GNU Linux-libre 4.14.303-gnu1
[releases.git] / arch / x86 / events / intel / bts.c
1 /*
2  * BTS PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #undef DEBUG
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/bitops.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/debugfs.h>
23 #include <linux/device.h>
24 #include <linux/coredump.h>
25
26 #include <asm-generic/sizes.h>
27 #include <asm/perf_event.h>
28
29 #include "../perf_event.h"
30
31 struct bts_ctx {
32         struct perf_output_handle       handle;
33         struct debug_store              ds_back;
34         int                             state;
35 };
36
37 /* BTS context states: */
38 enum {
39         /* no ongoing AUX transactions */
40         BTS_STATE_STOPPED = 0,
41         /* AUX transaction is on, BTS tracing is disabled */
42         BTS_STATE_INACTIVE,
43         /* AUX transaction is on, BTS tracing is running */
44         BTS_STATE_ACTIVE,
45 };
46
47 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
48
49 #define BTS_RECORD_SIZE         24
50 #define BTS_SAFETY_MARGIN       4080
51
52 struct bts_phys {
53         struct page     *page;
54         unsigned long   size;
55         unsigned long   offset;
56         unsigned long   displacement;
57 };
58
59 struct bts_buffer {
60         size_t          real_size;      /* multiple of BTS_RECORD_SIZE */
61         unsigned int    nr_pages;
62         unsigned int    nr_bufs;
63         unsigned int    cur_buf;
64         bool            snapshot;
65         local_t         data_size;
66         local_t         head;
67         unsigned long   end;
68         void            **data_pages;
69         struct bts_phys buf[0];
70 };
71
72 static struct pmu bts_pmu;
73
74 static int buf_nr_pages(struct page *page)
75 {
76         if (!PagePrivate(page))
77                 return 1;
78
79         return 1 << page_private(page);
80 }
81
82 static size_t buf_size(struct page *page)
83 {
84         return buf_nr_pages(page) * PAGE_SIZE;
85 }
86
87 static void *
88 bts_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool overwrite)
89 {
90         struct bts_buffer *buf;
91         struct page *page;
92         int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
93         unsigned long offset;
94         size_t size = nr_pages << PAGE_SHIFT;
95         int pg, nbuf, pad;
96
97         /* count all the high order buffers */
98         for (pg = 0, nbuf = 0; pg < nr_pages;) {
99                 page = virt_to_page(pages[pg]);
100                 pg += buf_nr_pages(page);
101                 nbuf++;
102         }
103
104         /*
105          * to avoid interrupts in overwrite mode, only allow one physical
106          */
107         if (overwrite && nbuf > 1)
108                 return NULL;
109
110         buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
111         if (!buf)
112                 return NULL;
113
114         buf->nr_pages = nr_pages;
115         buf->nr_bufs = nbuf;
116         buf->snapshot = overwrite;
117         buf->data_pages = pages;
118         buf->real_size = size - size % BTS_RECORD_SIZE;
119
120         for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
121                 unsigned int __nr_pages;
122
123                 page = virt_to_page(pages[pg]);
124                 __nr_pages = buf_nr_pages(page);
125                 buf->buf[nbuf].page = page;
126                 buf->buf[nbuf].offset = offset;
127                 buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
128                 buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
129                 pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
130                 buf->buf[nbuf].size -= pad;
131
132                 pg += __nr_pages;
133                 offset += __nr_pages << PAGE_SHIFT;
134         }
135
136         return buf;
137 }
138
139 static void bts_buffer_free_aux(void *data)
140 {
141         kfree(data);
142 }
143
144 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
145 {
146         return buf->buf[idx].offset + buf->buf[idx].displacement;
147 }
148
149 static void
150 bts_config_buffer(struct bts_buffer *buf)
151 {
152         int cpu = raw_smp_processor_id();
153         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
154         struct bts_phys *phys = &buf->buf[buf->cur_buf];
155         unsigned long index, thresh = 0, end = phys->size;
156         struct page *page = phys->page;
157
158         index = local_read(&buf->head);
159
160         if (!buf->snapshot) {
161                 if (buf->end < phys->offset + buf_size(page))
162                         end = buf->end - phys->offset - phys->displacement;
163
164                 index -= phys->offset + phys->displacement;
165
