GNU Linux-libre 4.9.333-gnu1
[releases.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47         EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65         EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81         EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89         EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156         EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(mem_ld_snb),
282         EVENT_PTR(mem_st_snb),
283         EVENT_PTR(td_slots_issued),
284         EVENT_PTR(td_slots_retired),
285         EVENT_PTR(td_fetch_bubbles),
286         EVENT_PTR(td_total_slots),
287         EVENT_PTR(td_total_slots_scale),
288         EVENT_PTR(td_recovery_bubbles),
289         EVENT_PTR(td_recovery_bubbles_scale),
290         NULL,
291 };
292
293 static struct event_constraint intel_hsw_event_constraints[] = {
294         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
298         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306
307         /*
308          * When HT is off these events can only run on the bottom 4 counters
309          * When HT is on, they are impacted by the HT bug and require EXCL access
310          */
311         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
316         EVENT_CONSTRAINT_END
317 };
318
319 static struct event_constraint intel_bdw_event_constraints[] = {
320         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
321         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
322         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
323         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
324         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325         /*
326          * when HT is off, these can only run on the bottom 4 counters
327          */
328         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
329         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
330         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
331         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
332         EVENT_CONSTRAINT_END
333 };
334
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337         return intel_perfmon_event_map[hw_event];
338 }
339
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348
349 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
350 #define SKL_DEMAND_RFO                  BIT_ULL(1)
351 #define SKL_ANY_RESPONSE                BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
357 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
358                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT                     BIT_ULL(30)
362 #define SKL_SNOOP_NONE                  BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
364 #define SKL_SNOOP_MISS                  BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
367 #define SKL_SNOOP_HITM                  BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
369 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
375                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384 static __initconst const u64 skl_hw_cache_event_ids
385                                 [PERF_COUNT_HW_CACHE_MAX]
386                                 [PERF_COUNT_HW_CACHE_OP_MAX]
387                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390         [ C(OP_READ) ] = {
391                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
392                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
393         },
394         [ C(OP_WRITE) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
396                 [ C(RESULT_MISS)   ] = 0x0,
397         },
398         [ C(OP_PREFETCH) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x0,
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402  },
403  [ C(L1I ) ] = {
404         [ C(OP_READ) ] = {
405                 [ C(RESULT_ACCESS) ] = 0x0,
406                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
407         },
408         [ C(OP_WRITE) ] = {
409                 [ C(RESULT_ACCESS) ] = -1,
410                 [ C(RESULT_MISS)   ] = -1,
411         },
412         [ C(OP_PREFETCH) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0,
414                 [ C(RESULT_MISS)   ] = 0x0,
415         },
416  },
417  [ C(LL  ) ] = {
418         [ C(OP_READ) ] = {
419                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
420                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
421         },
422         [ C(OP_WRITE) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_PREFETCH) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x0,
428                 [ C(RESULT_MISS)   ] = 0x0,
429         },
430  },
431  [ C(DTLB) ] = {
432         [ C(OP_READ) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
434                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435         },
436         [ C(OP_WRITE) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
438                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_PREFETCH) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x0,
443         },
444  },
445  [ C(ITLB) ] = {
446         [ C(OP_READ) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
448                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
449         },
450         [ C(OP_WRITE) ] = {
451                 [ C(RESULT_ACCESS) ] = -1,
452                 [ C(RESULT_MISS)   ] = -1,
453         },
454         [ C(OP_PREFETCH) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458  },
459  [ C(BPU ) ] = {
460         [ C(OP_READ) ] = {
461                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
462                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
463         },
464         [ C(OP_WRITE) ] = {
465                 [ C(RESULT_ACCESS) ] = -1,
466                 [ C(RESULT_MISS)   ] = -1,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472  },
473  [ C(NODE) ] = {
474         [ C(OP_READ) ] = {
475                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
476                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
477         },
478         [ C(OP_WRITE) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_PREFETCH) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x0,
484                 [ C(RESULT_MISS)   ] = 0x0,
485         },
486  },
487 };
488
489 static __initconst const u64 skl_hw_cache_extra_regs
490                                 [PERF_COUNT_HW_CACHE_MAX]
491                                 [PERF_COUNT_HW_CACHE_OP_MAX]
492                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495         [ C(OP_READ) ] = {
496                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499                                        SKL_L3_MISS|SKL_ANY_SNOOP|
500                                        SKL_SUPPLIER_NONE,
501         },
502         [ C(OP_WRITE) ] = {
503                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506                                        SKL_L3_MISS|SKL_ANY_SNOOP|
507                                        SKL_SUPPLIER_NONE,
508         },
509         [ C(OP_PREFETCH) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x0,
511                 [ C(RESULT_MISS)   ] = 0x0,
512         },
513  },
514  [ C(NODE) ] = {
515         [ C(OP_READ) ] = {
516                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520         },
521         [ C(OP_WRITE) ] = {
522                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526         },
527         [ C(OP_PREFETCH) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x0,
529                 [ C(RESULT_MISS)   ] = 0x0,
530         },
531  },
532 };
533
534 #define SNB_DMND_DATA_RD        (1ULL << 0)
535 #define SNB_DMND_RFO            (1ULL << 1)
536 #define SNB_DMND_IFETCH         (1ULL << 2)
537 #define SNB_DMND_WB             (1ULL << 3)
538 #define SNB_PF_DATA_RD          (1ULL << 4)
539 #define SNB_PF_RFO              (1ULL << 5)
540 #define SNB_PF_IFETCH           (1ULL << 6)
541 #define SNB_LLC_DATA_RD         (1ULL << 7)
542 #define SNB_LLC_RFO             (1ULL << 8)
543 #define SNB_LLC_IFETCH          (1ULL << 9)
544 #define SNB_BUS_LOCKS           (1ULL << 10)
545 #define SNB_STRM_ST             (1ULL << 11)
546 #define SNB_OTHER               (1ULL << 15)
547 #define SNB_RESP_ANY            (1ULL << 16)
548 #define SNB_NO_SUPP             (1ULL << 17)
549 #define SNB_LLC_HITM            (1ULL << 18)
550 #define SNB_LLC_HITE            (1ULL << 19)
551 #define SNB_LLC_HITS            (1ULL << 20)
552 #define SNB_LLC_HITF            (1ULL << 21)
553 #define SNB_LOCAL               (1ULL << 22)
554 #define SNB_REMOTE              (0xffULL << 23)
555 #define SNB_SNP_NONE            (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
557 #define SNB_SNP_MISS            (1ULL << 33)
558 #define SNB_NO_FWD              (1ULL << 34)
559 #define SNB_SNP_FWD             (1ULL << 35)
560 #define SNB_HITM                (1ULL << 36)
561 #define SNB_NON_DRAM            (1ULL << 37)
562
563 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569                                  SNB_HITM)
570
571 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
573
574 #define SNB_L3_ACCESS           SNB_RESP_ANY
575 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577 static __initconst const u64 snb_hw_cache_extra_regs
578                                 [PERF_COUNT_HW_CACHE_MAX]
579                                 [PERF_COUNT_HW_CACHE_OP_MAX]
580                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583         [ C(OP_READ) ] = {
584                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586         },
587         [ C(OP_WRITE) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590         },
591         [ C(OP_PREFETCH) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594         },
595  },
596  [ C(NODE) ] = {
597         [ C(OP_READ) ] = {
598                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600         },
601         [ C(OP_WRITE) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_PREFETCH) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608         },
609  },
610 };
611
612 static __initconst const u64 snb_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650                 [ C(RESULT_MISS)   ] = 0x01b7,
651         },
652         [ C(OP_WRITE) ] = {
653                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654                 [ C(RESULT_ACCESS) ] = 0x01b7,
655                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656                 [ C(RESULT_MISS)   ] = 0x01b7,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660                 [ C(RESULT_ACCESS) ] = 0x01b7,
661                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662                 [ C(RESULT_MISS)   ] = 0x01b7,
663         },
664  },
665  [ C(DTLB) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x0,
676                 [ C(RESULT_MISS)   ] = 0x0,
677         },
678  },
679  [ C(ITLB) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = -1,
686                 [ C(RESULT_MISS)   ] = -1,
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692  },
693  [ C(BPU ) ] = {
694         [ C(OP_READ) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697         },
698         [ C(OP_WRITE) ] = {
699                 [ C(RESULT_ACCESS) ] = -1,
700                 [ C(RESULT_MISS)   ] = -1,
701         },
702         [ C(OP_PREFETCH) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706  },
707  [ C(NODE) ] = {
708         [ C(OP_READ) ] = {
709                 [ C(RESULT_ACCESS) ] = 0x01b7,
710                 [ C(RESULT_MISS)   ] = 0x01b7,
711         },
712         [ C(OP_WRITE) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_PREFETCH) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720  },
721
722 };
723
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732
733 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
734 #define HSW_DEMAND_RFO                  BIT_ULL(1)
735 #define HSW_ANY_RESPONSE                BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
741 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
742                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743                                          HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE                  BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
746 #define HSW_SNOOP_MISS                  BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
749 #define HSW_SNOOP_HITM                  BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
751 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
752                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
759                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
761
762 #define BDW_L3_MISS_LOCAL               BIT(26)
763 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
764                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765                                          HSW_L3_MISS_REMOTE_HOP2P)
766
767
768 static __initconst const u64 hsw_hw_cache_event_ids
769                                 [PERF_COUNT_HW_CACHE_MAX]
770                                 [PERF_COUNT_HW_CACHE_OP_MAX]
771                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774         [ C(OP_READ) ] = {
775                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
776                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
777         },
778         [ C(OP_WRITE) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
780                 [ C(RESULT_MISS)   ] = 0x0,
781         },
782         [ C(OP_PREFETCH) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x0,
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786  },
787  [ C(L1I ) ] = {
788         [ C(OP_READ) ] = {
789                 [ C(RESULT_ACCESS) ] = 0x0,
790                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
791         },
792         [ C(OP_WRITE) ] = {
793                 [ C(RESULT_ACCESS) ] = -1,
794                 [ C(RESULT_MISS)   ] = -1,
795         },
796         [ C(OP_PREFETCH) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x0,
798                 [ C(RESULT_MISS)   ] = 0x0,
799         },
800  },
801  [ C(LL  ) ] = {
802         [ C(OP_READ) ] = {
803                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
804                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
805         },
806         [ C(OP_WRITE) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_PREFETCH) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x0,
812                 [ C(RESULT_MISS)   ] = 0x0,
813         },
814  },
815  [ C(DTLB) ] = {
816         [ C(OP_READ) ] = {
817                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
818                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
822                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_PREFETCH) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x0,
827         },
828  },
829  [ C(ITLB) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
832                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = -1,
836                 [ C(RESULT_MISS)   ] = -1,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842  },
843  [ C(BPU ) ] = {
844         [ C(OP_READ) ] = {
845                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
846                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
847         },
848         [ C(OP_WRITE) ] = {
849                 [ C(RESULT_ACCESS) ] = -1,
850                 [ C(RESULT_MISS)   ] = -1,
851         },
852         [ C(OP_PREFETCH) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856  },
857  [ C(NODE) ] = {
858         [ C(OP_READ) ] = {
859                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
860                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
861         },
862         [ C(OP_WRITE) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_PREFETCH) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x0,
868                 [ C(RESULT_MISS)   ] = 0x0,
869         },
870  },
871 };
872
873 static __initconst const u64 hsw_hw_cache_extra_regs
874                                 [PERF_COUNT_HW_CACHE_MAX]
875                                 [PERF_COUNT_HW_CACHE_OP_MAX]
876                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881                                        HSW_LLC_ACCESS,
882                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883                                        HSW_L3_MISS|HSW_ANY_SNOOP,
884         },
885         [ C(OP_WRITE) ] = {
886                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887                                        HSW_LLC_ACCESS,
888                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889                                        HSW_L3_MISS|HSW_ANY_SNOOP,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = 0x0,
893                 [ C(RESULT_MISS)   ] = 0x0,
894         },
895  },
896  [ C(NODE) ] = {
897         [ C(OP_READ) ] = {
898                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899                                        HSW_L3_MISS_LOCAL_DRAM|
900                                        HSW_SNOOP_DRAM,
901                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902                                        HSW_L3_MISS_REMOTE|
903                                        HSW_SNOOP_DRAM,
904         },
905         [ C(OP_WRITE) ] = {
906                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907                                        HSW_L3_MISS_LOCAL_DRAM|
908                                        HSW_SNOOP_DRAM,
909                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910                                        HSW_L3_MISS_REMOTE|
911                                        HSW_SNOOP_DRAM,
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x0,
915                 [ C(RESULT_MISS)   ] = 0x0,
916         },
917  },
918 };
919
920 static __initconst const u64 westmere_hw_cache_event_ids
921                                 [PERF_COUNT_HW_CACHE_MAX]
922                                 [PERF_COUNT_HW_CACHE_OP_MAX]
923                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926         [ C(OP_READ) ] = {
927                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929         },
930         [ C(OP_WRITE) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933         },
934         [ C(OP_PREFETCH) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937         },
938  },
939  [ C(L1I ) ] = {
940         [ C(OP_READ) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943         },
944         [ C(OP_WRITE) ] = {
945                 [ C(RESULT_ACCESS) ] = -1,
946                 [ C(RESULT_MISS)   ] = -1,
947         },
948         [ C(OP_PREFETCH) ] = {
949                 [ C(RESULT_ACCESS) ] = 0x0,
950                 [ C(RESULT_MISS)   ] = 0x0,
951         },
952  },
953  [ C(LL  ) ] = {
954         [ C(OP_READ) ] = {
955                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         /*
961          * Use RFO, not WRITEBACK, because a write miss would typically occur
962          * on RFO.
