state(needed_cb, cpuc, event, true);
1284 }
1285
1286 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1287 {
1288         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289
1290         if (!is_pebs_pt(event))
1291                 return;
1292
1293         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1294                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1295 }
1296
1297 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1298 {
1299         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1300         struct hw_perf_event *hwc = &event->hw;
1301         struct debug_store *ds = cpuc->ds;
1302         u64 value = ds->pebs_event_reset[hwc->idx];
1303         u32 base = MSR_RELOAD_PMC0;
1304         unsigned int idx = hwc->idx;
1305
1306         if (!is_pebs_pt(event))
1307                 return;
1308
1309         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1310                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1311
1312         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1313
1314         if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1315                 base = MSR_RELOAD_FIXED_CTR0;
1316                 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1317                 if (x86_pmu.intel_cap.pebs_format < 5)
1318                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1319                 else
1320                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1321         }
1322         wrmsrl(base + idx, value);
1323 }
1324
1325 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1326 {
1327         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1328             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1329                 intel_pmu_drain_pebs_buffer();
1330 }
1331
1332 void intel_pmu_pebs_enable(struct perf_event *event)
1333 {
1334         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1335         u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1336         struct hw_perf_event *hwc = &event->hw;
1337         struct debug_store *ds = cpuc->ds;
1338         unsigned int idx = hwc->idx;
1339
1340         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1341
1342         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1343
1344         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1345                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1346         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1347                 cpuc->pebs_enabled |= 1ULL << 63;
1348
1349         if (x86_pmu.intel_cap.pebs_baseline) {
1350                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1351                 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1352                         /*
1353                          * drain_pebs() assumes uniform record size;
1354                          * hence we need to drain when changing said
1355                          * size.
1356                          */
1357                         intel_pmu_drain_large_pebs(cpuc);
1358                         adaptive_pebs_record_size_update();
1359                         wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1360                         cpuc->active_pebs_data_cfg = pebs_data_cfg;
1361                 }
1362         }
1363         if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1364                 cpuc->pebs_data_cfg = pebs_data_cfg;
1365                 pebs_update_threshold(cpuc);
1366         }
1367
1368         if (idx >= INTEL_PMC_IDX_FIXED) {
1369                 if (x86_pmu.intel_cap.pebs_format < 5)
1370                         idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1371                 else
1372                         idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1373         }
1374
1375         /*
1376          * Use auto-reload if possible to save a MSR write in the PMI.
1377          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1378          */
1379         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1380                 ds->pebs_event_reset[idx] =
1381                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1382         } else {
1383                 ds->pebs_event_reset[idx] = 0;
1384         }
1385
1386         intel_pmu_pebs_via_pt_enable(event);
1387 }
1388
1389 void intel_pmu_pebs_del(struct perf_event *event)
1390 {
1391         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1392         struct hw_perf_event *hwc = &event->hw;
1393         bool needed_cb = pebs_needs_sched_cb(cpuc);
1394
1395         cpuc->n_pebs--;
1396         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1397                 cpuc->n_large_pebs--;
1398         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1399                 cpuc->n_pebs_via_pt--;
1400
1401         pebs_update_state(needed_cb, cpuc, event, false);
1402 }
1403
1404 void intel_pmu_pebs_disable(struct perf_event *event)
1405 {
1406         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1407         struct hw_perf_event *hwc = &event->hw;
1408
1409         intel_pmu_drain_large_pebs(cpuc);
1410
1411         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1412
1413         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1414             (x86_pmu.version < 5))
1415                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1416         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1417                 cpuc->pebs_enabled &= ~(1ULL << 63);
1418
1419         intel_pmu_pebs_via_pt_disable(event);
1420
1421         if (cpuc->enabled)
1422                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1423
1424         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1425 }
1426
1427 void intel_pmu_pebs_enable_all(void)
1428 {
1429         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1430
1431         if (cpuc->pebs_enabled)