166                 if (end - index > BTS_SAFETY_MARGIN)
167                         thresh = end - BTS_SAFETY_MARGIN;
168                 else if (end - index > BTS_RECORD_SIZE)
169                         thresh = end - BTS_RECORD_SIZE;
170                 else
171                         thresh = end;
172         }
173
174         ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
175         ds->bts_index = ds->bts_buffer_base + index;
176         ds->bts_absolute_maximum = ds->bts_buffer_base + end;
177         ds->bts_interrupt_threshold = !buf->snapshot
178                 ? ds->bts_buffer_base + thresh
179                 : ds->bts_absolute_maximum + BTS_RECORD_SIZE;
180 }
181
182 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
183 {
184         unsigned long index = head - phys->offset;
185
186         memset(page_address(phys->page) + index, 0, phys->size - index);
187 }
188
189 static void bts_update(struct bts_ctx *bts)
190 {
191         int cpu = raw_smp_processor_id();
192         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
193         struct bts_buffer *buf = perf_get_aux(&bts->handle);
194         unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
195
196         if (!buf)
197                 return;
198
199         head = index + bts_buffer_offset(buf, buf->cur_buf);
200         old = local_xchg(&buf->head, head);
201
202         if (!buf->snapshot) {
203                 if (old == head)
204                         return;
205
206                 if (ds->bts_index >= ds->bts_absolute_maximum)
207                         perf_aux_output_flag(&bts->handle,
208                                              PERF_AUX_FLAG_TRUNCATED);
209
210                 /*
211                  * old and head are always in the same physical buffer, so we
212                  * can subtract them to get the data size.
213                  */
214                 local_add(head - old, &buf->data_size);
215         } else {
216                 local_set(&buf->data_size, head);
217         }
218 }
219
220 static int
221 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
222
223 /*
224  * Ordering PMU callbacks wrt themselves and the PMI is done by means
225  * of bts::state, which:
226  *  - is set when bts::handle::event is valid, that is, between
227  *    perf_aux_output_begin() and perf_aux_output_end();
228  *  - is zero otherwise;
229  *  - is ordered against bts::handle::event with a compiler barrier.
230  */
231
232 static void __bts_event_start(struct perf_event *event)
233 {
234         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
235         struct bts_buffer *buf = perf_get_aux(&bts->handle);
236         u64 config = 0;
237
238         if (!buf->snapshot)
239                 config |= ARCH_PERFMON_EVENTSEL_INT;
240         if (!event->attr.exclude_kernel)
241                 config |= ARCH_PERFMON_EVENTSEL_OS;
242         if (!event->attr.exclude_user)
243                 config |= ARCH_PERFMON_EVENTSEL_USR;
244
245         bts_config_buffer(buf);
246
247         /*
248          * local barrier to make sure that ds configuration made it
249          * before we enable BTS and bts::state goes ACTIVE
250          */
251         wmb();
252
253         /* INACTIVE/STOPPED -> ACTIVE */
254         WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
255
256         intel_pmu_enable_bts(config);
257
258 }
259
260 static void bts_event_start(struct perf_event *event, int flags)
261 {
262         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
263         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
264         struct bts_buffer *buf;
265
266         buf = perf_aux_output_begin(&bts->handle, event);
267         if (!buf)
268                 goto fail_stop;
269
270         if (bts_buffer_reset(buf, &bts->handle))
271                 goto fail_end_stop;
272
273         bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
274         bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
275         bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
276
277         perf_event_itrace_started(event);
278         event->hw.state = 0;
279
280         __bts_event_start(event);
281
282         return;
283
284 fail_end_stop:
285         perf_aux_output_end(&bts->handle, 0);
286
287 fail_stop:
288         event->hw.state = PERF_HES_STOPPED;
289 }
290
291 static void __bts_event_stop(struct perf_event *event, int state)
292 {
293         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
294
295         /* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
296         WRITE_ONCE(bts->state, state);
297
298         /*
299          * No extra synchronization is mandated by the documentation to have
300          * BTS data stores globally visible.