963          */
964         [ C(OP_WRITE) ] = {
965                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966                 [ C(RESULT_ACCESS) ] = 0x01b7,
967                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968                 [ C(RESULT_MISS)   ] = 0x01b7,
969         },
970         [ C(OP_PREFETCH) ] = {
971                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972                 [ C(RESULT_ACCESS) ] = 0x01b7,
973                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974                 [ C(RESULT_MISS)   ] = 0x01b7,
975         },
976  },
977  [ C(DTLB) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(ITLB) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004  },
1005  [ C(BPU ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018  },
1019  [ C(NODE) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x01b7,
1022                 [ C(RESULT_MISS)   ] = 0x01b7,
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032  },
1033 };
1034
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039
1040 #define NHM_DMND_DATA_RD        (1 << 0)
1041 #define NHM_DMND_RFO            (1 << 1)
1042 #define NHM_DMND_IFETCH         (1 << 2)
1043 #define NHM_DMND_WB             (1 << 3)
1044 #define NHM_PF_DATA_RD          (1 << 4)
1045 #define NHM_PF_DATA_RFO         (1 << 5)
1046 #define NHM_PF_IFETCH           (1 << 6)
1047 #define NHM_OFFCORE_OTHER       (1 << 7)
1048 #define NHM_UNCORE_HIT          (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050 #define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053 #define NHM_REMOTE_DRAM         (1 << 13)
1054 #define NHM_LOCAL_DRAM          (1 << 14)
1055 #define NHM_NON_DRAM            (1 << 15)
1056
1057 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059
1060 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                 [PERF_COUNT_HW_CACHE_MAX]
1070                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074         [ C(OP_READ) ] = {
1075                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077         },
1078         [ C(OP_WRITE) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081         },
1082         [ C(OP_PREFETCH) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085         },
1086  },
1087  [ C(NODE) ] = {
1088         [ C(OP_READ) ] = {
1089                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091         },
1092         [ C(OP_WRITE) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095         },
1096         [ C(OP_PREFETCH) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099         },
1100  },
1101 };
1102
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104                                 [PERF_COUNT_HW_CACHE_MAX]
1105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109         [ C(OP_READ) ] = {
1110                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120         },
1121  },
1122  [ C(L1I ) ] = {
1123         [ C(OP_READ) ] = {
1124                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126         },
1127         [ C(OP_WRITE) ] = {
1128                 [ C(RESULT_ACCESS) ] = -1,
1129                 [ C(RESULT_MISS)   ] = -1,
1130         },
1131         [ C(OP_PREFETCH) ] = {
1132                 [ C(RESULT_ACCESS) ] = 0x0,
1133                 [ C(RESULT_MISS)   ] = 0x0,
1134         },
1135  },
1136  [ C(LL  ) ] = {
1137         [ C(OP_READ) ] = {
1138                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                 [ C(RESULT_MISS)   ] = 0x01b7,
1142         },
1143         /*
1144          * Use RFO, not WRITEBACK, because a write miss would typically occur
1145          * on RFO.
1146          */
1147         [ C(OP_WRITE) ] = {
1148                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                 [ C(RESULT_ACCESS) ] = 0x01b7,
1150                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                 [ C(RESULT_MISS)   ] = 0x01b7,
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                 [ C(RESULT_ACCESS) ] = 0x01b7,
1156                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                 [ C(RESULT_MISS)   ] = 0x01b7,
1158         },
1159  },
1160  [ C(DTLB) ] = {
1161         [ C(OP_READ) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164         },
1165         [ C(OP_WRITE) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168         },
1169         [ C(OP_PREFETCH) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0,
1171                 [ C(RESULT_MISS)   ] = 0x0,
1172         },
1173  },
1174  [ C(ITLB) ] = {
1175         [ C(OP_READ) ] = {
1176                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178         },
1179         [ C(OP_WRITE) ] = {
1180                 [ C(RESULT_ACCESS) ] = -1,
1181                 [ C(RESULT_MISS)   ] = -1,
1182         },
1183         [ C(OP_PREFETCH) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187  },
1188  [ C(BPU ) ] = {
1189         [ C(OP_READ) ] = {
1190                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192         },
1193         [ C(OP_WRITE) ] = {
1194                 [ C(RESULT_ACCESS) ] = -1,
1195                 [ C(RESULT_MISS)   ] = -1,
1196         },
1197         [ C(OP_PREFETCH) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201  },
1202  [ C(NODE) ] = {
1203         [ C(OP_READ) ] = {
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 [ C(RESULT_MISS)   ] = 0x01b7,
1206         },
1207         [ C(OP_WRITE) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_PREFETCH) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215  },
1216 };
1217
1218 static __initconst const u64 core2_hw_cache_event_ids
1219                                 [PERF_COUNT_HW_CACHE_MAX]
1220                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                 [ C(RESULT_MISS)   ] = 0,
1235         },
1236  },
1237  [ C(L1I ) ] = {
1238         [ C(OP_READ) ] = {
1239                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241         },
1242         [ C(OP_WRITE) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246         [ C(OP_PREFETCH) ] = {
1247                 [ C(RESULT_ACCESS) ] = 0,
1248                 [ C(RESULT_MISS)   ] = 0,
1249         },
1250  },
1251  [ C(LL  ) ] = {
1252         [ C(OP_READ) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255         },
1256         [ C(OP_WRITE) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259         },
1260         [ C(OP_PREFETCH) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0,
1262                 [ C(RESULT_MISS)   ] = 0,
1263         },
1264  },
1265  [ C(DTLB) ] = {
1266         [ C(OP_READ) ] = {
1267                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269         },
1270         [ C(OP_WRITE) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273         },
1274         [ C(OP_PREFETCH) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0,
1276                 [ C(RESULT_MISS)   ] = 0,
1277         },
1278  },
1279  [ C(ITLB) ] = {
1280         [ C(OP_READ) ] = {
1281                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283         },
1284         [ C(OP_WRITE) ] = {
1285                 [ C(RESULT_ACCESS) ] = -1,
1286                 [ C(RESULT_MISS)   ] = -1,
1287         },
1288         [ C(OP_PREFETCH) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292  },
1293  [ C(BPU ) ] = {
1294         [ C(OP_READ) ] = {
1295                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297         },
1298         [ C(OP_WRITE) ] = {
1299                 [ C(RESULT_ACCESS) ] = -1,
1300                 [ C(RESULT_MISS)   ] = -1,
1301         },
1302         [ C(OP_PREFETCH) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306  },
1307 };
1308
1309 static __initconst const u64 atom_hw_cache_event_ids
1310                                 [PERF_COUNT_HW_CACHE_MAX]
1311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                 [ C(RESULT_MISS)   ] = 0,
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x0,
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327  },
1328  [ C(L1I ) ] = {
1329         [ C(OP_READ) ] = {
1330                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332         },
1333         [ C(OP_WRITE) ] = {
1334                 [ C(RESULT_ACCESS) ] = -1,
1335                 [ C(RESULT_MISS)   ] = -1,
1336         },
1337         [ C(OP_PREFETCH) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0,
1339                 [ C(RESULT_MISS)   ] = 0,
1340         },
1341  },
1342  [ C(LL  ) ] = {
1343         [ C(OP_READ) ] = {
1344                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346         },
1347         [ C(OP_WRITE) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350         },
1351         [ C(OP_PREFETCH) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0,
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355  },
1356  [ C(DTLB) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0,
1367                 [ C(RESULT_MISS)   ] = 0,
1368         },
1369  },
1370  [ C(ITLB) ] = {
1371         [ C(OP_READ) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374         },
1375         [ C(OP_WRITE) ] = {
1376                 [ C(RESULT_ACCESS) ] = -1,
1377                 [ C(RESULT_MISS)   ] = -1,
1378         },
1379         [ C(OP_PREFETCH) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383  },
1384  [ C(BPU ) ] = {
1385         [ C(OP_READ) ] = {
1386                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388         },
1389         [ C(OP_WRITE) ] = {
1390                 [ C(RESULT_ACCESS) ] = -1,
1391                 [ C(RESULT_MISS)   ] = -1,
1392         },
1393         [ C(OP_PREFETCH) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397  },
1398 };
1399
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404                "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408                "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411                "event=0xc2,umask=0x10");
1412
1413 static struct attribute *slm_events_attrs[] = {
1414         EVENT_PTR(td_total_slots_slm),
1415         EVENT_PTR(td_total_slots_scale_slm),
1416         EVENT_PTR(td_fetch_bubbles_slm),
1417         EVENT_PTR(td_fetch_bubbles_scale_slm),
1418         EVENT_PTR(td_slots_issued_slm),
1419         EVENT_PTR(td_slots_retired_slm),
1420         NULL
1421 };
1422
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428         EVENT_EXTRA_END
1429 };
1430
1431 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE          SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1437 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440                                 [PERF_COUNT_HW_CACHE_MAX]
1441                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445         [ C(OP_READ) ] = {
1446                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                 [ C(RESULT_MISS)   ] = 0,
1448         },
1449         [ C(OP_WRITE) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452         },
1453         [ C(OP_PREFETCH) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456         },
1457  },
1458 };
1459
1460 static __initconst const u64 slm_hw_cache_event_ids
1461                                 [PERF_COUNT_HW_CACHE_MAX]
1462                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0,
1468                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(L1I ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = -1,
1486                 [ C(RESULT_MISS)   ] = -1,
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(LL  ) ] = {
1494         [ C(OP_READ) ] = {
1495                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                 [ C(RESULT_ACCESS) ] = 0x01b7,
1497                 [ C(RESULT_MISS)   ] = 0,
1498         },
1499         [ C(OP_WRITE) ] = {
1500                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                 [ C(RESULT_ACCESS) ] = 0x01b7,
1502                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                 [ C(RESULT_MISS)   ] = 0x01b7,
1504         },
1505         [ C(OP_PREFETCH) ] = {
1506                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                 [ C(RESULT_ACCESS) ] = 0x01b7,
1508                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                 [ C(RESULT_MISS)   ] = 0x01b7,
1510         },
1511  },
1512  [ C(DTLB) ] = {
1513         [ C(OP_READ) ] = {
1514                 [ C(RESULT_ACCESS) ] = 0,
1515                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516         },
1517         [ C(OP_WRITE) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0,
1520         },
1521         [ C(OP_PREFETCH) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525  },
1526  [ C(ITLB) ] = {
1527         [ C(OP_READ) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530         },
1531         [ C(OP_WRITE) ] = {
1532                 [ C(RESULT_ACCESS) ] = -1,
1533                 [ C(RESULT_MISS)   ] = -1,
1534         },
1535         [ C(OP_PREFETCH) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539  },
1540  [ C(BPU ) ] = {
1541         [ C(OP_READ) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 [ C(RESULT_ACCESS) ] = -1,
1547                 [ C(RESULT_MISS)   ] = -1,
1548         },
1549         [ C(OP_PREFETCH) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553  },
1554 };
1555
1556 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1557         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1558         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1559         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1560         EVENT_EXTRA_END
1561 };
1562
1563 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1564 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1565 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1566 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1567 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1568 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1569 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1570 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1571 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1572 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1573
1574 static __initconst const u64 glm_hw_cache_event_ids
1575                                 [PERF_COUNT_HW_CACHE_MAX]
1576                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1577                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1578         [C(L1D)] = {
1579                 [C(OP_READ)] = {
1580                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1581                         [C(RESULT_MISS)]        = 0x0,
1582                 },
1583                 [C(OP_WRITE)] = {
1584                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1585                         [C(RESULT_MISS)]        = 0x0,
1586                 },
1587                 [C(OP_PREFETCH)] = {
1588                         [C(RESULT_ACCESS)]      = 0x0,
1589                         [C(RESULT_MISS)]        = 0x0,
1590                 },
1591         },
1592         [C(L1I)] = {
1593                 [C(OP_READ)] = {
1594                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1595                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1596                 },
1597                 [C(OP_WRITE)] = {
1598                         [C(RESULT_ACCESS)]      = -1,
1599                         [C(RESULT_MISS)]        = -1,
1600                 },
1601                 [C(OP_PREFETCH)] = {
1602                         [C(RESULT_ACCESS)]      = 0x0,
1603                         [C(RESULT_MISS)]        = 0x0,
1604                 },