1432                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1433 }
1434
1435 void intel_pmu_pebs_disable_all(void)
1436 {
1437         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1438
1439         if (cpuc->pebs_enabled)
1440                 __intel_pmu_pebs_disable_all();
1441 }
1442
1443 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1444 {
1445         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1446         unsigned long from = cpuc->lbr_entries[0].from;
1447         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1448         unsigned long ip = regs->ip;
1449         int is_64bit = 0;
1450         void *kaddr;
1451         int size;
1452
1453         /*
1454          * We don't need to fixup if the PEBS assist is fault like
1455          */
1456         if (!x86_pmu.intel_cap.pebs_trap)
1457                 return 1;
1458
1459         /*
1460          * No LBR entry, no basic block, no rewinding
1461          */
1462         if (!cpuc->lbr_stack.nr || !from || !to)
1463                 return 0;
1464
1465         /*
1466          * Basic blocks should never cross user/kernel boundaries
1467          */
1468         if (kernel_ip(ip) != kernel_ip(to))
1469                 return 0;
1470
1471         /*
1472          * unsigned math, either ip is before the start (impossible) or
1473          * the basic block is larger than 1 page (sanity)
1474          */
1475         if ((ip - to) > PEBS_FIXUP_SIZE)
1476                 return 0;
1477
1478         /*
1479          * We sampled a branch insn, rewind using the LBR stack
1480          */
1481         if (ip == to) {
1482                 set_linear_ip(regs, from);
1483                 return 1;
1484         }
1485
1486         size = ip - to;
1487         if (!kernel_ip(ip)) {
1488                 int bytes;
1489                 u8 *buf = this_cpu_read(insn_buffer);
1490
1491                 /* 'size' must fit our buffer, see above */
1492                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1493                 if (bytes != 0)
1494                         return 0;
1495
1496                 kaddr = buf;
1497         } else {
1498                 kaddr = (void *)to;
1499         }
1500
1501         do {
1502                 struct insn insn;
1503
1504                 old_to = to;
1505
1506 #ifdef CONFIG_X86_64
1507                 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1508 #endif
1509                 insn_init(&insn, kaddr, size, is_64bit);
1510
1511                 /*
1512                  * Make sure there was not a problem decoding the instruction.
1513                  * This is doubly important because we have an infinite loop if
1514                  * insn.length=0.
1515                  */
1516                 if (insn_get_length(&insn))
1517                         break;
1518
1519                 to += insn.length;
1520                 kaddr += insn.length;
1521                 size -= insn.length;
1522         } while (to < ip);
1523
1524         if (to == ip) {
1525                 set_linear_ip(regs, old_to);
1526                 return 1;
1527         }
1528
1529         /*
1530          * Even though we decoded the basic block, the instruction stream
1531          * never matched the given IP, either the TO or the IP got corrupted.
1532          */
1533         return 0;
1534 }
1535
1536 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1537 {
1538         if (tsx_tuning) {
1539                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1540                 return tsx.cycles_last_block;
1541         }
1542         return 0;
1543 }
1544
1545 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1546 {
1547         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1548
1549         /* For RTM XABORTs also log the abort code from AX */
1550         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1551                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1552         return txn;
1553 }
1554
1555 static inline u64 get_pebs_status(void *n)
1556 {
1557         if (x86_pmu.intel_cap.pebs_format < 4)
1558                 return ((struct pebs_record_nhm *)n)->status;
1559         return ((struct pebs_basic *)n)->applicable_counters;
1560 }
1561
1562 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1563                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1564                  PERF_X86_EVENT_PEBS_LD_HSW | \
1565                  PERF_X86_EVENT_PEBS_NA_HSW)
1566
1567 static u64 get_data_src(struct perf_event *event, u64 aux)
1568 {
1569         u64 val = PERF_MEM_NA;
1570         int fl = event->hw.flags;
1571         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1572
1573         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1574                 val = load_latency_data(event, aux);
1575         else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1576                 val = store_latency_data(event, aux);
1577         else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1578                 val = x86_pmu.pebs_latency_data(event, aux);
1579         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1580                 val = precise_datala_hsw(event, aux);
1581         else if (fst)
1582                 val = precise_store_data(aux);
1583         return val;
1584 }
1585
1586 static void setup_pebs_time(struct perf_event *event,
1587                             struct perf_sample_data *data,
1588                             u64 tsc)
1589 {
1590         /* Converting to a user-defined clock is not supported yet. */
1591         if (event->attr.use_clockid != 0)
1592                 return;
1593
1594         /*
1595          * Doesn't support the conversion when the TSC is unstable.
1596          * The TSC unstable case is a corner case and very unlikely to
1597          * happen. If it happens, the TSC in a PEBS record will be
1598          * dropped and fall back to perf_event_clock().