301          */
302         intel_pmu_disable_bts();
303 }
304
305 static void bts_event_stop(struct perf_event *event, int flags)
306 {
307         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
308         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
309         struct bts_buffer *buf = NULL;
310         int state = READ_ONCE(bts->state);
311
312         if (state == BTS_STATE_ACTIVE)
313                 __bts_event_stop(event, BTS_STATE_STOPPED);
314
315         if (state != BTS_STATE_STOPPED)
316                 buf = perf_get_aux(&bts->handle);
317
318         event->hw.state |= PERF_HES_STOPPED;
319
320         if (flags & PERF_EF_UPDATE) {
321                 bts_update(bts);
322
323                 if (buf) {
324                         if (buf->snapshot)
325                                 bts->handle.head =
326                                         local_xchg(&buf->data_size,
327                                                    buf->nr_pages << PAGE_SHIFT);
328                         perf_aux_output_end(&bts->handle,
329                                             local_xchg(&buf->data_size, 0));
330                 }
331
332                 cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
333                 cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
334                 cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
335                 cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
336         }
337 }
338
339 void intel_bts_enable_local(void)
340 {
341         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
342         int state = READ_ONCE(bts->state);
343
344         /*
345          * Here we transition from INACTIVE to ACTIVE;
346          * if we instead are STOPPED from the interrupt handler,
347          * stay that way. Can't be ACTIVE here though.
348          */
349         if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
350                 return;
351
352         if (state == BTS_STATE_STOPPED)
353                 return;
354
355         if (bts->handle.event)
356                 __bts_event_start(bts->handle.event);
357 }
358
359 void intel_bts_disable_local(void)
360 {
361         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
362
363         /*
364          * Here we transition from ACTIVE to INACTIVE;
365          * do nothing for STOPPED or INACTIVE.
366          */
367         if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
368                 return;
369
370         if (bts->handle.event)
371                 __bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
372 }
373
374 static int
375 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
376 {
377         unsigned long head, space, next_space, pad, gap, skip, wakeup;
378         unsigned int next_buf;
379         struct bts_phys *phys, *next_phys;
380         int ret;
381
382         if (buf->snapshot)
383                 return 0;
384
385         head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
386
387         phys = &buf->buf[buf->cur_buf];
388         space = phys->offset + phys->displacement + phys->size - head;
389         pad = space;
390         if (space > handle->size) {
391                 space = handle->size;
392                 space -= space % BTS_RECORD_SIZE;
393         }
394         if (space <= BTS_SAFETY_MARGIN) {
395                 /* See if next phys buffer has more space */
396                 next_buf = buf->cur_buf + 1;
397                 if (next_buf >= buf->nr_bufs)
398                         next_buf = 0;
399                 next_phys = &buf->buf[next_buf];
400                 gap = buf_size(phys->page) - phys->displacement - phys->size +
401                       next_phys->displacement;
402                 skip = pad + gap;
403                 if (handle->size >= skip) {
404                         next_space = next_phys->size;
405                         if (next_space + skip > handle->size) {
406                                 next_space = handle->size - skip;
407                                 next_space -= next_space % BTS_RECORD_SIZE;
408                         }
409                         if (next_space > space || !space) {
410                                 if (pad)
411                                         bts_buffer_pad_out(phys, head);
412                                 ret = perf_aux_output_skip(handle, skip);
413                                 if (ret)
414                                         return ret;
415                                 /* Advance to next phys buffer */
416                                 phys = next_phys;
417                                 space = next_space;
418                                 head = phys->offset + phys->displacement;
419                                 /*
420                                  * After this, cur_buf and head won't match ds
421                                  * anymore, so we must not be racing with
422                                  * bts_update().
423                                  */
424                                 buf->cur_buf = next_buf;
425                                 local_set(&buf->head, head);
426                         }
427                 }
428         }
429
430         /* Don't go far beyond wakeup watermark */
431         wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
432                  handle->head;
433         if (space > wakeup) {
434                 space = wakeup;
435                 space -= space % BTS_RECORD_SIZE;
436         }
437
438         buf->end = head + space;
439
440         /*
441          * If we have no space, the lost notification would have been sent when
442          * we hit absolute_maximum - see bts_update()
443          */
444         if (!space)
445                 return -ENOSPC;
446
447         return 0;
448 }
449
450 int intel_bts_interrupt(void)
451 {
452         struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
453         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
454         struct perf_event *event = bts->handle.event;
455         struct bts_buffer *buf;
456         s64 old_head;
457         int err = -ENOSPC, handled = 0;
458
459         /*
460          * The only surefire way of knowing if this NMI is ours is by checking
461          * the write ptr against the PMI threshold.