1605         },
1606         [C(LL)] = {
1607                 [C(OP_READ)] = {
1608                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1609                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1610                 },
1611                 [C(OP_WRITE)] = {
1612                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1613                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1614                 },
1615                 [C(OP_PREFETCH)] = {
1616                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1617                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1618                 },
1619         },
1620         [C(DTLB)] = {
1621                 [C(OP_READ)] = {
1622                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1623                         [C(RESULT_MISS)]        = 0x0,
1624                 },
1625                 [C(OP_WRITE)] = {
1626                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1627                         [C(RESULT_MISS)]        = 0x0,
1628                 },
1629                 [C(OP_PREFETCH)] = {
1630                         [C(RESULT_ACCESS)]      = 0x0,
1631                         [C(RESULT_MISS)]        = 0x0,
1632                 },
1633         },
1634         [C(ITLB)] = {
1635                 [C(OP_READ)] = {
1636                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1637                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1638                 },
1639                 [C(OP_WRITE)] = {
1640                         [C(RESULT_ACCESS)]      = -1,
1641                         [C(RESULT_MISS)]        = -1,
1642                 },
1643                 [C(OP_PREFETCH)] = {
1644                         [C(RESULT_ACCESS)]      = -1,
1645                         [C(RESULT_MISS)]        = -1,
1646                 },
1647         },
1648         [C(BPU)] = {
1649                 [C(OP_READ)] = {
1650                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1651                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1652                 },
1653                 [C(OP_WRITE)] = {
1654                         [C(RESULT_ACCESS)]      = -1,
1655                         [C(RESULT_MISS)]        = -1,
1656                 },
1657                 [C(OP_PREFETCH)] = {
1658                         [C(RESULT_ACCESS)]      = -1,
1659                         [C(RESULT_MISS)]        = -1,
1660                 },
1661         },
1662 };
1663
1664 static __initconst const u64 glm_hw_cache_extra_regs
1665                                 [PERF_COUNT_HW_CACHE_MAX]
1666                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1667                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1668         [C(LL)] = {
1669                 [C(OP_READ)] = {
1670                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1671                                                   GLM_LLC_ACCESS,
1672                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1673                                                   GLM_LLC_MISS,
1674                 },
1675                 [C(OP_WRITE)] = {
1676                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1677                                                   GLM_LLC_ACCESS,
1678                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1679                                                   GLM_LLC_MISS,
1680                 },
1681                 [C(OP_PREFETCH)] = {
1682                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1683                                                   GLM_LLC_ACCESS,
1684                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1685                                                   GLM_LLC_MISS,
1686                 },
1687         },
1688 };
1689
1690 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1691 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1692 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1693 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1694 #define KNL_DDR_LOCAL           BIT_ULL(23)
1695 #define KNL_DDR_FAR             BIT_ULL(24)
1696 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1697                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1698 #define KNL_L2_READ             SLM_DMND_READ
1699 #define KNL_L2_WRITE            SLM_DMND_WRITE
1700 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1701 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1702 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1703                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1704                                                   SNB_NON_DRAM)
1705
1706 static __initconst const u64 knl_hw_cache_extra_regs
1707                                 [PERF_COUNT_HW_CACHE_MAX]
1708                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1709                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1710         [C(LL)] = {
1711                 [C(OP_READ)] = {
1712                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1713                         [C(RESULT_MISS)]   = 0,
1714                 },
1715                 [C(OP_WRITE)] = {
1716                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1717                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1718                 },
1719                 [C(OP_PREFETCH)] = {
1720                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1721                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1722                 },
1723         },
1724 };
1725
1726 /*
1727  * Used from PMIs where the LBRs are already disabled.
1728  *
1729  * This function could be called consecutively. It is required to remain in
1730  * disabled state if called consecutively.
1731  *
1732  * During consecutive calls, the same disable value will be written to related
1733  * registers, so the PMU state remains unchanged.
1734  *
1735  * intel_bts events don't coexist with intel PMU's BTS events because of
1736  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1737  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1738  */
1739 static void __intel_pmu_disable_all(void)
1740 {
1741         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1742
1743         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1744
1745         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1746                 intel_pmu_disable_bts();
1747
1748         intel_pmu_pebs_disable_all();
1749 }
1750
1751 static void intel_pmu_disable_all(void)
1752 {
1753         __intel_pmu_disable_all();
1754         intel_pmu_lbr_disable_all();
1755 }
1756
1757 static void __intel_pmu_enable_all(int added, bool pmi)
1758 {
1759         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1760
1761         intel_pmu_pebs_enable_all();
1762         intel_pmu_lbr_enable_all(pmi);
1763         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1764                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1765
1766         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1767                 struct perf_event *event =
1768                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1769
1770                 if (WARN_ON_ONCE(!event))
1771                         return;
1772
1773                 intel_pmu_enable_bts(event->hw.config);
1774         }
1775 }
1776
1777 static void intel_pmu_enable_all(int added)
1778 {
1779         __intel_pmu_enable_all(added, false);
1780 }
1781
1782 /*
1783  * Workaround for:
1784  *   Intel Errata AAK100 (model 26)
1785  *   Intel Errata AAP53  (model 30)
1786  *   Intel Errata BD53   (model 44)
1787  *
1788  * The official story:
1789  *   These chips need to be 'reset' when adding counters by programming the
1790  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1791  *   in sequence on the same PMC or on different PMCs.
1792  *
1793  * In practise it appears some of these events do in fact count, and
1794  * we need to programm all 4 events.
1795  */
1796 static void intel_pmu_nhm_workaround(void)
1797 {
1798         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1799         static const unsigned long nhm_magic[4] = {
1800                 0x4300B5,
1801                 0x4300D2,
1802                 0x4300B1,
1803                 0x4300B1
1804         };
1805         struct perf_event *event;
1806         int i;
1807
1808         /*
1809          * The Errata requires below steps:
1810          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1811          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1812          *    the corresponding PMCx;
1813          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1814          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1815          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1816          */
1817
1818         /*
1819          * The real steps we choose are a little different from above.
1820          * A) To reduce MSR operations, we don't run step 1) as they
1821          *    are already cleared before this function is called;
1822          * B) Call x86_perf_event_update to save PMCx before configuring
1823          *    PERFEVTSELx with magic number;
1824          * C) With step 5), we do clear only when the PERFEVTSELx is
1825          *    not used currently.
1826          * D) Call x86_perf_event_set_period to restore PMCx;
1827          */
1828
1829         /* We always operate 4 pairs of PERF Counters */
1830         for (i = 0; i < 4; i++) {
1831                 event = cpuc->events[i];
1832                 if (event)
1833                         x86_perf_event_update(event);
1834         }
1835
1836         for (i = 0; i < 4; i++) {
1837                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1838                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1839         }
1840
1841         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1842         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1843
1844         for (i = 0; i < 4; i++) {
1845                 event = cpuc->events[i];
1846
1847                 if (event) {
1848                         x86_perf_event_set_period(event);
1849                         __x86_pmu_enable_event(&event->hw,
1850                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1851                 } else
1852                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1853         }
1854 }
1855
1856 static void intel_pmu_nhm_enable_all(int added)
1857 {
1858         if (added)
1859                 intel_pmu_nhm_workaround();
1860         intel_pmu_enable_all(added);
1861 }
1862
1863 static inline u64 intel_pmu_get_status(void)
1864 {
1865         u64 status;
1866
1867         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1868
1869         return status;
1870 }
1871
1872 static inline void intel_pmu_ack_status(u64 ack)
1873 {
1874         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1875 }
1876
1877 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1878 {
1879         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1880         u64 ctrl_val, mask;
1881
1882         mask = 0xfULL << (idx * 4);
1883
1884         rdmsrl(hwc->config_base, ctrl_val);
1885         ctrl_val &= ~mask;
1886         wrmsrl(hwc->config_base, ctrl_val);
1887 }
1888
1889 static inline bool event_is_checkpointed(struct perf_event *event)
1890 {
1891         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1892 }
1893
1894 static void intel_pmu_disable_event(struct perf_event *event)
1895 {
1896         struct hw_perf_event *hwc = &event->hw;
1897         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898
1899         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1900                 intel_pmu_disable_bts();
1901                 intel_pmu_drain_bts_buffer();
1902                 return;
1903         }
1904
1905         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1906         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1907         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1908
1909         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1910                 intel_pmu_disable_fixed(hwc);
1911                 return;
1912         }
1913
1914         x86_pmu_disable_event(event);
1915
1916         if (unlikely(event->attr.precise_ip))
1917                 intel_pmu_pebs_disable(event);
1918 }
1919
1920 static void intel_pmu_del_event(struct perf_event *event)
1921 {
1922         if (needs_branch_stack(event))
1923                 intel_pmu_lbr_del(event);
1924         if (event->attr.precise_ip)
1925                 intel_pmu_pebs_del(event);
1926 }
1927
1928 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1929 {
1930         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1931         u64 ctrl_val, bits, mask;
1932
1933         /*
1934          * Enable IRQ generation (0x8),
1935          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1936          * if requested:
1937          */
1938         bits = 0x8ULL;
1939         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1940                 bits |= 0x2;
1941         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1942                 bits |= 0x1;
1943
1944         /*
1945          * ANY bit is supported in v3 and up
1946          */
1947         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1948                 bits |= 0x4;
1949
1950         bits <<= (idx * 4);
1951         mask = 0xfULL << (idx * 4);
1952
1953         rdmsrl(hwc->config_base, ctrl_val);
1954         ctrl_val &= ~mask;
1955         ctrl_val |= bits;
1956         wrmsrl(hwc->config_base, ctrl_val);
1957 }
1958
1959 static void intel_pmu_enable_event(struct perf_event *event)
1960 {
1961         struct hw_perf_event *hwc = &event->hw;
1962         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1963
1964         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1965                 if (!__this_cpu_read(cpu_hw_events.enabled))
1966                         return;
1967
1968                 intel_pmu_enable_bts(hwc->config);
1969                 return;
1970         }
1971
1972         if (event->attr.exclude_host)
1973                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1974         if (event->attr.exclude_guest)
1975                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1976
1977         if (unlikely(event_is_checkpointed(event)))
1978                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1979
1980         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1981                 intel_pmu_enable_fixed(hwc);
1982                 return;
1983         }
1984
1985         if (unlikely(event->attr.precise_ip))
1986                 intel_pmu_pebs_enable(event);
1987
1988         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1989 }
1990
1991 static void intel_pmu_add_event(struct perf_event *event)
1992 {
1993         if (event->attr.precise_ip)
1994                 intel_pmu_pebs_add(event);
1995         if (needs_branch_stack(event))
1996                 intel_pmu_lbr_add(event);
1997 }
1998
1999 /*
2000  * Save and restart an expired event. Called by NMI contexts,
2001  * so it has to be careful about preempting normal event ops:
2002  */
2003 int intel_pmu_save_and_restart(struct perf_event *event)
2004 {
2005         x86_perf_event_update(event);
2006         /*
2007          * For a checkpointed counter always reset back to 0.  This
2008          * avoids a situation where the counter overflows, aborts the
2009          * transaction and is then set back to shortly before the
2010          * overflow, and overflows and aborts again.