1599          */
1600         if (!using_native_sched_clock() || !sched_clock_stable())
1601                 return;
1602
1603         data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1604         data->sample_flags |= PERF_SAMPLE_TIME;
1605 }
1606
1607 #define PERF_SAMPLE_ADDR_TYPE   (PERF_SAMPLE_ADDR |             \
1608                                  PERF_SAMPLE_PHYS_ADDR |        \
1609                                  PERF_SAMPLE_DATA_PAGE_SIZE)
1610
1611 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1612                                    struct pt_regs *iregs, void *__pebs,
1613                                    struct perf_sample_data *data,
1614                                    struct pt_regs *regs)
1615 {
1616         /*
1617          * We cast to the biggest pebs_record but are careful not to
1618          * unconditionally access the 'extra' entries.
1619          */
1620         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1621         struct pebs_record_skl *pebs = __pebs;
1622         u64 sample_type;
1623         int fll;
1624
1625         if (pebs == NULL)
1626                 return;
1627
1628         sample_type = event->attr.sample_type;
1629         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1630
1631         perf_sample_data_init(data, 0, event->hw.last_period);
1632
1633         data->period = event->hw.last_period;
1634
1635         /*
1636          * Use latency for weight (only avail with PEBS-LL)
1637          */
1638         if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1639                 data->weight.full = pebs->lat;
1640                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1641         }
1642
1643         /*
1644          * data.data_src encodes the data source
1645          */
1646         if (sample_type & PERF_SAMPLE_DATA_SRC) {
1647                 data->data_src.val = get_data_src(event, pebs->dse);
1648                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1649         }
1650
1651         /*
1652          * We must however always use iregs for the unwinder to stay sane; the
1653          * record BP,SP,IP can point into thin air when the record is from a
1654          * previous PMI context or an (I)RET happened between the record and
1655          * PMI.
1656          */
1657         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1658                 perf_sample_save_callchain(data, event, iregs);
1659
1660         /*
1661          * We use the interrupt regs as a base because the PEBS record does not
1662          * contain a full regs set, specifically it seems to lack segment
1663          * descriptors, which get used by things like user_mode().
1664          *
1665          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1666          */
1667         *regs = *iregs;
1668
1669         /*
1670          * Initialize regs_>flags from PEBS,
1671          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1672          * i.e., do not rely on it being zero:
1673          */
1674         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1675
1676         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1677                 regs->ax = pebs->ax;
1678                 regs->bx = pebs->bx;
1679                 regs->cx = pebs->cx;
1680                 regs->dx = pebs->dx;
1681                 regs->si = pebs->si;
1682                 regs->di = pebs->di;
1683
1684                 regs->bp = pebs->bp;
1685                 regs->sp = pebs->sp;
1686
1687 #ifndef CONFIG_X86_32
1688                 regs->r8 = pebs->r8;
1689                 regs->r9 = pebs->r9;
1690                 regs->r10 = pebs->r10;
1691                 regs->r11 = pebs->r11;
1692                 regs->r12 = pebs->r12;
1693                 regs->r13 = pebs->r13;
1694                 regs->r14 = pebs->r14;
1695                 regs->r15 = pebs->r15;
1696 #endif
1697         }
1698
1699         if (event->attr.precise_ip > 1) {
1700                 /*
1701                  * Haswell and later processors have an 'eventing IP'
1702                  * (real IP) which fixes the off-by-1 skid in hardware.
1703                  * Use it when precise_ip >= 2 :
1704                  */
1705                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1706                         set_linear_ip(regs, pebs->real_ip);
1707                         regs->flags |= PERF_EFLAGS_EXACT;
1708                 } else {
1709                         /* Otherwise, use PEBS off-by-1 IP: */
1710                         set_linear_ip(regs, pebs->ip);
1711
1712                         /*
1713                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1714                          * using the LBR. If successful, the fixup function
1715                          * corrects regs->ip and calls set_linear_ip() on regs:
1716                          */
1717                         if (intel_pmu_pebs_fixup_ip(regs))
1718                                 regs->flags |= PERF_EFLAGS_EXACT;
1719                 }
1720         } else {
1721                 /*
1722                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1723                  * no fixup attempted:
1724                  */
1725                 set_linear_ip(regs, pebs->ip);
1726         }
1727
1728
1729         if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1730             x86_pmu.intel_cap.pebs_format >= 1) {
1731                 data->addr = pebs->dla;
1732                 data->sample_flags |= PERF_SAMPLE_ADDR;
1733         }
1734
1735         if (x86_pmu.intel_cap.pebs_format >= 2) {
1736                 /* Only set the TSX weight when no memory weight. */
1737                 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1738                         data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1739                         data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1740                 }
1741                 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1742                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1743                                                               pebs->ax);
1744                         data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1745                 }
1746         }
1747
1748         /*
1749          * v3 supplies an accurate time stamp, so we use that
1750          * for the time stamp.
