GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59                                 [PERF_COUNT_HW_CACHE_MAX]
60                                 [PERF_COUNT_HW_CACHE_OP_MAX]
61                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70         struct hw_perf_event *hwc = &event->hw;
71         int shift = 64 - x86_pmu.cntval_bits;
72         u64 prev_raw_count, new_raw_count;
73         int idx = hwc->idx;
74         u64 delta;
75
76         if (idx == INTEL_PMC_IDX_FIXED_BTS)
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129                 /* Check if the extra msrs can be safely accessed*/
130                 if (!er->extra_msr_access)
131                         return -ENXIO;
132
133                 reg->idx = er->idx;
134                 reg->config = event->attr.config1;
135                 reg->reg = er->msr;
136                 break;
137         }
138         return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149         int i;
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153                         goto perfctr_fail;
154         }
155
156         for (i = 0; i < x86_pmu.num_counters; i++) {
157                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158                         goto eventsel_fail;
159         }
160
161         return true;
162
163 eventsel_fail:
164         for (i--; i >= 0; i--)
165                 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167         i = x86_pmu.num_counters;
168
169 perfctr_fail:
170         for (i--; i >= 0; i--)
171                 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173         return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178         int i;
179
180         for (i = 0; i < x86_pmu.num_counters; i++) {
181                 release_perfctr_nmi(x86_pmu_event_addr(i));
182                 release_evntsel_nmi(x86_pmu_config_addr(i));
183         }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195         u64 val, val_fail = -1, val_new= ~0;
196         int i, reg, reg_fail = -1, ret = 0;
197         int bios_fail = 0;
198         int reg_safe = -1;
199
200         /*
201          * Check to see if the BIOS enabled any of the counters, if so
202          * complain and bail.
203          */
204         for (i = 0; i < x86_pmu.num_counters; i++) {
205                 reg = x86_pmu_config_addr(i);
206                 ret = rdmsrl_safe(reg, &val);
207                 if (ret)
208                         goto msr_fail;
209                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210                         bios_fail = 1;
211                         val_fail = val;
212                         reg_fail = reg;
213                 } else {
214                         reg_safe = i;
215                 }
216         }
217
218         if (x86_pmu.num_counters_fixed) {
219                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220                 ret = rdmsrl_safe(reg, &val);
221                 if (ret)
222                         goto msr_fail;
223                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224                         if (val & (0x03 << i*4)) {
225                                 bios_fail = 1;
226                                 val_fail = val;
227                                 reg_fail = reg;
228                         }
229                 }
230         }
231
232         /*
233          * If all the counters are enabled, the below test will always
234          * fail.  The tools will also become useless in this scenario.
235          * Just fail and disable the hardware counters.
236          */
237
238         if (reg_safe == -1) {
239                 reg = reg_safe;
240                 goto msr_fail;
241         }
242
243         /*
244          * Read the current value, change it and read it back to see if it
245          * matches, this is needed to detect certain hardware emulators
246          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247          */
248         reg = x86_pmu_event_addr(reg_safe);
249         if (rdmsrl_safe(reg, &val))
250                 goto msr_fail;
251         val ^= 0xffffUL;
252         ret = wrmsrl_safe(reg, val);
253         ret |= rdmsrl_safe(reg, &val_new);
254         if (ret || val != val_new)
255                 goto msr_fail;
256
257         /*
258          * We still allow the PMU driver to operate:
259          */
260         if (bios_fail) {
261                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263                               reg_fail, val_fail);
264         }
265
266         return true;
267
268 msr_fail:
269         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270                 pr_cont("PMU not available due to virtualization, using software events only.\n");
271         } else {
272                 pr_cont("Broken PMU hardware detected, using software events only.\n");
273                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274                        reg, val_new);
275         }
276
277         return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282         x86_release_hardware();
283         atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288         hw_perf_event_destroy(event);
289
290         /* undo the lbr/bts event accounting */
291         x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296         return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         unsigned int cache_type, cache_op, cache_result;
304         u64 config, val;
305
306         config = attr->config;
307
308         cache_type = (config >> 0) & 0xff;
309         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310                 return -EINVAL;
311         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313         cache_op = (config >>  8) & 0xff;
314         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315                 return -EINVAL;
316         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318         cache_result = (config >> 16) & 0xff;
319         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320                 return -EINVAL;
321         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325         if (val == 0)
326                 return -ENOENT;
327
328         if (val == -1)
329                 return -EINVAL;
330
331         hwc->config |= val;
332         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333         return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338         int err = 0;
339
340         if (!atomic_inc_not_zero(&pmc_refcount)) {
341                 mutex_lock(&pmc_reserve_mutex);
342                 if (atomic_read(&pmc_refcount) == 0) {
343                         if (!reserve_pmc_hardware())
344                                 err = -EBUSY;
345                         else
346                                 reserve_ds_buffers();
347                 }
348                 if (!err)
349                         atomic_inc(&pmc_refcount);
350                 mutex_unlock(&pmc_reserve_mutex);
351         }
352
353         return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359                 release_pmc_hardware();
360                 release_ds_buffers();
361                 mutex_unlock(&pmc_reserve_mutex);
362         }
363 }
364
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371         int i;
372
373         /*
374          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375          * LBR and BTS are still mutually exclusive.