2011          */
2012         if (unlikely(event_is_checkpointed(event))) {
2013                 /* No race with NMIs because the counter should not be armed */
2014                 wrmsrl(event->hw.event_base, 0);
2015                 local64_set(&event->hw.prev_count, 0);
2016         }
2017         return x86_perf_event_set_period(event);
2018 }
2019
2020 static void intel_pmu_reset(void)
2021 {
2022         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2023         unsigned long flags;
2024         int idx;
2025
2026         if (!x86_pmu.num_counters)
2027                 return;
2028
2029         local_irq_save(flags);
2030
2031         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2032
2033         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2034                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2035                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2036         }
2037         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2038                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2039
2040         if (ds)
2041                 ds->bts_index = ds->bts_buffer_base;
2042
2043         /* Ack all overflows and disable fixed counters */
2044         if (x86_pmu.version >= 2) {
2045                 intel_pmu_ack_status(intel_pmu_get_status());
2046                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2047         }
2048
2049         /* Reset LBRs and LBR freezing */
2050         if (x86_pmu.lbr_nr) {
2051                 update_debugctlmsr(get_debugctlmsr() &
2052                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2053         }
2054
2055         local_irq_restore(flags);
2056 }
2057
2058 /*
2059  * This handler is triggered by the local APIC, so the APIC IRQ handling
2060  * rules apply:
2061  */
2062 static int intel_pmu_handle_irq(struct pt_regs *regs)
2063 {
2064         struct perf_sample_data data;
2065         struct cpu_hw_events *cpuc;
2066         int bit, loops;
2067         u64 status;
2068         int handled;
2069         int pmu_enabled;
2070
2071         cpuc = this_cpu_ptr(&cpu_hw_events);
2072
2073         /*
2074          * Save the PMU state.
2075          * It needs to be restored when leaving the handler.
2076          */
2077         pmu_enabled = cpuc->enabled;
2078         /*
2079          * No known reason to not always do late ACK,
2080          * but just in case do it opt-in.
2081          */
2082         if (!x86_pmu.late_ack)
2083                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2084         intel_bts_disable_local();
2085         cpuc->enabled = 0;
2086         __intel_pmu_disable_all();
2087         handled = intel_pmu_drain_bts_buffer();
2088         handled += intel_bts_interrupt();
2089         status = intel_pmu_get_status();
2090         if (!status)
2091                 goto done;
2092
2093         loops = 0;
2094 again:
2095         intel_pmu_lbr_read();
2096         intel_pmu_ack_status(status);
2097         if (++loops > 100) {
2098                 static bool warned = false;
2099                 if (!warned) {
2100                         WARN(1, "perfevents: irq loop stuck!\n");
2101                         perf_event_print_debug();
2102                         warned = true;
2103                 }
2104                 intel_pmu_reset();
2105                 goto done;
2106         }
2107
2108         inc_irq_stat(apic_perf_irqs);
2109
2110
2111         /*
2112          * Ignore a range of extra bits in status that do not indicate
2113          * overflow by themselves.
2114          */
2115         status &= ~(GLOBAL_STATUS_COND_CHG |
2116                     GLOBAL_STATUS_ASIF |
2117                     GLOBAL_STATUS_LBRS_FROZEN);
2118         if (!status)
2119                 goto done;
2120
2121         /*
2122          * PEBS overflow sets bit 62 in the global status register
2123          */
2124         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2125                 handled++;
2126                 x86_pmu.drain_pebs(regs);
2127                 /*
2128                  * There are cases where, even though, the PEBS ovfl bit is set
2129                  * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2130                  * overflow bits set for their counters. We must clear them
2131                  * here because they have been processed as exact samples in
2132                  * the drain_pebs() routine. They must not be processed again
2133                  * in the for_each_bit_set() loop for regular samples below.
2134                  */
2135                 status &= ~cpuc->pebs_enabled;
2136                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2137         }
2138
2139         /*
2140          * Intel PT
2141          */
2142         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2143                 handled++;
2144                 intel_pt_interrupt();
2145         }
2146
2147         /*
2148          * Checkpointed counters can lead to 'spurious' PMIs because the
2149          * rollback caused by the PMI will have cleared the overflow status
2150          * bit. Therefore always force probe these counters.
2151          */
2152         status |= cpuc->intel_cp_status;
2153
2154         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2155                 struct perf_event *event = cpuc->events[bit];
2156
2157                 handled++;
2158
2159                 if (!test_bit(bit, cpuc->active_mask))
2160                         continue;
2161
2162                 if (!intel_pmu_save_and_restart(event))
2163                         continue;
2164
2165                 perf_sample_data_init(&data, 0, event->hw.last_period);
2166
2167                 if (has_branch_stack(event))
2168                         data.br_stack = &cpuc->lbr_stack;
2169
2170                 if (perf_event_overflow(event, &data, regs))
2171                         x86_pmu_stop(event, 0);
2172         }
2173
2174         /*
2175          * Repeat if there is more work to be done:
2176          */
2177         status = intel_pmu_get_status();
2178         if (status)
2179                 goto again;
2180
2181 done:
2182         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2183         cpuc->enabled = pmu_enabled;
2184         if (pmu_enabled)
2185                 __intel_pmu_enable_all(0, true);
2186         intel_bts_enable_local();
2187
2188         /*
2189          * Only unmask the NMI after the overflow counters
2190          * have been reset. This avoids spurious NMIs on
2191          * Haswell CPUs.
2192          */
2193         if (x86_pmu.late_ack)
2194                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2195         return handled;
2196 }
2197
2198 static struct event_constraint *
2199 intel_bts_constraints(struct perf_event *event)
2200 {
2201         if (unlikely(intel_pmu_has_bts(event)))
2202                 return &bts_constraint;
2203
2204         return NULL;
2205 }
2206
2207 static int intel_alt_er(int idx, u64 config)
2208 {
2209         int alt_idx = idx;
2210
2211         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2212                 return idx;
2213
2214         if (idx == EXTRA_REG_RSP_0)
2215                 alt_idx = EXTRA_REG_RSP_1;
2216
2217         if (idx == EXTRA_REG_RSP_1)
2218                 alt_idx = EXTRA_REG_RSP_0;
2219
2220         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2221                 return idx;
2222
2223         return alt_idx;
2224 }
2225
2226 static void intel_fixup_er(struct perf_event *event, int idx)
2227 {
2228         event->hw.extra_reg.idx = idx;
2229
2230         if (idx == EXTRA_REG_RSP_0) {
2231                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2232                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2233                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2234         } else if (idx == EXTRA_REG_RSP_1) {
2235                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2236                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2237                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2238         }
2239 }
2240
2241 /*
2242  * manage allocation of shared extra msr for certain events
2243  *
2244  * sharing can be:
2245  * per-cpu: to be shared between the various events on a single PMU
2246  * per-core: per-cpu + shared by HT threads
2247  */
2248 static struct event_constraint *
2249 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2250                                    struct perf_event *event,
2251                                    struct hw_perf_event_extra *reg)
2252 {
2253         struct event_constraint *c = &emptyconstraint;
2254         struct er_account *era;
2255         unsigned long flags;
2256         int idx = reg->idx;
2257
2258         /*
2259          * reg->alloc can be set due to existing state, so for fake cpuc we
2260          * need to ignore this, otherwise we might fail to allocate proper fake
2261          * state for this extra reg constraint. Also see the comment below.
2262          */
2263         if (reg->alloc && !cpuc->is_fake)
2264                 return NULL; /* call x86_get_event_constraint() */
2265
2266 again:
2267         era = &cpuc->shared_regs->regs[idx];
2268         /*
2269          * we use spin_lock_irqsave() to avoid lockdep issues when
2270          * passing a fake cpuc
2271          */
2272         raw_spin_lock_irqsave(&era->lock, flags);
2273
2274         if (!atomic_read(&era->ref) || era->config == reg->config) {
2275
2276                 /*
2277                  * If its a fake cpuc -- as per validate_{group,event}() we
2278                  * shouldn't touch event state and we can avoid doing so
2279                  * since both will only call get_event_constraints() once
2280                  * on each event, this avoids the need for reg->alloc.
2281                  *
2282                  * Not doing the ER fixup will only result in era->reg being
2283                  * wrong, but since we won't actually try and program hardware
2284                  * this isn't a problem either.
2285                  */
2286                 if (!cpuc->is_fake) {
2287                         if (idx != reg->idx)
2288                                 intel_fixup_er(event, idx);
2289
2290                         /*
2291                          * x86_schedule_events() can call get_event_constraints()
2292                          * multiple times on events in the case of incremental
2293                          * scheduling(). reg->alloc ensures we only do the ER
2294                          * allocation once.
2295                          */
2296                         reg->alloc = 1;
2297                 }
2298
2299                 /* lock in msr value */
2300                 era->config = reg->config;
2301                 era->reg = reg->reg;
2302
2303                 /* one more user */
2304                 atomic_inc(&era->ref);
2305
2306                 /*
2307                  * need to call x86_get_event_constraint()
2308                  * to check if associated event has constraints
2309                  */
2310                 c = NULL;
2311         } else {
2312                 idx = intel_alt_er(idx, reg->config);
2313                 if (idx != reg->idx) {
2314                         raw_spin_unlock_irqrestore(&era->lock, flags);
2315                         goto again;
2316                 }
2317         }
2318         raw_spin_unlock_irqrestore(&era->lock, flags);
2319
2320         return c;
2321 }
2322
2323 static void
2324 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2325                                    struct hw_perf_event_extra *reg)
2326 {
2327         struct er_account *era;
2328
2329         /*
2330          * Only put constraint if extra reg was actually allocated. Also takes
2331          * care of event which do not use an extra shared reg.
2332          *
2333          * Also, if this is a fake cpuc we shouldn't touch any event state
2334          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2335          * either since it'll be thrown out.
2336          */
2337         if (!reg->alloc || cpuc->is_fake)
2338                 return;
2339
2340         era = &cpuc->shared_regs->regs[reg->idx];
2341
2342         /* one fewer user */
2343         atomic_dec(&era->ref);
2344
2345         /* allocate again next time */
2346         reg->alloc = 0;
2347 }
2348
2349 static struct event_constraint *
2350 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2351                               struct perf_event *event)
2352 {
2353         struct event_constraint *c = NULL, *d;
2354         struct hw_perf_event_extra *xreg, *breg;
2355
2356         xreg = &event->hw.extra_reg;
2357         if (xreg->idx != EXTRA_REG_NONE) {
2358                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2359                 if (c == &emptyconstraint)
2360                         return c;
2361         }
2362         breg = &event->hw.branch_reg;
2363         if (breg->idx != EXTRA_REG_NONE) {
2364                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2365                 if (d == &emptyconstraint) {
2366                         __intel_shared_reg_put_constraints(cpuc, xreg);
2367                         c = d;
2368                 }
2369         }
2370         return c;
2371 }
2372
2373 struct event_constraint *
2374 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2375                           struct perf_event *event)
2376 {
2377         struct event_constraint *c;
2378
2379         if (x86_pmu.event_constraints) {
2380                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2381                         if ((event->hw.config & c->cmask) == c->code) {
2382                                 event->hw.flags |= c->flags;
2383                                 return c;
2384                         }
2385                 }
2386         }
2387
2388         return &unconstrained;
2389 }
2390
2391 static struct event_constraint *
2392 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2393                             struct perf_event *event)
2394 {
2395         struct event_constraint *c;
2396
2397         c = intel_bts_constraints(event);
2398         if (c)
2399                 return c;
2400
2401         c = intel_shared_regs_constraints(cpuc, event);
2402         if (c)
2403                 return c;
2404
2405         c = intel_pebs_constraints(event);
2406         if (c)
2407                 return c;
2408
2409         return x86_get_event_constraints(cpuc, idx, event);
2410 }
2411
2412 static void
2413 intel_start_scheduling(struct cpu_hw_events *cpuc)
2414 {
2415         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2416         struct intel_excl_states *xl;
2417         int tid = cpuc->excl_thread_id;
2418
2419         /*
2420          * nothing needed if in group validation mode
2421          */
2422         if (cpuc->is_fake || !is_ht_workaround_enabled())
2423                 return;
2424
2425         /*
2426          * no exclusion needed
2427          */
2428         if (WARN_ON_ONCE(!excl_cntrs))
2429                 return;
2430
2431         xl = &excl_cntrs->states[tid];
2432
2433         xl->sched_started = true;
2434         /*
2435          * lock shared state until we are done scheduling
2436          * in stop_event_scheduling()
2437          * makes scheduling appear as a transaction
2438          */
2439         raw_spin_lock(&excl_cntrs->lock);
2440 }
2441
2442 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2443 {
2444         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2445         struct event_constraint *c = cpuc->event_constraint[idx];
2446         struct intel_excl_states *xl;
2447         int tid = cpuc->excl_thread_id;
2448
2449         if (cpuc->is_fake || !is_ht_workaround_enabled())
2450                 return;
2451
2452         if (WARN_ON_ONCE(!excl_cntrs))
2453                 return;
2454
2455         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2456                 return;
2457
2458         xl = &excl_cntrs->states[tid];
2459
2460         lockdep_assert_held(&excl_cntrs->lock);
2461
2462         if (c->flags & PERF_X86_EVENT_EXCL)
2463                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2464         else
2465                 xl->state[cntr] = INTEL_EXCL_SHARED;
2466 }
2467
2468 static void
2469 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2470 {
2471         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2472         struct intel_excl_states *xl;
2473         int tid = cpuc->excl_thread_id;
2474
2475         /*
2476          * nothing needed if in group validation mode
2477          */
2478         if (cpuc->is_fake || !is_ht_workaround_enabled())
2479                 return;
2480         /*
2481          * no exclusion needed
2482          */
2483         if (WARN_ON_ONCE(!excl_cntrs))
2484                 return;
2485
2486         xl = &excl_cntrs->states[tid];
2487
2488         xl->sched_started = false;
2489         /*
2490          * release shared state lock (acquired in intel_start_scheduling())
2491          */
2492         raw_spin_unlock(&excl_cntrs->lock);
2493 }
2494
2495 static struct event_constraint *
2496 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2497 {
2498         WARN_ON_ONCE(!cpuc->constraint_list);
2499
2500         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2501                 struct event_constraint *cx;
2502
2503                 /*
2504                  * grab pre-allocated constraint entry
2505                  */
2506                 cx = &cpuc->constraint_list[idx];
2507
2508                 /*
2509                  * initialize dynamic constraint
2510                  * with static constraint
2511                  */
2512                 *cx = *c;
2513
2514                 /*
2515                  * mark constraint as dynamic
2516                  */
2517                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2518                 c = cx;
2519         }
2520
2521         return c;
2522 }
2523
2524 static struct event_constraint *
2525 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2526                            int idx, struct event_constraint *c)
2527 {
2528         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2529         struct intel_excl_states *xlo;
2530         int tid = cpuc->excl_thread_id;
2531         int is_excl, i;
2532
2533         /*
2534          * validating a group does not require
2535          * enforcing cross-thread  exclusion
2536          */
2537         if (cpuc->is_fake || !is_ht_workaround_enabled())
2538                 return c;
2539
2540         /*
2541          * no exclusion needed
2542          */
2543         if (WARN_ON_ONCE(!excl_cntrs))
2544                 return c;
2545
2546         /*
2547          * because we modify the constraint, we need
2548          * to make a copy. Static constraints come
2549          * from static const tables.