1751          *
1752          * We can only do this for the default trace clock.
1753          */
1754         if (x86_pmu.intel_cap.pebs_format >= 3)
1755                 setup_pebs_time(event, data, pebs->tsc);
1756
1757         if (has_branch_stack(event))
1758                 perf_sample_save_brstack(data, event, &cpuc->lbr_stack);
1759 }
1760
1761 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1762                                     struct pebs_gprs *gprs)
1763 {
1764         regs->ax = gprs->ax;
1765         regs->bx = gprs->bx;
1766         regs->cx = gprs->cx;
1767         regs->dx = gprs->dx;
1768         regs->si = gprs->si;
1769         regs->di = gprs->di;
1770         regs->bp = gprs->bp;
1771         regs->sp = gprs->sp;
1772 #ifndef CONFIG_X86_32
1773         regs->r8 = gprs->r8;
1774         regs->r9 = gprs->r9;
1775         regs->r10 = gprs->r10;
1776         regs->r11 = gprs->r11;
1777         regs->r12 = gprs->r12;
1778         regs->r13 = gprs->r13;
1779         regs->r14 = gprs->r14;
1780         regs->r15 = gprs->r15;
1781 #endif
1782 }
1783
1784 #define PEBS_LATENCY_MASK                       0xffff
1785 #define PEBS_CACHE_LATENCY_OFFSET               32
1786 #define PEBS_RETIRE_LATENCY_OFFSET              32
1787
1788 /*
1789  * With adaptive PEBS the layout depends on what fields are configured.
1790  */
1791
1792 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1793                                             struct pt_regs *iregs, void *__pebs,
1794                                             struct perf_sample_data *data,
1795                                             struct pt_regs *regs)
1796 {
1797         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1798         struct pebs_basic *basic = __pebs;
1799         void *next_record = basic + 1;
1800         u64 sample_type;
1801         u64 format_size;
1802         struct pebs_meminfo *meminfo = NULL;
1803         struct pebs_gprs *gprs = NULL;
1804         struct x86_perf_regs *perf_regs;
1805
1806         if (basic == NULL)
1807                 return;
1808
1809         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1810         perf_regs->xmm_regs = NULL;
1811
1812         sample_type = event->attr.sample_type;
1813         format_size = basic->format_size;
1814         perf_sample_data_init(data, 0, event->hw.last_period);
1815         data->period = event->hw.last_period;
1816
1817         setup_pebs_time(event, data, basic->tsc);
1818
1819         /*
1820          * We must however always use iregs for the unwinder to stay sane; the
1821          * record BP,SP,IP can point into thin air when the record is from a
1822          * previous PMI context or an (I)RET happened between the record and
1823          * PMI.
1824          */
1825         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1826                 perf_sample_save_callchain(data, event, iregs);
1827
1828         *regs = *iregs;
1829         /* The ip in basic is EventingIP */
1830         set_linear_ip(regs, basic->ip);
1831         regs->flags = PERF_EFLAGS_EXACT;
1832
1833         if ((sample_type & PERF_SAMPLE_WEIGHT_STRUCT) && (x86_pmu.flags & PMU_FL_RETIRE_LATENCY))
1834                 data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1835
1836         /*
1837          * The record for MEMINFO is in front of GP
1838          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1839          * Save the pointer here but process later.