376          */
377         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378                 goto out;
379
380         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381                 mutex_lock(&pmc_reserve_mutex);
382                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384                                 goto fail_unlock;
385                 }
386                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389
390 out:
391         atomic_inc(&active_events);
392         return 0;
393
394 fail_unlock:
395         mutex_unlock(&pmc_reserve_mutex);
396         return -EBUSY;
397 }
398
399 void x86_del_exclusive(unsigned int what)
400 {
401         atomic_dec(&active_events);
402
403         /*
404          * See the comment in x86_add_exclusive().
405          */
406         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
407                 return;
408
409         atomic_dec(&x86_pmu.lbr_exclusive[what]);
410 }
411
412 int x86_setup_perfctr(struct perf_event *event)
413 {
414         struct perf_event_attr *attr = &event->attr;
415         struct hw_perf_event *hwc = &event->hw;
416         u64 config;
417
418         if (!is_sampling_event(event)) {
419                 hwc->sample_period = x86_pmu.max_period;
420                 hwc->last_period = hwc->sample_period;
421                 local64_set(&hwc->period_left, hwc->sample_period);
422         }
423
424         if (attr->type == PERF_TYPE_RAW)
425                 return x86_pmu_extra_regs(event->attr.config, event);
426
427         if (attr->type == PERF_TYPE_HW_CACHE)
428                 return set_ext_hw_attr(hwc, event);
429
430         if (attr->config >= x86_pmu.max_events)
431                 return -EINVAL;
432
433         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
434
435         /*
436          * The generic map:
437          */
438         config = x86_pmu.event_map(attr->config);
439
440         if (config == 0)
441                 return -ENOENT;
442
443         if (config == -1LL)
444                 return -EINVAL;
445
446         hwc->config |= config;
447
448         return 0;
449 }
450
451 /*
452  * check that branch_sample_type is compatible with
453  * settings needed for precise_ip > 1 which implies
454  * using the LBR to capture ALL taken branches at the
455  * priv levels of the measurement
456  */
457 static inline int precise_br_compat(struct perf_event *event)
458 {
459         u64 m = event->attr.branch_sample_type;
460         u64 b = 0;
461
462         /* must capture all branches */
463         if (!(m & PERF_SAMPLE_BRANCH_ANY))
464                 return 0;
465
466         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
467
468         if (!event->attr.exclude_user)
469                 b |= PERF_SAMPLE_BRANCH_USER;
470
471         if (!event->attr.exclude_kernel)
472                 b |= PERF_SAMPLE_BRANCH_KERNEL;
473
474         /*
475          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
476          */
477
478         return m == b;
479 }
480
481 int x86_pmu_max_precise(void)
482 {
483         int precise = 0;
484
485         /* Support for constant skid */
486         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487                 precise++;
488
489                 /* Support for IP fixup */
490                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491                         precise++;
492
493                 if (x86_pmu.pebs_prec_dist)
494                         precise++;
495         }
496         return precise;
497 }
498
499 int x86_pmu_hw_config(struct perf_event *event)
500 {
501         if (event->attr.precise_ip) {
502                 int precise = x86_pmu_max_precise();
503
504                 if (event->attr.precise_ip > precise)
505                         return -EOPNOTSUPP;
506
507                 /* There's no sense in having PEBS for non sampling events: */
508                 if (!is_sampling_event(event))
509                         return -EINVAL;
510         }
511         /*
512          * check that PEBS LBR correction does not conflict with
513          * whatever the user is asking with attr->branch_sample_type
514          */
515         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
516                 u64 *br_type = &event->attr.branch_sample_type;
517
518                 if (has_branch_stack(event)) {
519                         if (!precise_br_compat(event))
520                                 return -EOPNOTSUPP;
521
522                         /* branch_sample_type is compatible */
523
524                 } else {
525                         /*
526                          * user did not specify  branch_sample_type
527                          *
528                          * For PEBS fixups, we capture all
529                          * the branches at the priv level of the
530                          * event.
531                          */
532                         *br_type = PERF_SAMPLE_BRANCH_ANY;
533
534                         if (!event->attr.exclude_user)
535                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
536
537                         if (!event->attr.exclude_kernel)
538                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
539                 }
540         }
541
542         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
543                 event->attach_state |= PERF_ATTACH_TASK_DATA;
544
545         /*
546          * Generate PMC IRQs:
547          * (keep 'enabled' bit clear for now)
548          */
549         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
550
551         /*
552          * Count user and OS events unless requested not to
553          */
554         if (!event->attr.exclude_user)
555                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
556         if (!event->attr.exclude_kernel)
557                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
558
559         if (event->attr.type == PERF_TYPE_RAW)
560                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
561
562         if (event->attr.sample_period && x86_pmu.limit_period) {
563                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
564                                 event->attr.sample_period)
565                         return -EINVAL;
566         }
567
568         /* sample_regs_user never support XMM registers */
569         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
570                 return -EINVAL;
571         /*
572          * Besides the general purpose registers, XMM registers may
573          * be collected in PEBS on some platforms, e.g. Icelake
574          */
575         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
576                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
577                         return -EINVAL;
578
579                 if (!event->attr.precise_ip)
580                         return -EINVAL;
581         }
582
583         return x86_setup_perfctr(event);
584 }
585
586 /*
587  * Setup the hardware configuration for a given attr_type
588  */
589 static int __x86_pmu_event_init(struct perf_event *event)
590 {
591         int err;
592
593         if (!x86_pmu_initialized())
594                 return -ENODEV;
595
596         err = x86_reserve_hardware();
597         if (err)
598                 return err;
599
600         atomic_inc(&active_events);
601         event->destroy = hw_perf_event_destroy;
602
603         event->hw.idx = -1;
604         event->hw.last_cpu = -1;
605         event->hw.last_tag = ~0ULL;
606
607         /* mark unused */
608         event->hw.extra_reg.idx = EXTRA_REG_NONE;
609         event->hw.branch_reg.idx = EXTRA_REG_NONE;
610
611         return x86_pmu.hw_config(event);
612 }
613
614 void x86_pmu_disable_all(void)
615 {
616         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
617         int idx;
618
619         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
620                 u64 val;
621
622                 if (!test_bit(idx, cpuc->active_mask))
623                         continue;
624                 rdmsrl(x86_pmu_config_addr(idx), val);
625                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
626                         continue;
627                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
628                 wrmsrl(x86_pmu_config_addr(idx), val);
629         }
630 }
631
632 /*
633  * There may be PMI landing after enabled=0. The PMI hitting could be before or
634  * after disable_all.