2550          *
2551          * only needed when constraint has not yet
2552          * been cloned (marked dynamic)
2553          */
2554         c = dyn_constraint(cpuc, c, idx);
2555
2556         /*
2557          * From here on, the constraint is dynamic.
2558          * Either it was just allocated above, or it
2559          * was allocated during a earlier invocation
2560          * of this function
2561          */
2562
2563         /*
2564          * state of sibling HT
2565          */
2566         xlo = &excl_cntrs->states[tid ^ 1];
2567
2568         /*
2569          * event requires exclusive counter access
2570          * across HT threads
2571          */
2572         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2573         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2574                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2575                 if (!cpuc->n_excl++)
2576                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2577         }
2578
2579         /*
2580          * Modify static constraint with current dynamic
2581          * state of thread
2582          *
2583          * EXCLUSIVE: sibling counter measuring exclusive event
2584          * SHARED   : sibling counter measuring non-exclusive event
2585          * UNUSED   : sibling counter unused
2586          */
2587         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2588                 /*
2589                  * exclusive event in sibling counter
2590                  * our corresponding counter cannot be used
2591                  * regardless of our event
2592                  */
2593                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2594                         __clear_bit(i, c->idxmsk);
2595                 /*
2596                  * if measuring an exclusive event, sibling
2597                  * measuring non-exclusive, then counter cannot
2598                  * be used
2599                  */
2600                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2601                         __clear_bit(i, c->idxmsk);
2602         }
2603
2604         /*
2605          * recompute actual bit weight for scheduling algorithm
2606          */
2607         c->weight = hweight64(c->idxmsk64);
2608
2609         /*
2610          * if we return an empty mask, then switch
2611          * back to static empty constraint to avoid
2612          * the cost of freeing later on
2613          */
2614         if (c->weight == 0)
2615                 c = &emptyconstraint;
2616
2617         return c;
2618 }
2619
2620 static struct event_constraint *
2621 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2622                             struct perf_event *event)
2623 {
2624         struct event_constraint *c1 = NULL;
2625         struct event_constraint *c2;
2626
2627         if (idx >= 0) /* fake does < 0 */
2628                 c1 = cpuc->event_constraint[idx];
2629
2630         /*
2631          * first time only
2632          * - static constraint: no change across incremental scheduling calls
2633          * - dynamic constraint: handled by intel_get_excl_constraints()
2634          */
2635         c2 = __intel_get_event_constraints(cpuc, idx, event);
2636         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2637                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2638                 c1->weight = c2->weight;
2639                 c2 = c1;
2640         }
2641
2642         if (cpuc->excl_cntrs)
2643                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2644
2645         return c2;
2646 }
2647
2648 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2649                 struct perf_event *event)
2650 {
2651         struct hw_perf_event *hwc = &event->hw;
2652         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2653         int tid = cpuc->excl_thread_id;
2654         struct intel_excl_states *xl;
2655
2656         /*
2657          * nothing needed if in group validation mode
2658          */
2659         if (cpuc->is_fake)
2660                 return;
2661
2662         if (WARN_ON_ONCE(!excl_cntrs))
2663                 return;
2664
2665         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2666                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2667                 if (!--cpuc->n_excl)
2668                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2669         }
2670
2671         /*
2672          * If event was actually assigned, then mark the counter state as
2673          * unused now.
2674          */
2675         if (hwc->idx >= 0) {
2676                 xl = &excl_cntrs->states[tid];
2677
2678                 /*
2679                  * put_constraint may be called from x86_schedule_events()
2680                  * which already has the lock held so here make locking
2681                  * conditional.
2682                  */
2683                 if (!xl->sched_started)
2684                         raw_spin_lock(&excl_cntrs->lock);
2685
2686                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2687
2688                 if (!xl->sched_started)
2689                         raw_spin_unlock(&excl_cntrs->lock);
2690         }
2691 }
2692
2693 static void
2694 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2695                                         struct perf_event *event)
2696 {
2697         struct hw_perf_event_extra *reg;
2698
2699         reg = &event->hw.extra_reg;
2700         if (reg->idx != EXTRA_REG_NONE)
2701                 __intel_shared_reg_put_constraints(cpuc, reg);
2702
2703         reg = &event->hw.branch_reg;
2704         if (reg->idx != EXTRA_REG_NONE)
2705                 __intel_shared_reg_put_constraints(cpuc, reg);
2706 }
2707
2708 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2709                                         struct perf_event *event)
2710 {
2711         intel_put_shared_regs_event_constraints(cpuc, event);
2712
2713         /*
2714          * is PMU has exclusive counter restrictions, then
2715          * all events are subject to and must call the
2716          * put_excl_constraints() routine
2717          */
2718         if (cpuc->excl_cntrs)
2719                 intel_put_excl_constraints(cpuc, event);
2720 }
2721
2722 static void intel_pebs_aliases_core2(struct perf_event *event)
2723 {
2724         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2725                 /*
2726                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2727                  * (0x003c) so that we can use it with PEBS.
2728                  *
2729                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2730                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2731                  * (0x00c0), which is a PEBS capable event, to get the same
2732                  * count.
2733                  *
2734                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2735                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2736                  * larger than the maximum number of instructions that can be
2737                  * retired per cycle (4) and then inverting the condition, we
2738                  * count all cycles that retire 16 or less instructions, which
2739                  * is every cycle.
2740                  *
2741                  * Thereby we gain a PEBS capable cycle counter.
2742                  */
2743                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2744
2745                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2746                 event->hw.config = alt_config;
2747         }
2748 }
2749
2750 static void intel_pebs_aliases_snb(struct perf_event *event)
2751 {
2752         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2753                 /*
2754                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2755                  * (0x003c) so that we can use it with PEBS.
2756                  *
2757                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2758                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2759                  * (0x01c2), which is a PEBS capable event, to get the same
2760                  * count.
2761                  *
2762                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2763                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2764                  * larger than the maximum number of micro-ops that can be
2765                  * retired per cycle (4) and then inverting the condition, we
2766                  * count all cycles that retire 16 or less micro-ops, which
2767                  * is every cycle.
2768                  *
2769                  * Thereby we gain a PEBS capable cycle counter.
2770                  */
2771                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2772
2773                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2774                 event->hw.config = alt_config;
2775         }
2776 }
2777
2778 static void intel_pebs_aliases_precdist(struct perf_event *event)
2779 {
2780         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2781                 /*
2782                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2783                  * (0x003c) so that we can use it with PEBS.
2784                  *
2785                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2786                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2787                  * (0x01c0), which is a PEBS capable event, to get the same
2788                  * count.
2789                  *
2790                  * The PREC_DIST event has special support to minimize sample
2791                  * shadowing effects. One drawback is that it can be
2792                  * only programmed on counter 1, but that seems like an
2793                  * acceptable trade off.
2794                  */
2795                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2796
2797                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2798                 event->hw.config = alt_config;
2799         }
2800 }
2801
2802 static void intel_pebs_aliases_ivb(struct perf_event *event)
2803 {
2804         if (event->attr.precise_ip < 3)
2805                 return intel_pebs_aliases_snb(event);
2806         return intel_pebs_aliases_precdist(event);
2807 }
2808
2809 static void intel_pebs_aliases_skl(struct perf_event *event)
2810 {
2811         if (event->attr.precise_ip < 3)
2812                 return intel_pebs_aliases_core2(event);
2813         return intel_pebs_aliases_precdist(event);
2814 }
2815
2816 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2817 {
2818         unsigned long flags = x86_pmu.free_running_flags;
2819
2820         if (event->attr.use_clockid)
2821                 flags &= ~PERF_SAMPLE_TIME;
2822         return flags;
2823 }
2824
2825 static int intel_pmu_bts_config(struct perf_event *event)
2826 {
2827         struct perf_event_attr *attr = &event->attr;
2828
2829         if (unlikely(intel_pmu_has_bts(event))) {
2830                 /* BTS is not supported by this architecture. */
2831                 if (!x86_pmu.bts_active)
2832                         return -EOPNOTSUPP;
2833
2834                 /* BTS is currently only allowed for user-mode. */
2835                 if (!attr->exclude_kernel)
2836                         return -EOPNOTSUPP;
2837
2838                 /* disallow bts if conflicting events are present */
2839                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2840                         return -EBUSY;
2841
2842                 event->destroy = hw_perf_lbr_event_destroy;
2843         }
2844
2845         return 0;
2846 }
2847
2848 static int core_pmu_hw_config(struct perf_event *event)
2849 {
2850         int ret = x86_pmu_hw_config(event);
2851
2852         if (ret)
2853                 return ret;
2854
2855         return intel_pmu_bts_config(event);
2856 }
2857
2858 static int intel_pmu_hw_config(struct perf_event *event)
2859 {
2860         int ret = x86_pmu_hw_config(event);
2861
2862         if (ret)
2863                 return ret;
2864
2865         ret = intel_pmu_bts_config(event);
2866         if (ret)
2867                 return ret;
2868
2869         if (event->attr.precise_ip) {
2870                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
2871                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2872                         if (!(event->attr.sample_type &
2873                               ~intel_pmu_free_running_flags(event)))
2874                                 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2875                 }
2876                 if (x86_pmu.pebs_aliases)
2877                         x86_pmu.pebs_aliases(event);
2878         }
2879
2880         if (needs_branch_stack(event)) {
2881                 ret = intel_pmu_setup_lbr_filter(event);
2882                 if (ret)
2883                         return ret;
2884
2885                 /*
2886                  * BTS is set up earlier in this path, so don't account twice
2887                  */
2888                 if (!unlikely(intel_pmu_has_bts(event))) {
2889                         /* disallow lbr if conflicting events are present */
2890                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2891                                 return -EBUSY;
2892
2893                         event->destroy = hw_perf_lbr_event_destroy;
2894                 }
2895         }
2896
2897         if (event->attr.type != PERF_TYPE_RAW)
2898                 return 0;
2899
2900         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2901                 return 0;
2902
2903         if (x86_pmu.version < 3)
2904                 return -EINVAL;
2905
2906         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2907                 return -EACCES;
2908
2909         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2910
2911         return 0;
2912 }
2913
2914 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2915 {
2916         if (x86_pmu.guest_get_msrs)
2917                 return x86_pmu.guest_get_msrs(nr);
2918         *nr = 0;
2919         return NULL;
2920 }
2921 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2922
2923 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2924 {
2925         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2926         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2927
2928         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2929         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2930         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2931         /*
2932          * If PMU counter has PEBS enabled it is not enough to disable counter
2933          * on a guest entry since PEBS memory write can overshoot guest entry
2934          * and corrupt guest memory. Disabling PEBS solves the problem.