1840          */
1841         if (format_size & PEBS_DATACFG_MEMINFO) {
1842                 meminfo = next_record;
1843                 next_record = meminfo + 1;
1844         }
1845
1846         if (format_size & PEBS_DATACFG_GP) {
1847                 gprs = next_record;
1848                 next_record = gprs + 1;
1849
1850                 if (event->attr.precise_ip < 2) {
1851                         set_linear_ip(regs, gprs->ip);
1852                         regs->flags &= ~PERF_EFLAGS_EXACT;
1853                 }
1854
1855                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1856                         adaptive_pebs_save_regs(regs, gprs);
1857         }
1858
1859         if (format_size & PEBS_DATACFG_MEMINFO) {
1860                 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1861                         u64 weight = meminfo->latency;
1862
1863                         if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1864                                 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1865                                 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1866                         }
1867
1868                         /*
1869                          * Although meminfo::latency is defined as a u64,
1870                          * only the lower 32 bits include the valid data
1871                          * in practice on Ice Lake and earlier platforms.
1872                          */
1873                         if (sample_type & PERF_SAMPLE_WEIGHT) {
1874                                 data->weight.full = weight ?:
1875                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1876                         } else {
1877                                 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1878                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1879                         }
1880                         data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1881                 }
1882
1883                 if (sample_type & PERF_SAMPLE_DATA_SRC) {
1884                         data->data_src.val = get_data_src(event, meminfo->aux);
1885                         data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1886                 }
1887
1888                 if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
1889                         data->addr = meminfo->address;
1890                         data->sample_flags |= PERF_SAMPLE_ADDR;
1891                 }
1892
1893                 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1894                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1895                                                           gprs ? gprs->ax : 0);
1896                         data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1897                 }
1898         }
1899
1900         if (format_size & PEBS_DATACFG_XMMS) {
1901                 struct pebs_xmm *xmm = next_record;
1902
1903                 next_record = xmm + 1;
1904                 perf_regs->xmm_regs = xmm->xmm;
1905         }
1906
1907         if (format_size & PEBS_DATACFG_LBRS) {
1908                 struct lbr_entry *lbr = next_record;
1909                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1910                                         & 0xff) + 1;
1911                 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1912
1913                 if (has_branch_stack(event)) {
1914                         intel_pmu_store_pebs_lbrs(lbr);
1915                         perf_sample_save_brstack(data, event, &cpuc->lbr_stack);
1916                 }
1917         }
1918
1919         WARN_ONCE(next_record != __pebs + (format_size >> 48),
1920                         "PEBS record size %llu, expected %llu, config %llx\n",
1921                         format_size >> 48,
1922                         (u64)(next_record - __pebs),
1923                         basic->format_size);
1924 }
1925
1926 static inline void *
1927 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1928 {
1929         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1930         void *at;
1931         u64 pebs_status;
1932
1933         /*
1934          * fmt0 does not have a status bitfield (does not use
1935          * perf_record_nhm format)
1936          */
1937         if (x86_pmu.intel_cap.pebs_format < 1)
1938                 return base;
1939
1940         if (base == NULL)
1941                 return NULL;
1942
1943         for (at = base; at < top; at += cpuc->pebs_record_size) {
1944                 unsigned long status = get_pebs_status(at);
1945
1946                 if (test_bit(bit, (unsigned long *)&status)) {
1947                         /* PEBS v3 has accurate status bits */
1948                         if (x86_pmu.intel_cap.pebs_format >= 3)
1949                                 return at;
1950
1951                         if (status == (1 << bit))
1952                                 return at;
1953
1954                         /* clear non-PEBS bit and re-check */
1955                         pebs_status = status & cpuc->pebs_enabled;
1956                         pebs_status &= PEBS_COUNTER_MASK;
1957                         if (pebs_status == (1 << bit))
1958                                 return at;
1959                 }
1960         }
1961         return NULL;
1962 }
1963
1964 void intel_pmu_auto_reload_read(struct perf_event *event)
1965 {
1966         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1967
1968         perf_pmu_disable(event->pmu);
1969         intel_pmu_drain_pebs_buffer();
1970         perf_pmu_enable(event->pmu);
1971 }
1972
1973 /*
1974  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1975  */
1976 static int
1977 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1978 {
1979         struct hw_perf_event *hwc = &event->hw;
1980         int shift = 64 - x86_pmu.cntval_bits;
1981         u64 period = hwc->sample_period;
1982         u64 prev_raw_count, new_raw_count;
1983         s64 new, old;
1984
1985         WARN_ON(!period);
1986
1987         /*
1988          * drain_pebs() only happens when the PMU is disabled.