635  *
636  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
637  * It will not be re-enabled in the NMI handler again, because enabled=0. After
638  * handling the NMI, disable_all will be called, which will not change the
639  * state either. If PMI hits after disable_all, the PMU is already disabled
640  * before entering NMI handler. The NMI handler will not change the state
641  * either.
642  *
643  * So either situation is harmless.
644  */
645 static void x86_pmu_disable(struct pmu *pmu)
646 {
647         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
648
649         if (!x86_pmu_initialized())
650                 return;
651
652         if (!cpuc->enabled)
653                 return;
654
655         cpuc->n_added = 0;
656         cpuc->enabled = 0;
657         barrier();
658
659         x86_pmu.disable_all();
660 }
661
662 void x86_pmu_enable_all(int added)
663 {
664         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
665         int idx;
666
667         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
668                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
669
670                 if (!test_bit(idx, cpuc->active_mask))
671                         continue;
672
673                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
674         }
675 }
676
677 static struct pmu pmu;
678
679 static inline int is_x86_event(struct perf_event *event)
680 {
681         return event->pmu == &pmu;
682 }
683
684 struct pmu *x86_get_pmu(void)
685 {
686         return &pmu;
687 }
688 /*
689  * Event scheduler state:
690  *
691  * Assign events iterating over all events and counters, beginning
692  * with events with least weights first. Keep the current iterator
693  * state in struct sched_state.
694  */
695 struct sched_state {
696         int     weight;
697         int     event;          /* event index */
698         int     counter;        /* counter index */
699         int     unassigned;     /* number of events to be assigned left */
700         int     nr_gp;          /* number of GP counters used */
701         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
702 };
703
704 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
705 #define SCHED_STATES_MAX        2
706
707 struct perf_sched {
708         int                     max_weight;
709         int                     max_events;
710         int                     max_gp;
711         int                     saved_states;
712         struct event_constraint **constraints;
713         struct sched_state      state;
714         struct sched_state      saved[SCHED_STATES_MAX];
715 };
716
717 /*
718  * Initialize interator that runs through all events and counters.
719  */
720 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
721                             int num, int wmin, int wmax, int gpmax)
722 {
723         int idx;
724
725         memset(sched, 0, sizeof(*sched));
726         sched->max_events       = num;
727         sched->max_weight       = wmax;
728         sched->max_gp           = gpmax;
729         sched->constraints      = constraints;
730
731         for (idx = 0; idx < num; idx++) {
732                 if (constraints[idx]->weight == wmin)
733                         break;
734         }
735
736         sched->state.event      = idx;          /* start with min weight */
737         sched->state.weight     = wmin;
738         sched->state.unassigned = num;
739 }
740
741 static void perf_sched_save_state(struct perf_sched *sched)
742 {
743         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
744                 return;
745
746         sched->saved[sched->saved_states] = sched->state;
747         sched->saved_states++;
748 }
749
750 static bool perf_sched_restore_state(struct perf_sched *sched)
751 {
752         if (!sched->saved_states)
753                 return false;
754
755         sched->saved_states--;
756         sched->state = sched->saved[sched->saved_states];
757
758         /* continue with next counter: */
759         clear_bit(sched->state.counter++, sched->state.used);
760
761         return true;
762 }
763
764 /*
765  * Select a counter for the current event to schedule. Return true on
766  * success.
767  */
768 static bool __perf_sched_find_counter(struct perf_sched *sched)
769 {
770         struct event_constraint *c;
771         int idx;
772
773         if (!sched->state.unassigned)
774                 return false;
775
776         if (sched->state.event >= sched->max_events)
777                 return false;
778
779         c = sched->constraints[sched->state.event];
780         /* Prefer fixed purpose counters */
781         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
782                 idx = INTEL_PMC_IDX_FIXED;
783                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
784                         if (!__test_and_set_bit(idx, sched->state.used))
785                                 goto done;
786                 }
787         }
788
789         /* Grab the first unused counter starting with idx */
790         idx = sched->state.counter;
791         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
792                 if (!__test_and_set_bit(idx, sched->state.used)) {
793                         if (sched->state.nr_gp++ >= sched->max_gp)
794                                 return false;
795
796                         goto done;
797                 }
798         }
799
800         return false;
801
802 done:
803         sched->state.counter = idx;
804
805         if (c->overlap)
806                 perf_sched_save_state(sched);
807
808         return true;
809 }
810
811 static bool perf_sched_find_counter(struct perf_sched *sched)
812 {
813         while (!__perf_sched_find_counter(sched)) {
814                 if (!perf_sched_restore_state(sched))
815                         return false;
816         }
817
818         return true;
819 }
820
821 /*
822  * Go through all unassigned events and find the next one to schedule.