2935          */
2936         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2937         arr[1].host = cpuc->pebs_enabled;
2938         arr[1].guest = 0;
2939
2940         *nr = 2;
2941         return arr;
2942 }
2943
2944 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2945 {
2946         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2947         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2948         int idx;
2949
2950         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2951                 struct perf_event *event = cpuc->events[idx];
2952
2953                 arr[idx].msr = x86_pmu_config_addr(idx);
2954                 arr[idx].host = arr[idx].guest = 0;
2955
2956                 if (!test_bit(idx, cpuc->active_mask))
2957                         continue;
2958
2959                 arr[idx].host = arr[idx].guest =
2960                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2961
2962                 if (event->attr.exclude_host)
2963                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2964                 else if (event->attr.exclude_guest)
2965                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2966         }
2967
2968         *nr = x86_pmu.num_counters;
2969         return arr;
2970 }
2971
2972 static void core_pmu_enable_event(struct perf_event *event)
2973 {
2974         if (!event->attr.exclude_host)
2975                 x86_pmu_enable_event(event);
2976 }
2977
2978 static void core_pmu_enable_all(int added)
2979 {
2980         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2981         int idx;
2982
2983         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2984                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2985
2986                 if (!test_bit(idx, cpuc->active_mask) ||
2987                                 cpuc->events[idx]->attr.exclude_host)
2988                         continue;
2989
2990                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2991         }
2992 }
2993
2994 static int hsw_hw_config(struct perf_event *event)
2995 {
2996         int ret = intel_pmu_hw_config(event);
2997
2998         if (ret)
2999                 return ret;
3000         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3001                 return 0;
3002         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3003
3004         /*
3005          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3006          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3007          * this combination.
3008          */
3009         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3010              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3011               event->attr.precise_ip > 0))
3012                 return -EOPNOTSUPP;
3013
3014         if (event_is_checkpointed(event)) {
3015                 /*
3016                  * Sampling of checkpointed events can cause situations where
3017                  * the CPU constantly aborts because of a overflow, which is
3018                  * then checkpointed back and ignored. Forbid checkpointing
3019                  * for sampling.
3020                  *
3021                  * But still allow a long sampling period, so that perf stat
3022                  * from KVM works.
3023                  */
3024                 if (event->attr.sample_period > 0 &&
3025                     event->attr.sample_period < 0x7fffffff)
3026                         return -EOPNOTSUPP;
3027         }
3028         return 0;
3029 }
3030
3031 static struct event_constraint counter2_constraint =
3032                         EVENT_CONSTRAINT(0, 0x4, 0);
3033
3034 static struct event_constraint *
3035 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3036                           struct perf_event *event)
3037 {
3038         struct event_constraint *c;
3039
3040         c = intel_get_event_constraints(cpuc, idx, event);
3041
3042         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3043         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3044                 if (c->idxmsk64 & (1U << 2))
3045                         return &counter2_constraint;
3046                 return &emptyconstraint;
3047         }
3048
3049         return c;
3050 }
3051
3052 /*
3053  * Broadwell:
3054  *
3055  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3056  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3057  * the two to enforce a minimum period of 128 (the smallest value that has bits
3058  * 0-5 cleared and >= 100).
3059  *
3060  * Because of how the code in x86_perf_event_set_period() works, the truncation
3061  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3062  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3063  *
3064  * Therefore the effective (average) period matches the requested period,
3065  * despite coarser hardware granularity.
3066  */
3067 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3068 {
3069         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3070                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3071                 if (left < 128)
3072                         left = 128;
3073                 left &= ~0x3fULL;
3074         }
3075         return left;
3076 }
3077
3078 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3079 {
3080         return max(left, 32ULL);
3081 }
3082
3083 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3084 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3085 PMU_FORMAT_ATTR(edge,   "config:18"     );
3086 PMU_FORMAT_ATTR(pc,     "config:19"     );
3087 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3088 PMU_FORMAT_ATTR(inv,    "config:23"     );
3089 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3090 PMU_FORMAT_ATTR(in_tx,  "config:32");
3091 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3092
3093 static struct attribute *intel_arch_formats_attr[] = {
3094         &format_attr_event.attr,
3095         &format_attr_umask.attr,
3096         &format_attr_edge.attr,
3097         &format_attr_pc.attr,
3098         &format_attr_inv.attr,
3099         &format_attr_cmask.attr,
3100         NULL,
3101 };
3102
3103 ssize_t intel_event_sysfs_show(char *page, u64 config)
3104 {
3105         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3106
3107         return x86_event_sysfs_show(page, config, event);
3108 }
3109
3110 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3111 {
3112         struct intel_shared_regs *regs;
3113         int i;
3114
3115         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3116                             GFP_KERNEL, cpu_to_node(cpu));
3117         if (regs) {
3118                 /*
3119                  * initialize the locks to keep lockdep happy
3120                  */
3121                 for (i = 0; i < EXTRA_REG_MAX; i++)
3122                         raw_spin_lock_init(&regs->regs[i].lock);
3123
3124                 regs->core_id = -1;
3125         }
3126         return regs;
3127 }
3128
3129 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3130 {
3131         struct intel_excl_cntrs *c;
3132
3133         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3134                          GFP_KERNEL, cpu_to_node(cpu));
3135         if (c) {
3136                 raw_spin_lock_init(&c->lock);
3137                 c->core_id = -1;
3138         }
3139         return c;
3140 }
3141
3142
3143 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3144 {
3145         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3146                 cpuc->shared_regs = allocate_shared_regs(cpu);
3147                 if (!cpuc->shared_regs)
3148                         goto err;
3149         }
3150
3151         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3152                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3153
3154                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3155                 if (!cpuc->constraint_list)
3156                         goto err_shared_regs;
3157
3158                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3159                 if (!cpuc->excl_cntrs)
3160                         goto err_constraint_list;
3161
3162                 cpuc->excl_thread_id = 0;
3163         }
3164
3165         return 0;
3166
3167 err_constraint_list:
3168         kfree(cpuc->constraint_list);
3169         cpuc->constraint_list = NULL;
3170
3171 err_shared_regs:
3172         kfree(cpuc->shared_regs);
3173         cpuc->shared_regs = NULL;
3174
3175 err:
3176         return -ENOMEM;
3177 }
3178
3179 static int intel_pmu_cpu_prepare(int cpu)
3180 {
3181         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3182 }
3183
3184 static void intel_pmu_cpu_starting(int cpu)
3185 {
3186         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3187         int core_id = topology_core_id(cpu);
3188         int i;
3189
3190         init_debug_store_on_cpu(cpu);
3191         /*
3192          * Deal with CPUs that don't clear their LBRs on power-up.
3193          */
3194         intel_pmu_lbr_reset();
3195
3196         cpuc->lbr_sel = NULL;
3197
3198         if (!cpuc->shared_regs)
3199                 return;
3200
3201         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3202                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3203                         struct intel_shared_regs *pc;
3204
3205                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3206                         if (pc && pc->core_id == core_id) {
3207                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3208                                 cpuc->shared_regs = pc;
3209                                 break;
3210                         }
3211                 }
3212                 cpuc->shared_regs->core_id = core_id;
3213                 cpuc->shared_regs->refcnt++;
3214         }
3215
3216         if (x86_pmu.lbr_sel_map)
3217                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3218
3219         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3220                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3221                         struct cpu_hw_events *sibling;
3222                         struct intel_excl_cntrs *c;
3223
3224                         sibling = &per_cpu(cpu_hw_events, i);
3225                         c = sibling->excl_cntrs;
3226                         if (c && c->core_id == core_id) {
3227                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3228                                 cpuc->excl_cntrs = c;
3229                                 if (!sibling->excl_thread_id)
3230                                         cpuc->excl_thread_id = 1;
3231                                 break;
3232                         }
3233                 }
3234                 cpuc->excl_cntrs->core_id = core_id;
3235                 cpuc->excl_cntrs->refcnt++;
3236         }
3237 }
3238
3239 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3240 {
3241         struct intel_excl_cntrs *c;
3242
3243         c = cpuc->excl_cntrs;
3244         if (c) {
3245                 if (c->core_id == -1 || --c->refcnt == 0)
3246                         kfree(c);
3247                 cpuc->excl_cntrs = NULL;
3248                 kfree(cpuc->constraint_list);
3249                 cpuc->constraint_list = NULL;
3250         }
3251 }
3252
3253 static void intel_pmu_cpu_dying(int cpu)
3254 {
3255         fini_debug_store_on_cpu(cpu);
3256 }
3257
3258 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3259 {
3260         struct intel_shared_regs *pc;
3261
3262         pc = cpuc->shared_regs;
3263         if (pc) {
3264                 if (pc->core_id == -1 || --pc->refcnt == 0)
3265                         kfree(pc);
3266                 cpuc->shared_regs = NULL;
3267         }
3268
3269         free_excl_cntrs(cpuc);
3270 }
3271
3272 static void intel_pmu_cpu_dead(int cpu)
3273 {
3274         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3275 }
3276
3277 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3278                                  bool sched_in)
3279 {
3280         if (x86_pmu.pebs_active)
3281                 intel_pmu_pebs_sched_task(ctx, sched_in);
3282         if (x86_pmu.lbr_nr)
3283                 intel_pmu_lbr_sched_task(ctx, sched_in);
3284 }
3285
3286 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3287 {
3288         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3289 }
3290
3291 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3292
3293 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3294
3295 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3296
3297 static struct attribute *intel_arch3_formats_attr[] = {
3298         &format_attr_event.attr,
3299         &format_attr_umask.attr,
3300         &format_attr_edge.attr,
3301         &format_attr_pc.attr,
3302         &format_attr_any.attr,
3303         &format_attr_inv.attr,
3304         &format_attr_cmask.attr,
3305         &format_attr_in_tx.attr,
3306         &format_attr_in_tx_cp.attr,
3307
3308         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3309         &format_attr_ldlat.attr, /* PEBS load latency */
3310         NULL,
3311 };
3312
3313 static struct attribute *skl_format_attr[] = {
3314         &format_attr_frontend.attr,
3315         NULL,
3316 };
3317
3318 static __initconst const struct x86_pmu core_pmu = {
3319         .name                   = "core",
3320         .handle_irq             = x86_pmu_handle_irq,
3321         .disable_all            = x86_pmu_disable_all,
3322         .enable_all             = core_pmu_enable_all,
3323         .enable                 = core_pmu_enable_event,
3324         .disable                = x86_pmu_disable_event,
3325         .hw_config              = core_pmu_hw_config,
3326         .schedule_events        = x86_schedule_events,
3327         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3328         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3329         .event_map              = intel_pmu_event_map,
3330         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3331         .apic                   = 1,
3332         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3333
3334         /*
3335          * Intel PMCs cannot be accessed sanely above 32-bit width,
3336          * so we install an artificial 1<<31 period regardless of
3337          * the generic event period:
3338          */
3339         .max_period             = (1ULL<<31) - 1,
3340         .get_event_constraints  = intel_get_event_constraints,
3341         .put_event_constraints  = intel_put_event_constraints,
3342         .event_constraints      = intel_core_event_constraints,
3343         .guest_get_msrs         = core_guest_get_msrs,
3344         .format_attrs           = intel_arch_formats_attr,
3345         .events_sysfs_show      = intel_event_sysfs_show,
3346
3347         /*
3348          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3349          * together with PMU version 1 and thus be using core_pmu with
3350          * shared_regs. We need following callbacks here to allocate
3351          * it properly.