1989          */
1990         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1991
1992         prev_raw_count = local64_read(&hwc->prev_count);
1993         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1994         local64_set(&hwc->prev_count, new_raw_count);
1995
1996         /*
1997          * Since the counter increments a negative counter value and
1998          * overflows on the sign switch, giving the interval:
1999          *
2000          *   [-period, 0]
2001          *
2002          * the difference between two consecutive reads is:
2003          *
2004          *   A) value2 - value1;
2005          *      when no overflows have happened in between,
2006          *
2007          *   B) (0 - value1) + (value2 - (-period));
2008          *      when one overflow happened in between,
2009          *
2010          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2011          *      when @n overflows happened in between.
2012          *
2013          * Here A) is the obvious difference, B) is the extension to the
2014          * discrete interval, where the first term is to the top of the
2015          * interval and the second term is from the bottom of the next
2016          * interval and C) the extension to multiple intervals, where the
2017          * middle term is the whole intervals covered.
2018          *
2019          * An equivalent of C, by reduction, is:
2020          *
2021          *   value2 - value1 + n * period
2022          */
2023         new = ((s64)(new_raw_count << shift) >> shift);
2024         old = ((s64)(prev_raw_count << shift) >> shift);
2025         local64_add(new - old + count * period, &event->count);
2026
2027         local64_set(&hwc->period_left, -new);
2028
2029         perf_event_update_userpage(event);
2030
2031         return 0;
2032 }
2033
2034 static __always_inline void
2035 __intel_pmu_pebs_event(struct perf_event *event,
2036                        struct pt_regs *iregs,
2037                        struct perf_sample_data *data,
2038                        void *base, void *top,
2039                        int bit, int count,
2040                        void (*setup_sample)(struct perf_event *,
2041                                             struct pt_regs *,
2042                                             void *,
2043                                             struct perf_sample_data *,
2044                                             struct pt_regs *))
2045 {
2046         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2047         struct hw_perf_event *hwc = &event->hw;
2048         struct x86_perf_regs perf_regs;
2049         struct pt_regs *regs = &perf_regs.regs;
2050         void *at = get_next_pebs_record_by_bit(base, top, bit);
2051         static struct pt_regs dummy_iregs;
2052
2053         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2054                 /*
2055                  * Now, auto-reload is only enabled in fixed period mode.
2056                  * The reload value is always hwc->sample_period.
2057                  * May need to change it, if auto-reload is enabled in
2058                  * freq mode later.
2059                  */
2060                 intel_pmu_save_and_restart_reload(event, count);
2061         } else if (!intel_pmu_save_and_restart(event))
2062                 return;
2063
2064         if (!iregs)
2065                 iregs = &dummy_iregs;
2066
2067         while (count > 1) {
2068                 setup_sample(event, iregs, at, data, regs);
2069                 perf_event_output(event, data, regs);
2070                 at += cpuc->pebs_record_size;
2071                 at = get_next_pebs_record_by_bit(at, top, bit);
2072                 count--;
2073         }
2074
2075         setup_sample(event, iregs, at, data, regs);
2076         if (iregs == &dummy_iregs) {
2077                 /*
2078                  * The PEBS records may be drained in the non-overflow context,
2079                  * e.g., large PEBS + context switch. Perf should treat the
2080                  * last record the same as other PEBS records, and doesn't
2081                  * invoke the generic overflow handler.
2082                  */
2083                 perf_event_output(event, data, regs);
2084         } else {
2085                 /*
2086                  * All but the last records are processed.
2087                  * The last one is left to be able to call the overflow handler.
2088                  */
2089                 if (perf_event_overflow(event, data, regs))
2090                         x86_pmu_stop(event, 0);
2091         }
2092 }
2093
2094 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2095 {
2096         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2097         struct debug_store *ds = cpuc->ds;
2098         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2099         struct pebs_record_core *at, *top;
2100         int n;
2101
2102         if (!x86_pmu.pebs_active)
2103                 return;
2104
2105         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2106         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2107
2108         /*
2109          * Whatever else happens, drain the thing
2110          */
2111         ds->pebs_index = ds->pebs_buffer_base;
2112
2113         if (!test_bit(0, cpuc->active_mask))
2114                 return;
2115
2116         WARN_ON_ONCE(!event);
2117
2118         if (!event->attr.precise_ip)
2119                 return;
2120
2121         n = top - at;
2122         if (n <= 0) {
2123                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2124                         intel_pmu_save_and_restart_reload(event, 0);
2125                 return;
2126         }
2127
2128         __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2129                                setup_pebs_fixed_sample_data);
2130 }
2131
2132 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2133 {
2134         struct perf_event *event;
2135         int bit;
2136
2137         /*
2138          * The drain_pebs() could be called twice in a short period
2139          * for auto-reload event in pmu::read(). There are no
2140          * overflows have happened in between.