823  * Take events with the least weight first. Return true on success.
824  */
825 static bool perf_sched_next_event(struct perf_sched *sched)
826 {
827         struct event_constraint *c;
828
829         if (!sched->state.unassigned || !--sched->state.unassigned)
830                 return false;
831
832         do {
833                 /* next event */
834                 sched->state.event++;
835                 if (sched->state.event >= sched->max_events) {
836                         /* next weight */
837                         sched->state.event = 0;
838                         sched->state.weight++;
839                         if (sched->state.weight > sched->max_weight)
840                                 return false;
841                 }
842                 c = sched->constraints[sched->state.event];
843         } while (c->weight != sched->state.weight);
844
845         sched->state.counter = 0;       /* start with first counter */
846
847         return true;
848 }
849
850 /*
851  * Assign a counter for each event.
852  */
853 int perf_assign_events(struct event_constraint **constraints, int n,
854                         int wmin, int wmax, int gpmax, int *assign)
855 {
856         struct perf_sched sched;
857
858         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
859
860         do {
861                 if (!perf_sched_find_counter(&sched))
862                         break;  /* failed */
863                 if (assign)
864                         assign[sched.state.event] = sched.state.counter;
865         } while (perf_sched_next_event(&sched));
866
867         return sched.state.unassigned;
868 }
869 EXPORT_SYMBOL_GPL(perf_assign_events);
870
871 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
872 {
873         struct event_constraint *c;
874         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
875         struct perf_event *e;
876         int n0, i, wmin, wmax, unsched = 0;
877         struct hw_perf_event *hwc;
878
879         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
880
881         /*
882          * Compute the number of events already present; see x86_pmu_add(),
883          * validate_group() and x86_pmu_commit_txn(). For the former two
884          * cpuc->n_events hasn't been updated yet, while for the latter
885          * cpuc->n_txn contains the number of events added in the current
886          * transaction.
887          */
888         n0 = cpuc->n_events;
889         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
890                 n0 -= cpuc->n_txn;
891
892         if (x86_pmu.start_scheduling)
893                 x86_pmu.start_scheduling(cpuc);
894
895         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
896                 c = cpuc->event_constraint[i];
897
898                 /*
899                  * Previously scheduled events should have a cached constraint,
900                  * while new events should not have one.
901                  */
902                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
903
904                 /*
905                  * Request constraints for new events; or for those events that
906                  * have a dynamic constraint -- for those the constraint can
907                  * change due to external factors (sibling state, allow_tfa).
908                  */
909                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
910                         c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
911                         cpuc->event_constraint[i] = c;
912                 }
913
914                 wmin = min(wmin, c->weight);
915                 wmax = max(wmax, c->weight);
916         }
917
918         /*
919          * fastpath, try to reuse previous register
920          */
921         for (i = 0; i < n; i++) {
922                 hwc = &cpuc->event_list[i]->hw;
923                 c = cpuc->event_constraint[i];
924
925                 /* never assigned */
926                 if (hwc->idx == -1)
927                         break;
928
929                 /* constraint still honored */
930                 if (!test_bit(hwc->idx, c->idxmsk))
931                         break;
932
933                 /* not already used */
934                 if (test_bit(hwc->idx, used_mask))
935                         break;
936
937                 __set_bit(hwc->idx, used_mask);
938                 if (assign)
939                         assign[i] = hwc->idx;
940         }
941
942         /* slow path */
943         if (i != n) {
944                 int gpmax = x86_pmu.num_counters;
945
946                 /*
947                  * Do not allow scheduling of more than half the available
948                  * generic counters.
949                  *
950                  * This helps avoid counter starvation of sibling thread by
951                  * ensuring at most half the counters cannot be in exclusive
952                  * mode. There is no designated counters for the limits. Any
953                  * N/2 counters can be used. This helps with events with
954                  * specific counter constraints.
955                  */
956                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
957                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
958                         gpmax /= 2;
959
960                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
961                                              wmax, gpmax, assign);
962         }
963
964         /*
965          * In case of success (unsched = 0), mark events as committed,
966          * so we do not put_constraint() in case new events are added
967          * and fail to be scheduled
968          *
969          * We invoke the lower level commit callback to lock the resource
970          *
971          * We do not need to do all of this in case we are called to
972          * validate an event group (assign == NULL)
973          */
974         if (!unsched && assign) {
975                 for (i = 0; i < n; i++) {
976                         e = cpuc->event_list[i];
977                         if (x86_pmu.commit_scheduling)
978                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
979                 }
980         } else {
981                 for (i = n0; i < n; i++) {
982                         e = cpuc->event_list[i];
983
984                         /*
985                          * release events that failed scheduling
986                          */
987                         if (x86_pmu.put_event_constraints)
988                                 x86_pmu.put_event_constraints(cpuc, e);
989
990                         cpuc->event_constraint[i] = NULL;
991                 }
992         }
993
994         if (x86_pmu.stop_scheduling)
995                 x86_pmu.stop_scheduling(cpuc);
996
997         return unsched ? -EINVAL : 0;
998 }
999
1000 /*
1001  * dogrp: true if must collect siblings events (group)
1002  * returns total number of events and error code
1003  */
1004 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1005 {
1006         struct perf_event *event;
1007         int n, max_count;
1008
1009         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1010
1011         /* current number of events already accepted */
1012         n = cpuc->n_events;
1013         if (!cpuc->n_events)
1014                 cpuc->pebs_output = 0;
1015
1016         if (!cpuc->is_fake && leader->attr.precise_ip) {
1017                 /*
1018                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1019                  * away, the group was broken down and this singleton event
1020                  * can't schedule any more.