3352          */
3353         .cpu_prepare            = intel_pmu_cpu_prepare,
3354         .cpu_starting           = intel_pmu_cpu_starting,
3355         .cpu_dying              = intel_pmu_cpu_dying,
3356         .cpu_dead               = intel_pmu_cpu_dead,
3357
3358         .check_period           = intel_pmu_check_period,
3359 };
3360
3361 static __initconst const struct x86_pmu intel_pmu = {
3362         .name                   = "Intel",
3363         .handle_irq             = intel_pmu_handle_irq,
3364         .disable_all            = intel_pmu_disable_all,
3365         .enable_all             = intel_pmu_enable_all,
3366         .enable                 = intel_pmu_enable_event,
3367         .disable                = intel_pmu_disable_event,
3368         .add                    = intel_pmu_add_event,
3369         .del                    = intel_pmu_del_event,
3370         .hw_config              = intel_pmu_hw_config,
3371         .schedule_events        = x86_schedule_events,
3372         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3373         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3374         .event_map              = intel_pmu_event_map,
3375         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3376         .apic                   = 1,
3377         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3378         /*
3379          * Intel PMCs cannot be accessed sanely above 32 bit width,
3380          * so we install an artificial 1<<31 period regardless of
3381          * the generic event period:
3382          */
3383         .max_period             = (1ULL << 31) - 1,
3384         .get_event_constraints  = intel_get_event_constraints,
3385         .put_event_constraints  = intel_put_event_constraints,
3386         .pebs_aliases           = intel_pebs_aliases_core2,
3387
3388         .format_attrs           = intel_arch3_formats_attr,
3389         .events_sysfs_show      = intel_event_sysfs_show,
3390
3391         .cpu_prepare            = intel_pmu_cpu_prepare,
3392         .cpu_starting           = intel_pmu_cpu_starting,
3393         .cpu_dying              = intel_pmu_cpu_dying,
3394         .cpu_dead               = intel_pmu_cpu_dead,
3395
3396         .guest_get_msrs         = intel_guest_get_msrs,
3397         .sched_task             = intel_pmu_sched_task,
3398
3399         .check_period           = intel_pmu_check_period,
3400 };
3401
3402 static __init void intel_clovertown_quirk(void)
3403 {
3404         /*
3405          * PEBS is unreliable due to:
3406          *
3407          *   AJ67  - PEBS may experience CPL leaks
3408          *   AJ68  - PEBS PMI may be delayed by one event
3409          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3410          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3411          *
3412          * AJ67 could be worked around by restricting the OS/USR flags.
3413          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3414          *
3415          * AJ106 could possibly be worked around by not allowing LBR
3416          *       usage from PEBS, including the fixup.
3417          * AJ68  could possibly be worked around by always programming
3418          *       a pebs_event_reset[0] value and coping with the lost events.
3419          *
3420          * But taken together it might just make sense to not enable PEBS on
3421          * these chips.
3422          */
3423         pr_warn("PEBS disabled due to CPU errata\n");
3424         x86_pmu.pebs = 0;
3425         x86_pmu.pebs_constraints = NULL;
3426 }
3427
3428 static int intel_snb_pebs_broken(int cpu)
3429 {
3430         u32 rev = UINT_MAX; /* default to broken for unknown models */
3431
3432         switch (cpu_data(cpu).x86_model) {
3433         case INTEL_FAM6_SANDYBRIDGE:
3434                 rev = 0x28;
3435                 break;
3436
3437         case INTEL_FAM6_SANDYBRIDGE_X:
3438                 switch (cpu_data(cpu).x86_stepping) {
3439                 case 6: rev = 0x618; break;
3440                 case 7: rev = 0x70c; break;
3441                 }
3442         }
3443
3444         return (cpu_data(cpu).microcode < rev);
3445 }
3446
3447 static void intel_snb_check_microcode(void)
3448 {
3449         int pebs_broken = 0;
3450         int cpu;
3451
3452         get_online_cpus();
3453         for_each_online_cpu(cpu) {
3454                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3455                         break;
3456         }
3457         put_online_cpus();
3458
3459         if (pebs_broken == x86_pmu.pebs_broken)
3460                 return;
3461
3462         /*
3463          * Serialized by the microcode lock..
3464          */
3465         if (x86_pmu.pebs_broken) {
3466                 pr_info("PEBS enabled due to microcode update\n");
3467                 x86_pmu.pebs_broken = 0;
3468         } else {
3469                 pr_info("PEBS disabled due to CPU errata/*(DEBLOBBED)*/\n");
3470                 x86_pmu.pebs_broken = 1;
3471         }
3472 }
3473
3474 static bool is_lbr_from(unsigned long msr)
3475 {
3476         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3477
3478         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3479 }
3480
3481 /*
3482  * Under certain circumstances, access certain MSR may cause #GP.
3483  * The function tests if the input MSR can be safely accessed.
3484  */
3485 static bool check_msr(unsigned long msr, u64 mask)
3486 {
3487         u64 val_old, val_new, val_tmp;
3488
3489         /*
3490          * Read the current value, change it and read it back to see if it
3491          * matches, this is needed to detect certain hardware emulators
3492          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3493          */
3494         if (rdmsrl_safe(msr, &val_old))
3495                 return false;
3496
3497         /*
3498          * Only change the bits which can be updated by wrmsrl.
3499          */
3500         val_tmp = val_old ^ mask;
3501
3502         if (is_lbr_from(msr))
3503                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3504
3505         if (wrmsrl_safe(msr, val_tmp) ||
3506             rdmsrl_safe(msr, &val_new))
3507                 return false;
3508
3509         /*
3510          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3511          * should equal rdmsrl()'s even with the quirk.
3512          */
3513         if (val_new != val_tmp)
3514                 return false;
3515
3516         if (is_lbr_from(msr))
3517                 val_old = lbr_from_signext_quirk_wr(val_old);
3518
3519         /* Here it's sure that the MSR can be safely accessed.
3520          * Restore the old value and return.
3521          */
3522         wrmsrl(msr, val_old);
3523
3524         return true;
3525 }
3526
3527 static __init void intel_sandybridge_quirk(void)
3528 {
3529         x86_pmu.check_microcode = intel_snb_check_microcode;
3530         intel_snb_check_microcode();
3531 }
3532
3533 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3534         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3535         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3536         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3537         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3538         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3539         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3540         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3541 };
3542
3543 static __init void intel_arch_events_quirk(void)
3544 {
3545         int bit;
3546
3547         /* disable event that reported as not presend by cpuid */
3548         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3549                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3550                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3551                         intel_arch_events_map[bit].name);
3552         }
3553 }
3554
3555 static __init void intel_nehalem_quirk(void)
3556 {
3557         union cpuid10_ebx ebx;
3558
3559         ebx.full = x86_pmu.events_maskl;
3560         if (ebx.split.no_branch_misses_retired) {
3561                 /*
3562                  * Erratum AAJ80 detected, we work it around by using
3563                  * the BR_MISP_EXEC.ANY event. This will over-count
3564                  * branch-misses, but it's still much better than the
3565                  * architectural event which is often completely bogus:
3566                  */
3567                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3568                 ebx.split.no_branch_misses_retired = 0;
3569                 x86_pmu.events_maskl = ebx.full;
3570                 pr_info("CPU erratum AAJ80 worked around\n");
3571         }
3572 }
3573
3574 /*
3575  * enable software workaround for errata:
3576  * SNB: BJ122
3577  * IVB: BV98
3578  * HSW: HSD29
3579  *
3580  * Only needed when HT is enabled. However detecting
3581  * if HT is enabled is difficult (model specific). So instead,
3582  * we enable the workaround in the early boot, and verify if
3583  * it is needed in a later initcall phase once we have valid
3584  * topology information to check if HT is actually enabled
3585  */
3586 static __init void intel_ht_bug(void)
3587 {
3588         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3589
3590         x86_pmu.start_scheduling = intel_start_scheduling;
3591         x86_pmu.commit_scheduling = intel_commit_scheduling;
3592         x86_pmu.stop_scheduling = intel_stop_scheduling;
3593 }
3594
3595 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3596 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3597
3598 /* Haswell special events */
3599 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3600 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3601 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3602 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3603 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3604 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3605 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3606 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3607 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3608 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3609 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3610 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3611
3612 static struct attribute *hsw_events_attrs[] = {
3613         EVENT_PTR(tx_start),
3614         EVENT_PTR(tx_commit),
3615         EVENT_PTR(tx_abort),
3616         EVENT_PTR(tx_capacity),
3617         EVENT_PTR(tx_conflict),
3618         EVENT_PTR(el_start),
3619         EVENT_PTR(el_commit),
3620         EVENT_PTR(el_abort),
3621         EVENT_PTR(el_capacity),
3622         EVENT_PTR(el_conflict),
3623         EVENT_PTR(cycles_t),
3624         EVENT_PTR(cycles_ct),
3625         EVENT_PTR(mem_ld_hsw),
3626         EVENT_PTR(mem_st_hsw),
3627         EVENT_PTR(td_slots_issued),
3628         EVENT_PTR(td_slots_retired),
3629         EVENT_PTR(td_fetch_bubbles),
3630         EVENT_PTR(td_total_slots),
3631         EVENT_PTR(td_total_slots_scale),
3632         EVENT_PTR(td_recovery_bubbles),
3633         EVENT_PTR(td_recovery_bubbles_scale),
3634         NULL
3635 };
3636
3637 __init int intel_pmu_init(void)
3638 {
3639         union cpuid10_edx edx;
3640         union cpuid10_eax eax;
3641         union cpuid10_ebx ebx;
3642         struct event_constraint *c;
3643         unsigned int unused;
3644         struct extra_reg *er;
3645         int version, i;
3646
3647         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3648                 switch (boot_cpu_data.x86) {
3649                 case 0x6:
3650                         return p6_pmu_init();
3651                 case 0xb:
3652                         return knc_pmu_init();
3653                 case 0xf:
3654                         return p4_pmu_init();
3655                 }
3656                 return -ENODEV;
3657         }
3658
3659         /*
3660          * Check whether the Architectural PerfMon supports
3661          * Branch Misses Retired hw_event or not.
3662          */
3663         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3664         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3665                 return -ENODEV;
3666
3667         version = eax.split.version_id;
3668         if (version < 2)
3669                 x86_pmu = core_pmu;
3670         else
3671                 x86_pmu = intel_pmu;
3672
3673         x86_pmu.version                 = version;
3674         x86_pmu.num_counters            = eax.split.num_counters;
3675         x86_pmu.cntval_bits             = eax.split.bit_width;
3676         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3677
3678         x86_pmu.events_maskl            = ebx.full;
3679         x86_pmu.events_mask_len         = eax.split.mask_length;
3680
3681         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3682
3683         /*
3684          * Quirk: v2 perfmon does not report fixed-purpose events, so
3685          * assume at least 3 events, when not running in a hypervisor:
3686          */
3687         if (version > 1) {
3688                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3689
3690                 x86_pmu.num_counters_fixed =
3691                         max((int)edx.split.num_counters_fixed, assume);
3692         }
3693
3694         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3695                 u64 capabilities;
3696
3697                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3698                 x86_pmu.intel_cap.capabilities = capabilities;
3699         }
3700
3701         intel_ds_init();
3702
3703         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3704
3705         /*
3706          * Install the hw-cache-events table:
3707          */
3708         switch (boot_cpu_data.x86_model) {
3709         case INTEL_FAM6_CORE_YONAH:
3710                 pr_cont("Core events, ");
3711                 break;
3712
3713         case INTEL_FAM6_CORE2_MEROM:
3714                 x86_add_quirk(intel_clovertown_quirk);
3715         case INTEL_FAM6_CORE2_MEROM_L:
3716         case INTEL_FAM6_CORE2_PENRYN:
3717         case INTEL_FAM6_CORE2_DUNNINGTON:
3718                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3719                        sizeof(hw_cache_event_ids));
3720
3721                 intel_pmu_lbr_init_core();
3722
3723                 x86_pmu.event_constraints = intel_core2_event_constraints;
3724                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3725                 pr_cont("Core2 events, ");
3726                 break;
3727
3728         case INTEL_FAM6_NEHALEM:
3729         case INTEL_FAM6_NEHALEM_EP:
3730         case INTEL_FAM6_NEHALEM_EX:
3731                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3732                        sizeof(hw_cache_event_ids));
3733                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3734                        sizeof(hw_cache_extra_regs));
3735
3736                 intel_pmu_lbr_init_nhm();
3737
3738                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3739                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3740                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3741                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3742                 x86_pmu.limit_period = nhm_limit_period;
3743
3744                 x86_pmu.cpu_events = nhm_events_attrs;
3745
3746                 /* UOPS_ISSUED.STALLED_CYCLES */
3747                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3748                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3749                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3750                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3751                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3752
3753                 intel_pmu_pebs_data_source_nhm();
3754                 x86_add_quirk(intel_nehalem_quirk);
3755
3756                 pr_cont("Nehalem events, ");
3757                 break;
3758
3759         case INTEL_FAM6_ATOM_BONNELL:
3760         case INTEL_FAM6_ATOM_BONNELL_MID:
3761         case INTEL_FAM6_ATOM_SALTWELL:
3762         case INTEL_FAM6_ATOM_SALTWELL_MID:
3763         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
3764                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3765                        sizeof(hw_cache_event_ids));
3766
3767                 intel_pmu_lbr_init_atom();
3768
3769                 x86_pmu.event_constraints = intel_gen_event_constraints;
3770                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3771                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3772                 pr_cont("Atom events, ");
3773                 break;
3774
3775         case INTEL_FAM6_ATOM_SILVERMONT:
3776         case INTEL_FAM6_ATOM_SILVERMONT_X:
3777         case INTEL_FAM6_ATOM_SILVERMONT_MID:
3778         case INTEL_FAM6_ATOM_AIRMONT:
3779         case INTEL_FAM6_ATOM_AIRMONT_MID:
3780                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3781                         sizeof(hw_cache_event_ids));
3782                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3783                        sizeof(hw_cache_extra_regs));
3784
3785                 intel_pmu_lbr_init_slm();
3786
3787                 x86_pmu.event_constraints = intel_slm_event_constraints;
3788                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3789                 x86_pmu.extra_regs = intel_slm_extra_regs;
3790                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3791                 x86_pmu.cpu_events = slm_events_attrs;
3792                 pr_cont("Silvermont events, ");
3793                 break;
3794
3795         case INTEL_FAM6_ATOM_GOLDMONT:
3796         case INTEL_FAM6_ATOM_GOLDMONT_X:
3797                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3798                        sizeof(hw_cache_event_ids));
3799                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3800                        sizeof(hw_cache_extra_regs));
3801
3802                 intel_pmu_lbr_init_skl();
3803
3804                 x86_pmu.event_constraints = intel_slm_event_constraints;
3805                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3806                 x86_pmu.extra_regs = intel_glm_extra_regs;
3807                 /*
3808                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3809                  * for precise cycles.