2141          * It needs to call intel_pmu_save_and_restart_reload() to
2142          * update the event->count for this case.
2143          */
2144         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2145                 event = cpuc->events[bit];
2146                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2147                         intel_pmu_save_and_restart_reload(event, 0);
2148         }
2149 }
2150
2151 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2152 {
2153         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2154         struct debug_store *ds = cpuc->ds;
2155         struct perf_event *event;
2156         void *base, *at, *top;
2157         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2158         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2159         int bit, i, size;
2160         u64 mask;
2161
2162         if (!x86_pmu.pebs_active)
2163                 return;
2164
2165         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2166         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2167
2168         ds->pebs_index = ds->pebs_buffer_base;
2169
2170         mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2171         size = x86_pmu.max_pebs_events;
2172         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2173                 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2174                 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2175         }
2176
2177         if (unlikely(base >= top)) {
2178                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2179                 return;
2180         }
2181
2182         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2183                 struct pebs_record_nhm *p = at;
2184                 u64 pebs_status;
2185
2186                 pebs_status = p->status & cpuc->pebs_enabled;
2187                 pebs_status &= mask;
2188
2189                 /* PEBS v3 has more accurate status bits */
2190                 if (x86_pmu.intel_cap.pebs_format >= 3) {
2191                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2192                                 counts[bit]++;
2193
2194                         continue;
2195                 }
2196
2197                 /*
2198                  * On some CPUs the PEBS status can be zero when PEBS is
2199                  * racing with clearing of GLOBAL_STATUS.
2200                  *
2201                  * Normally we would drop that record, but in the
2202                  * case when there is only a single active PEBS event
2203                  * we can assume it's for that event.
2204                  */
2205                 if (!pebs_status && cpuc->pebs_enabled &&
2206                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2207                         pebs_status = p->status = cpuc->pebs_enabled;
2208
2209                 bit = find_first_bit((unsigned long *)&pebs_status,
2210                                         x86_pmu.max_pebs_events);
2211                 if (bit >= x86_pmu.max_pebs_events)
2212                         continue;
2213
2214                 /*
2215                  * The PEBS hardware does not deal well with the situation
2216                  * when events happen near to each other and multiple bits
2217                  * are set. But it should happen rarely.
2218                  *
2219                  * If these events include one PEBS and multiple non-PEBS
2220                  * events, it doesn't impact PEBS record. The record will
2221                  * be handled normally. (slow path)
2222                  *
2223                  * If these events include two or more PEBS events, the
2224                  * records for the events can be collapsed into a single
2225                  * one, and it's not possible to reconstruct all events
2226                  * that caused the PEBS record. It's called collision.
2227                  * If collision happened, the record will be dropped.