1021                  */
1022                 if (is_pebs_pt(leader) && !leader->aux_event)
1023                         return -EINVAL;
1024
1025                 /*
1026                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1027                  */
1028                 if (cpuc->pebs_output &&
1029                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1030                         return -EINVAL;
1031
1032                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1033         }
1034
1035         if (is_x86_event(leader)) {
1036                 if (n >= max_count)
1037                         return -EINVAL;
1038                 cpuc->event_list[n] = leader;
1039                 n++;
1040         }
1041         if (!dogrp)
1042                 return n;
1043
1044         for_each_sibling_event(event, leader) {
1045                 if (!is_x86_event(event) ||
1046                     event->state <= PERF_EVENT_STATE_OFF)
1047                         continue;
1048
1049                 if (n >= max_count)
1050                         return -EINVAL;
1051
1052                 cpuc->event_list[n] = event;
1053                 n++;
1054         }
1055         return n;
1056 }
1057
1058 static inline void x86_assign_hw_event(struct perf_event *event,
1059                                 struct cpu_hw_events *cpuc, int i)
1060 {
1061         struct hw_perf_event *hwc = &event->hw;
1062
1063         hwc->idx = cpuc->assign[i];
1064         hwc->last_cpu = smp_processor_id();
1065         hwc->last_tag = ++cpuc->tags[i];
1066
1067         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1068                 hwc->config_base = 0;
1069                 hwc->event_base = 0;
1070         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1071                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1072                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1073                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1074         } else {
1075                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1076                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1077                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1078         }
1079 }
1080
1081 /**
1082  * x86_perf_rdpmc_index - Return PMC counter used for event
1083  * @event: the perf_event to which the PMC counter was assigned
1084  *
1085  * The counter assigned to this performance event may change if interrupts
1086  * are enabled. This counter should thus never be used while interrupts are
1087  * enabled. Before this function is used to obtain the assigned counter the
1088  * event should be checked for validity using, for example,
1089  * perf_event_read_local(), within the same interrupt disabled section in
1090  * which this counter is planned to be used.
1091  *
1092  * Return: The index of the performance monitoring counter assigned to
1093  * @perf_event.
1094  */
1095 int x86_perf_rdpmc_index(struct perf_event *event)
1096 {
1097         lockdep_assert_irqs_disabled();
1098
1099         return event->hw.event_base_rdpmc;
1100 }
1101
1102 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1103                                         struct cpu_hw_events *cpuc,
1104                                         int i)
1105 {
1106         return hwc->idx == cpuc->assign[i] &&
1107                 hwc->last_cpu == smp_processor_id() &&
1108                 hwc->last_tag == cpuc->tags[i];
1109 }
1110
1111 static void x86_pmu_start(struct perf_event *event, int flags);
1112
1113 static void x86_pmu_enable(struct pmu *pmu)
1114 {
1115         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1116         struct perf_event *event;
1117         struct hw_perf_event *hwc;
1118         int i, added = cpuc->n_added;
1119
1120         if (!x86_pmu_initialized())
1121                 return;
1122
1123         if (cpuc->enabled)
1124                 return;
1125
1126         if (cpuc->n_added) {
1127                 int n_running = cpuc->n_events - cpuc->n_added;
1128                 /*
1129                  * apply assignment obtained either from
1130                  * hw_perf_group_sched_in() or x86_pmu_enable()
1131                  *
1132                  * step1: save events moving to new counters
1133                  */
1134                 for (i = 0; i < n_running; i++) {
1135                         event = cpuc->event_list[i];
1136                         hwc = &event->hw;
1137
1138                         /*
1139                          * we can avoid reprogramming counter if:
1140                          * - assigned same counter as last time
1141                          * - running on same CPU as last time
1142                          * - no other event has used the counter since
1143                          */
1144                         if (hwc->idx == -1 ||
1145                             match_prev_assignment(hwc, cpuc, i))
1146                                 continue;
1147
1148                         /*
1149                          * Ensure we don't accidentally enable a stopped
1150                          * counter simply because we rescheduled.
1151                          */
1152                         if (hwc->state & PERF_HES_STOPPED)
1153                                 hwc->state |= PERF_HES_ARCH;
1154
1155                         x86_pmu_stop(event, PERF_EF_UPDATE);
1156                 }
1157
1158                 /*
1159                  * step2: reprogram moved events into new counters
1160                  */
1161                 for (i = 0; i < cpuc->n_events; i++) {
1162                         event = cpuc->event_list[i];
1163                         hwc = &event->hw;
1164
1165                         if (!match_prev_assignment(hwc, cpuc, i))
1166                                 x86_assign_hw_event(event, cpuc, i);
1167                         else if (i < n_running)
1168                                 continue;
1169
1170                         if (hwc->state & PERF_HES_ARCH)
1171                                 continue;
1172
1173                         x86_pmu_start(event, PERF_EF_RELOAD);
1174                 }
1175                 cpuc->n_added = 0;
1176                 perf_events_lapic_init();
1177         }
1178
1179         cpuc->enabled = 1;
1180         barrier();
1181
1182         x86_pmu.enable_all(added);
1183 }
1184
1185 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1186
1187 /*
1188  * Set the next IRQ period, based on the hwc->period_left value.