462          */
463         if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
464                 handled = 1;
465
466         /*
467          * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
468          * so we can only be INACTIVE or STOPPED
469          */
470         if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
471                 return handled;
472
473         buf = perf_get_aux(&bts->handle);
474         if (!buf)
475                 return handled;
476
477         /*
478          * Skip snapshot counters: they don't use the interrupt, but
479          * there's no other way of telling, because the pointer will
480          * keep moving
481          */
482         if (buf->snapshot)
483                 return 0;
484
485         old_head = local_read(&buf->head);
486         bts_update(bts);
487
488         /* no new data */
489         if (old_head == local_read(&buf->head))
490                 return handled;
491
492         perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
493
494         buf = perf_aux_output_begin(&bts->handle, event);
495         if (buf)
496                 err = bts_buffer_reset(buf, &bts->handle);
497
498         if (err) {
499                 WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
500
501                 if (buf) {
502                         /*
503                          * BTS_STATE_STOPPED should be visible before
504                          * cleared handle::event
505                          */
506                         barrier();
507                         perf_aux_output_end(&bts->handle, 0);
508                 }
509         }
510
511         return 1;
512 }
513
514 static void bts_event_del(struct perf_event *event, int mode)
515 {
516         bts_event_stop(event, PERF_EF_UPDATE);
517 }
518
519 static int bts_event_add(struct perf_event *event, int mode)
520 {
521         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
522         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
523         struct hw_perf_event *hwc = &event->hw;
524
525         event->hw.state = PERF_HES_STOPPED;
526
527         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
528                 return -EBUSY;
529
530         if (bts->handle.event)
531                 return -EBUSY;
532
533         if (mode & PERF_EF_START) {
534                 bts_event_start(event, 0);
535                 if (hwc->state & PERF_HES_STOPPED)
536                         return -EINVAL;
537         }
538
539         return 0;
540 }
541
542 static void bts_event_destroy(struct perf_event *event)
543 {
544         x86_release_hardware();
545         x86_del_exclusive(x86_lbr_exclusive_bts);
546 }
547
548 static int bts_event_init(struct perf_event *event)
549 {
550         int ret;
551
552         if (event->attr.type != bts_pmu.type)
553                 return -ENOENT;
554
555         /*
556          * BTS leaks kernel addresses even when CPL0 tracing is
557          * disabled, so disallow intel_bts driver for unprivileged
558          * users on paranoid systems since it provides trace data
559          * to the user in a zero-copy fashion.
560          *
561          * Note that the default paranoia setting permits unprivileged
562          * users to profile the kernel.
563          */
564         if (event->attr.exclude_kernel && perf_paranoid_kernel() &&
565             !capable(CAP_SYS_ADMIN))
566                 return -EACCES;
567
568         if (x86_add_exclusive(x86_lbr_exclusive_bts))
569                 return -EBUSY;
570
571         ret = x86_reserve_hardware();
572         if (ret) {
573                 x86_del_exclusive(x86_lbr_exclusive_bts);
574                 return ret;
575         }
576
577         event->destroy = bts_event_destroy;
578
579         return 0;
580 }
581
582 static void bts_event_read(struct perf_event *event)
583 {
584 }
585
586 static __init int bts_init(void)
587 {
588         if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
589                 return -ENODEV;
590
591         if (boot_cpu_has(X86_FEATURE_PTI)) {
592                 /*
593                  * BTS hardware writes through a virtual memory map we must
594                  * either use the kernel physical map, or the user mapping of
595                  * the AUX buffer.
596                  *
597                  * However, since this driver supports per-CPU and per-task inherit
598                  * we cannot use the user mapping since it will not be availble
599                  * if we're not running the owning process.
600                  *
601                  * With PTI we can't use the kernal map either, because its not
602                  * there when we run userspace.
603                  *
604                  * For now, disable this driver when using PTI.
605                  */
606                 return -ENODEV;
607         }
608
609         bts_pmu.capabilities    = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
610                                   PERF_PMU_CAP_EXCLUSIVE;
611         bts_pmu.task_ctx_nr     = perf_sw_context;
612         bts_pmu.event_init      = bts_event_init;
613         bts_pmu.add             = bts_event_add;
614         bts_pmu.del             = bts_event_del;
615         bts_pmu.start           = bts_event_start;
616         bts_pmu.stop            = bts_event_stop;
617         bts_pmu.read            = bts_event_read;
618         bts_pmu.setup_aux       = bts_buffer_setup_aux;
619         bts_pmu.free_aux        = bts_buffer_free_aux;
620
621         return perf_pmu_register(&bts_pmu, "intel_bts", -1);
622 }
623 arch_initcall(bts_init);