2228                  */
2229                 if (pebs_status != (1ULL << bit)) {
2230                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2231                                 error[i]++;
2232                         continue;
2233                 }
2234
2235                 counts[bit]++;
2236         }
2237
2238         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2239                 if ((counts[bit] == 0) && (error[bit] == 0))
2240                         continue;
2241
2242                 event = cpuc->events[bit];
2243                 if (WARN_ON_ONCE(!event))
2244                         continue;
2245
2246                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2247                         continue;
2248
2249                 /* log dropped samples number */
2250                 if (error[bit]) {
2251                         perf_log_lost_samples(event, error[bit]);
2252
2253                         if (iregs && perf_event_account_interrupt(event))
2254                                 x86_pmu_stop(event, 0);
2255                 }
2256
2257                 if (counts[bit]) {
2258                         __intel_pmu_pebs_event(event, iregs, data, base,
2259                                                top, bit, counts[bit],
2260                                                setup_pebs_fixed_sample_data);
2261                 }
2262         }
2263 }
2264
2265 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2266 {
2267         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2268         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2269         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2270         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2271         struct debug_store *ds = cpuc->ds;
2272         struct perf_event *event;
2273         void *base, *at, *top;
2274         int bit, size;
2275         u64 mask;
2276
2277         if (!x86_pmu.pebs_active)
2278                 return;
2279
2280         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2281         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2282
2283         ds->pebs_index = ds->pebs_buffer_base;
2284
2285         mask = ((1ULL << max_pebs_events) - 1) |
2286                (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2287         size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2288
2289         if (unlikely(base >= top)) {
2290                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2291                 return;
2292         }
2293
2294         for (at = base; at < top; at += cpuc->pebs_record_size) {
2295                 u64 pebs_status;
2296
2297                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2298                 pebs_status &= mask;
2299
2300                 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2301                         counts[bit]++;
2302         }
2303
2304         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2305                 if (counts[bit] == 0)
2306                         continue;
2307
2308                 event = cpuc->events[bit];
2309                 if (WARN_ON_ONCE(!event))
2310                         continue;
2311
2312                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2313                         continue;
2314
2315                 __intel_pmu_pebs_event(event, iregs, data, base,
2316                                        top, bit, counts[bit],
2317                                        setup_pebs_adaptive_sample_data);
2318         }
2319 }
2320
2321 /*
2322  * BTS, PEBS probe and setup
2323  */
2324
2325 void __init intel_ds_init(void)
2326 {
2327         /*
2328          * No support for 32bit formats
2329          */
2330         if (!boot_cpu_has(X86_FEATURE_DTES64))
2331                 return;
2332
2333         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2334         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2335         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2336         if (x86_pmu.version <= 4)
2337                 x86_pmu.pebs_no_isolation = 1;
2338
2339         if (x86_pmu.pebs) {
2340                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2341                 char *pebs_qual = "";
2342                 int format = x86_pmu.intel_cap.pebs_format;
2343
2344                 if (format < 4)
2345                         x86_pmu.intel_cap.pebs_baseline = 0;
2346
2347                 switch (format) {
2348                 case 0:
2349                         pr_cont("PEBS fmt0%c, ", pebs_type);
2350                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2351                         /*
2352                          * Using >PAGE_SIZE buffers makes the WRMSR to
2353                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2354                          * mysteriously hang on Core2.
2355                          *
2356                          * As a workaround, we don't do this.
2357                          */
2358                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2359                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2360                         break;
2361
2362                 case 1:
2363                         pr_cont("PEBS fmt1%c, ", pebs_type);
2364                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2365                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2366                         break;
2367
2368                 case 2:
2369                         pr_cont("PEBS fmt2%c, ", pebs_type);
2370                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2371                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2372                         break;
2373
2374                 case 3:
2375                         pr_cont("PEBS fmt3%c, ", pebs_type);
2376                         x86_pmu.pebs_record_size =
2377                                                 sizeof(struct pebs_record_skl);
2378                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2379                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2380                         break;
2381
2382                 case 5:
2383                         x86_pmu.pebs_ept = 1;
2384                         fallthrough;
2385                 case 4:
2386                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2387                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2388                         if (x86_pmu.intel_cap.pebs_baseline) {
2389                                 x86_pmu.large_pebs_flags |=
2390                                         PERF_SAMPLE_BRANCH_STACK |
2391                                         PERF_SAMPLE_TIME;
2392                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2393                                 x86_pmu.pebs_capable = ~0ULL;
2394                                 pebs_qual = "-baseline";
2395                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2396                         } else {
2397                                 /* Only basic record supported */
2398                                 x86_pmu.large_pebs_flags &=
2399                                         ~(PERF_SAMPLE_ADDR |
2400                                           PERF_SAMPLE_TIME |
2401                                           PERF_SAMPLE_DATA_SRC |
2402                                           PERF_SAMPLE_TRANSACTION |
2403                                           PERF_SAMPLE_REGS_USER |
2404                                           PERF_SAMPLE_REGS_INTR);
2405                         }
2406                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2407
2408                         if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2409                                 pr_cont("PEBS-via-PT, ");
2410                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2411                         }
2412
2413                         break;
2414
2415                 default:
2416                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2417                         x86_pmu.pebs = 0;
2418                 }
2419         }
2420 }
2421
2422 void perf_restore_debug_store(void)
2423 {
2424         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2425
2426         if (!x86_pmu.bts && !x86_pmu.pebs)
2427                 return;
2428
2429         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2430 }