1189  * To be called with the event disabled in hw:
1190  */
1191 int x86_perf_event_set_period(struct perf_event *event)
1192 {
1193         struct hw_perf_event *hwc = &event->hw;
1194         s64 left = local64_read(&hwc->period_left);
1195         s64 period = hwc->sample_period;
1196         int ret = 0, idx = hwc->idx;
1197
1198         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1199                 return 0;
1200
1201         /*
1202          * If we are way outside a reasonable range then just skip forward:
1203          */
1204         if (unlikely(left <= -period)) {
1205                 left = period;
1206                 local64_set(&hwc->period_left, left);
1207                 hwc->last_period = period;
1208                 ret = 1;
1209         }
1210
1211         if (unlikely(left <= 0)) {
1212                 left += period;
1213                 local64_set(&hwc->period_left, left);
1214                 hwc->last_period = period;
1215                 ret = 1;
1216         }
1217         /*
1218          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1219          */
1220         if (unlikely(left < 2))
1221                 left = 2;
1222
1223         if (left > x86_pmu.max_period)
1224                 left = x86_pmu.max_period;
1225
1226         if (x86_pmu.limit_period)
1227                 left = x86_pmu.limit_period(event, left);
1228
1229         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1230
1231         /*
1232          * The hw event starts counting from this event offset,
1233          * mark it to be able to extra future deltas:
1234          */
1235         local64_set(&hwc->prev_count, (u64)-left);
1236
1237         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1238
1239         /*
1240          * Due to erratum on certan cpu we need
1241          * a second write to be sure the register
1242          * is updated properly
1243          */
1244         if (x86_pmu.perfctr_second_write) {
1245                 wrmsrl(hwc->event_base,
1246                         (u64)(-left) & x86_pmu.cntval_mask);
1247         }
1248
1249         perf_event_update_userpage(event);
1250
1251         return ret;
1252 }
1253
1254 void x86_pmu_enable_event(struct perf_event *event)
1255 {
1256         if (__this_cpu_read(cpu_hw_events.enabled))
1257                 __x86_pmu_enable_event(&event->hw,
1258                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1259 }
1260
1261 /*
1262  * Add a single event to the PMU.
1263  *
1264  * The event is added to the group of enabled events
1265  * but only if it can be scheduled with existing events.
1266  */
1267 static int x86_pmu_add(struct perf_event *event, int flags)
1268 {
1269         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1270         struct hw_perf_event *hwc;
1271         int assign[X86_PMC_IDX_MAX];
1272         int n, n0, ret;
1273
1274         hwc = &event->hw;
1275
1276         n0 = cpuc->n_events;
1277         ret = n = collect_events(cpuc, event, false);
1278         if (ret < 0)
1279                 goto out;
1280
1281         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1282         if (!(flags & PERF_EF_START))
1283                 hwc->state |= PERF_HES_ARCH;
1284
1285         /*
1286          * If group events scheduling transaction was started,
1287          * skip the schedulability test here, it will be performed
1288          * at commit time (->commit_txn) as a whole.
1289          *
1290          * If commit fails, we'll call ->del() on all events
1291          * for which ->add() was called.
1292          */
1293         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1294                 goto done_collect;
1295
1296         ret = x86_pmu.schedule_events(cpuc, n, assign);
1297         if (ret)
1298                 goto out;
1299         /*
1300          * copy new assignment, now we know it is possible
1301          * will be used by hw_perf_enable()
1302          */
1303         memcpy(cpuc->assign, assign, n*sizeof(int));
1304
1305 done_collect:
1306         /*
1307          * Commit the collect_events() state. See x86_pmu_del() and
1308          * x86_pmu_*_txn().
1309          */
1310         cpuc->n_events = n;
1311         cpuc->n_added += n - n0;
1312         cpuc->n_txn += n - n0;
1313
1314         if (x86_pmu.add) {
1315                 /*
1316                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1317                  * so we enable LBRs before an event needs them etc..