3810                  * :pp is identical to :ppp
3811                  */
3812                 x86_pmu.pebs_aliases = NULL;
3813                 x86_pmu.pebs_prec_dist = true;
3814                 x86_pmu.lbr_pt_coexist = true;
3815                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3816                 pr_cont("Goldmont events, ");
3817                 break;
3818
3819         case INTEL_FAM6_WESTMERE:
3820         case INTEL_FAM6_WESTMERE_EP:
3821         case INTEL_FAM6_WESTMERE_EX:
3822                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3823                        sizeof(hw_cache_event_ids));
3824                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3825                        sizeof(hw_cache_extra_regs));
3826
3827                 intel_pmu_lbr_init_nhm();
3828
3829                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3830                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3831                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3832                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3833                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3834
3835                 x86_pmu.cpu_events = nhm_events_attrs;
3836
3837                 /* UOPS_ISSUED.STALLED_CYCLES */
3838                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3839                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3840                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3841                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3842                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3843
3844                 intel_pmu_pebs_data_source_nhm();
3845                 pr_cont("Westmere events, ");
3846                 break;
3847
3848         case INTEL_FAM6_SANDYBRIDGE:
3849         case INTEL_FAM6_SANDYBRIDGE_X:
3850                 x86_add_quirk(intel_sandybridge_quirk);
3851                 x86_add_quirk(intel_ht_bug);
3852                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3853                        sizeof(hw_cache_event_ids));
3854                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3855                        sizeof(hw_cache_extra_regs));
3856
3857                 intel_pmu_lbr_init_snb();
3858
3859                 x86_pmu.event_constraints = intel_snb_event_constraints;
3860                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3861                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3862                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3863                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3864                 else
3865                         x86_pmu.extra_regs = intel_snb_extra_regs;
3866
3867
3868                 /* all extra regs are per-cpu when HT is on */
3869                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3870                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3871
3872                 x86_pmu.cpu_events = snb_events_attrs;
3873
3874                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3875                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3876                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3877                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3878                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3879                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3880
3881                 pr_cont("SandyBridge events, ");
3882                 break;
3883
3884         case INTEL_FAM6_IVYBRIDGE:
3885         case INTEL_FAM6_IVYBRIDGE_X:
3886                 x86_add_quirk(intel_ht_bug);
3887                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3888                        sizeof(hw_cache_event_ids));
3889                 /* dTLB-load-misses on IVB is different than SNB */
3890                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3891
3892                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3893                        sizeof(hw_cache_extra_regs));
3894
3895                 intel_pmu_lbr_init_snb();
3896
3897                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3898                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3899                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3900                 x86_pmu.pebs_prec_dist = true;
3901                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3902                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3903                 else
3904                         x86_pmu.extra_regs = intel_snb_extra_regs;
3905                 /* all extra regs are per-cpu when HT is on */
3906                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3907                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3908
3909                 x86_pmu.cpu_events = snb_events_attrs;
3910
3911                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3912                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3913                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3914
3915                 pr_cont("IvyBridge events, ");
3916                 break;
3917
3918
3919         case INTEL_FAM6_HASWELL_CORE:
3920         case INTEL_FAM6_HASWELL_X:
3921         case INTEL_FAM6_HASWELL_ULT:
3922         case INTEL_FAM6_HASWELL_GT3E:
3923                 x86_add_quirk(intel_ht_bug);
3924                 x86_pmu.late_ack = true;
3925                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3926                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3927
3928                 intel_pmu_lbr_init_hsw();
3929
3930                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3931                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3932                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3933                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3934                 x86_pmu.pebs_prec_dist = true;
3935                 /* all extra regs are per-cpu when HT is on */
3936                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3937                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3938
3939                 x86_pmu.hw_config = hsw_hw_config;
3940                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3941                 x86_pmu.cpu_events = hsw_events_attrs;
3942                 x86_pmu.lbr_double_abort = true;
3943                 pr_cont("Haswell events, ");
3944                 break;
3945
3946         case INTEL_FAM6_BROADWELL_CORE:
3947         case INTEL_FAM6_BROADWELL_XEON_D:
3948         case INTEL_FAM6_BROADWELL_GT3E:
3949         case INTEL_FAM6_BROADWELL_X:
3950                 x86_pmu.late_ack = true;
3951                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3952                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3953
3954                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3955                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3956                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3957                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3958                                                                           HSW_SNOOP_DRAM;
3959                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3960                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3961                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3962                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3963
3964                 intel_pmu_lbr_init_hsw();
3965
3966                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3967                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3968                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3969                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3970                 x86_pmu.pebs_prec_dist = true;
3971                 /* all extra regs are per-cpu when HT is on */
3972                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3973                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3974
3975                 x86_pmu.hw_config = hsw_hw_config;
3976                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3977                 x86_pmu.cpu_events = hsw_events_attrs;
3978                 x86_pmu.limit_period = bdw_limit_period;
3979                 pr_cont("Broadwell events, ");
3980                 break;
3981
3982         case INTEL_FAM6_XEON_PHI_KNL:
3983         case INTEL_FAM6_XEON_PHI_KNM:
3984                 memcpy(hw_cache_event_ids,
3985                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3986                 memcpy(hw_cache_extra_regs,
3987                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3988                 intel_pmu_lbr_init_knl();
3989
3990                 x86_pmu.event_constraints = intel_slm_event_constraints;
3991                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3992                 x86_pmu.extra_regs = intel_knl_extra_regs;
3993
3994                 /* all extra regs are per-cpu when HT is on */
3995                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3996                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3997
3998                 pr_cont("Knights Landing/Mill events, ");
3999                 break;
4000
4001         case INTEL_FAM6_SKYLAKE_MOBILE:
4002         case INTEL_FAM6_SKYLAKE_DESKTOP:
4003         case INTEL_FAM6_SKYLAKE_X:
4004         case INTEL_FAM6_KABYLAKE_MOBILE:
4005         case INTEL_FAM6_KABYLAKE_DESKTOP:
4006                 x86_pmu.late_ack = true;
4007                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4008                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4009                 intel_pmu_lbr_init_skl();
4010
4011                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4012                 event_attr_td_recovery_bubbles.event_str_noht =
4013                         "event=0xd,umask=0x1,cmask=1";
4014                 event_attr_td_recovery_bubbles.event_str_ht =
4015                         "event=0xd,umask=0x1,cmask=1,any=1";
4016
4017                 x86_pmu.event_constraints = intel_skl_event_constraints;
4018                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4019                 x86_pmu.extra_regs = intel_skl_extra_regs;
4020                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4021                 x86_pmu.pebs_prec_dist = true;
4022                 /* all extra regs are per-cpu when HT is on */
4023                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4024                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4025
4026                 x86_pmu.hw_config = hsw_hw_config;
4027                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4028                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4029                                                   skl_format_attr);
4030                 WARN_ON(!x86_pmu.format_attrs);
4031                 x86_pmu.cpu_events = hsw_events_attrs;
4032                 pr_cont("Skylake events, ");
4033                 break;
4034
4035         default:
4036                 switch (x86_pmu.version) {
4037                 case 1:
4038                         x86_pmu.event_constraints = intel_v1_event_constraints;
4039                         pr_cont("generic architected perfmon v1, ");
4040                         break;
4041                 default:
4042                         /*
4043                          * default constraints for v2 and up
4044                          */
4045                         x86_pmu.event_constraints = intel_gen_event_constraints;
4046                         pr_cont("generic architected perfmon, ");
4047                         break;
4048                 }
4049         }
4050
4051         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4052                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4053                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4054                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4055         }
4056         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4057
4058         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4059                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4060                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4061                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4062         }
4063
4064         x86_pmu.intel_ctrl |=
4065                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4066
4067         if (x86_pmu.event_constraints) {
4068                 /*
4069                  * event on fixed counter2 (REF_CYCLES) only works on this
4070                  * counter, so do not extend mask to generic counters
4071                  */
4072                 for_each_event_constraint(c, x86_pmu.event_constraints) {
4073                         if (c->cmask == FIXED_EVENT_FLAGS
4074                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4075                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4076                         }
4077                         c->idxmsk64 &=
4078                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4079                         c->weight = hweight64(c->idxmsk64);
4080                 }
4081         }
4082
4083         /*
4084          * Access LBR MSR may cause #GP under certain circumstances.
4085          * E.g. KVM doesn't support LBR MSR
4086          * Check all LBT MSR here.
4087          * Disable LBR access if any LBR MSRs can not be accessed.
4088          */
4089         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4090                 x86_pmu.lbr_nr = 0;
4091         for (i = 0; i < x86_pmu.lbr_nr; i++) {
4092                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4093                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4094                         x86_pmu.lbr_nr = 0;
4095         }
4096
4097         if (x86_pmu.lbr_nr)
4098                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4099         /*
4100          * Access extra MSR may cause #GP under certain circumstances.
4101          * E.g. KVM doesn't support offcore event
4102          * Check all extra_regs here.
4103          */
4104         if (x86_pmu.extra_regs) {
4105                 for (er = x86_pmu.extra_regs; er->msr; er++) {
4106                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
4107                         /* Disable LBR select mapping */
4108                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4109                                 x86_pmu.lbr_sel_map = NULL;
4110                 }
4111         }
4112
4113         /* Support full width counters using alternative MSR range */
4114         if (x86_pmu.intel_cap.full_width_write) {
4115                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4116                 x86_pmu.perfctr = MSR_IA32_PMC0;
4117                 pr_cont("full-width counters, ");
4118         }
4119
4120         return 0;
4121 }
4122
4123 /*
4124  * HT bug: phase 2 init
4125  * Called once we have valid topology information to check
4126  * whether or not HT is enabled
4127  * If HT is off, then we disable the workaround
4128  */
4129 static __init int fixup_ht_bug(void)
4130 {
4131         int c;
4132         /*
4133          * problem not present on this CPU model, nothing to do
4134          */
4135         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4136                 return 0;
4137
4138         if (topology_max_smt_threads() > 1) {
4139                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4140                 return 0;
4141         }
4142
4143         if (lockup_detector_suspend() != 0) {
4144                 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4145                 return 0;
4146         }
4147
4148         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4149
4150         x86_pmu.start_scheduling = NULL;
4151         x86_pmu.commit_scheduling = NULL;
4152         x86_pmu.stop_scheduling = NULL;
4153
4154         lockup_detector_resume();
4155
4156         get_online_cpus();
4157
4158         for_each_online_cpu(c) {
4159                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
4160         }
4161
4162         put_online_cpus();
4163         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4164         return 0;
4165 }
4166 subsys_initcall(fixup_ht_bug)