1318                  */
1319                 x86_pmu.add(event);
1320         }
1321
1322         ret = 0;
1323 out:
1324         return ret;
1325 }
1326
1327 static void x86_pmu_start(struct perf_event *event, int flags)
1328 {
1329         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1330         int idx = event->hw.idx;
1331
1332         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1333                 return;
1334
1335         if (WARN_ON_ONCE(idx == -1))
1336                 return;
1337
1338         if (flags & PERF_EF_RELOAD) {
1339                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1340                 x86_perf_event_set_period(event);
1341         }
1342
1343         event->hw.state = 0;
1344
1345         cpuc->events[idx] = event;
1346         __set_bit(idx, cpuc->active_mask);
1347         __set_bit(idx, cpuc->running);
1348         x86_pmu.enable(event);
1349         perf_event_update_userpage(event);
1350 }
1351
1352 void perf_event_print_debug(void)
1353 {
1354         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1355         u64 pebs, debugctl;
1356         struct cpu_hw_events *cpuc;
1357         unsigned long flags;
1358         int cpu, idx;
1359
1360         if (!x86_pmu.num_counters)
1361                 return;
1362
1363         local_irq_save(flags);
1364
1365         cpu = smp_processor_id();
1366         cpuc = &per_cpu(cpu_hw_events, cpu);
1367
1368         if (x86_pmu.version >= 2) {
1369                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1370                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1371                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1372                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1373
1374                 pr_info("\n");
1375                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1376                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1377                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1378                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1379                 if (x86_pmu.pebs_constraints) {
1380                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1381                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1382                 }
1383                 if (x86_pmu.lbr_nr) {
1384                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1385                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1386                 }
1387         }
1388         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1389
1390         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1391                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1392                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1393
1394                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1395
1396                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1397                         cpu, idx, pmc_ctrl);
1398                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1399                         cpu, idx, pmc_count);
1400                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1401                         cpu, idx, prev_left);
1402         }
1403         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1404                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1405
1406                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1407                         cpu, idx, pmc_count);
1408         }
1409         local_irq_restore(flags);
1410 }
1411
1412 void x86_pmu_stop(struct perf_event *event, int flags)
1413 {
1414         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1415         struct hw_perf_event *hwc = &event->hw;
1416
1417         if (test_bit(hwc->idx, cpuc->active_mask)) {
1418                 x86_pmu.disable(event);
1419                 __clear_bit(hwc->idx, cpuc->active_mask);
1420                 cpuc->events[hwc->idx] = NULL;
1421                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1422                 hwc->state |= PERF_HES_STOPPED;
1423         }
1424
1425         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1426                 /*
1427                  * Drain the remaining delta count out of a event
1428                  * that we are disabling:
1429                  */
1430                 x86_perf_event_update(event);
1431                 hwc->state |= PERF_HES_UPTODATE;
1432         }
1433 }
1434
1435 static void x86_pmu_del(struct perf_event *event, int flags)
1436 {
1437         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1438         int i;
1439
1440         /*
1441          * If we're called during a txn, we only need to undo x86_pmu.add.
1442          * The events never got scheduled and ->cancel_txn will truncate
1443          * the event_list.
1444          *
1445          * XXX assumes any ->del() called during a TXN will only be on
1446          * an event added during that same TXN.
1447          */
1448         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1449                 goto do_del;
1450
1451         /*
1452          * Not a TXN, therefore cleanup properly.
1453          */
1454         x86_pmu_stop(event, PERF_EF_UPDATE);
1455
1456         for (i = 0; i < cpuc->n_events; i++) {
1457                 if (event == cpuc->event_list[i])
1458                         break;
1459         }
1460
1461         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1462                 return;
1463
1464         /* If we have a newly added event; make sure to decrease n_added. */
1465         if (i >= cpuc->n_events - cpuc->n_added)
1466                 --cpuc->n_added;
1467
1468         if (x86_pmu.put_event_constraints)
1469                 x86_pmu.put_event_constraints(cpuc, event);
1470
1471         /* Delete the array entry. */
1472         while (++i < cpuc->n_events) {
1473                 cpuc->event_list[i-1] = cpuc->event_list[i];
1474                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1475         }
1476         cpuc->event_constraint[i-1] = NULL;
1477         --cpuc->n_events;
1478
1479         perf_event_update_userpage(event);
1480
1481 do_del:
1482         if (x86_pmu.del) {
1483                 /*
1484                  * This is after x86_pmu_stop(); so we disable LBRs after any
1485                  * event can need them etc..
1486                  */
1487                 x86_pmu.del(event);
1488         }
1489 }
1490
1491 int x86_pmu_handle_irq(struct pt_regs *regs)
1492 {
1493         struct perf_sample_data data;
1494         struct cpu_hw_events *cpuc;
1495         struct perf_event *event;
1496         int idx, handled = 0;
1497         u64 val;
1498
1499         cpuc = this_cpu_ptr(&cpu_hw_events);
1500
1501         /*
1502          * Some chipsets need to unmask the LVTPC in a particular spot
1503          * inside the nmi handler.  As a result, the unmasking was pushed
1504          * into all the nmi handlers.
1505          *
1506          * This generic handler doesn't seem to have any issues where the
1507          * unmasking occurs so it was left at the top.
1508          */
1509         apic_write(APIC_LVTPC, APIC_DM_NMI);
1510
1511         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1512                 if (!test_bit(idx, cpuc->active_mask))
1513                         continue;
1514
1515                 event = cpuc->events[idx];
1516
1517                 val = x86_perf_event_update(event);
1518                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1519                         continue;
1520
1521                 /*
1522                  * event overflow
1523                  */
1524                 handled++;
1525                 perf_sample_data_init(&data, 0, event->hw.last_period);
1526
1527                 if (!x86_perf_event_set_period(event))
1528                         continue;
1529
1530                 if (perf_event_overflow(event, &data, regs))
1531                         x86_pmu_stop(event, 0);
1532         }
1533
1534         if (handled)
1535                 inc_irq_stat(apic_perf_irqs);
1536
1537         return handled;
1538 }
1539
1540 void perf_events_lapic_init(void)
1541 {
1542         if (!x86_pmu.apic || !x86_pmu_initialized())
1543                 return;
1544
1545         /*
1546          * Always use NMI for PMU
1547          */
1548         apic_write(APIC_LVTPC, APIC_DM_NMI);
1549 }
1550
1551 static int
1552 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1553 {
1554         u64 start_clock;
1555         u64 finish_clock;
1556         int ret;
1557
1558         /*
1559          * All PMUs/events that share this PMI handler should make sure to
1560          * increment active_events for their events.
1561          */
1562         if (!atomic_read(&active_events))
1563                 return NMI_DONE;
1564
1565         start_clock = sched_clock();
1566         ret = x86_pmu.handle_irq(regs);
1567         finish_clock = sched_clock();
1568
1569         perf_sample_event_took(finish_clock - start_clock);
1570
1571         return ret;
1572 }
1573 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1574
1575 struct event_constraint emptyconstraint;
1576 struct event_constraint unconstrained;
1577
1578 static int x86_pmu_prepare_cpu(unsigned int cpu)
1579 {
1580         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1581         int i;
1582
1583         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1584                 cpuc->kfree_on_online[i] = NULL;
1585         if (x86_pmu.cpu_prepare)
1586                 return x86_pmu.cpu_prepare(cpu);
1587         return 0;
1588 }
1589
1590 static int x86_pmu_dead_cpu(unsigned int cpu)
1591 {
1592         if (x86_pmu.cpu_dead)
1593                 x86_pmu.cpu_dead(cpu);
1594         return 0;
1595 }
1596
1597 static int x86_pmu_online_cpu(unsigned int cpu)
1598 {
1599         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1600         int i;
1601
1602         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1603                 kfree(cpuc->kfree_on_online[i]);
1604                 cpuc->kfree_on_online[i] = NULL;
1605         }
1606         return 0;
1607 }
1608
1609 static int x86_pmu_starting_cpu(unsigned int cpu)
1610 {
1611         if (x86_pmu.cpu_starting)
1612                 x86_pmu.cpu_starting(cpu);
1613         return 0;
1614 }
1615
1616 static int x86_pmu_dying_cpu(unsigned int cpu)
1617 {
1618         if (x86_pmu.cpu_dying)
1619                 x86_pmu.cpu_dying(cpu);
1620         return 0;
1621 }
1622
1623 static void __init pmu_check_apic(void)
1624 {
1625         if (boot_cpu_has(X86_FEATURE_APIC))
1626                 return;
1627
1628         x86_pmu.apic = 0;
1629         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1630         pr_info("no hardware sampling interrupt available.\n");
1631
1632         /*
1633          * If we have a PMU initialized but no APIC
1634          * interrupts, we cannot sample hardware
1635          * events (user-space has to fall back and
1636          * sample via a hrtimer based software event):
1637          */
1638         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1639
1640 }
1641
1642 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1643         .name = "format",
1644         .attrs = NULL,
1645 };
1646
1647 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1648 {
1649         struct perf_pmu_events_attr *pmu_attr =
1650                 container_of(attr, struct perf_pmu_events_attr, attr);
1651         u64 config = 0;
1652
1653         if (pmu_attr->id < x86_pmu.max_events)
1654                 config = x86_pmu.event_map(pmu_attr->id);
1655
1656         /* string trumps id */
1657         if (pmu_attr->event_str)
1658                 return sprintf(page, "%s", pmu_attr->event_str);
1659
1660         return x86_pmu.events_sysfs_show(page, config);
1661 }
1662 EXPORT_SYMBOL_GPL(events_sysfs_show);
1663
1664 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1665                           char *page)
1666 {
1667         struct perf_pmu_events_ht_attr *pmu_attr =
1668                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1669
1670         /*
1671          * Report conditional events depending on Hyper-Threading.
1672          *
1673          * This is overly conservative as usually the HT special
1674          * handling is not needed if the other CPU thread is idle.
1675          *
1676          * Note this does not (and cannot) handle the case when thread
1677          * siblings are invisible, for example with virtualization
1678          * if they are owned by some other guest.  The user tool
1679          * has to re-read when a thread sibling gets onlined later.
1680          */
1681         return sprintf(page, "%s",
1682                         topology_max_smt_threads() > 1 ?
1683                         pmu_attr->event_str_ht :
1684                         pmu_attr->event_str_noht);
1685 }
1686
1687 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1688 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1689 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1690 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1691 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1692 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1693 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1694 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1695 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1696 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1697
1698 static struct attribute *empty_attrs;
1699
1700 static struct attribute *events_attr[] = {
1701         EVENT_PTR(CPU_CYCLES),
1702         EVENT_PTR(INSTRUCTIONS),
1703         EVENT_PTR(CACHE_REFERENCES),
1704         EVENT_PTR(CACHE_MISSES),
1705         EVENT_PTR(BRANCH_INSTRUCTIONS),
1706         EVENT_PTR(BRANCH_MISSES),
1707         EVENT_PTR(BUS_CYCLES),
1708         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1709         EVENT_PTR(STALLED_CYCLES_BACKEND),
1710         EVENT_PTR(REF_CPU_CYCLES),
1711         NULL,
1712 };
1713
1714 /*
1715  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1716  * out of events_attr attributes.
1717  */
1718 static umode_t
1719 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1720 {
1721         struct perf_pmu_events_attr *pmu_attr;
1722
1723         if (idx >= x86_pmu.max_events)
1724                 return 0;
1725
1726         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1727         /* str trumps id */
1728         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1729 }
1730
1731 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1732         .name = "events",
1733         .attrs = events_attr,
1734         .is_visible = is_visible,
1735 };
1736
1737 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1738 {
1739         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1740         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1741         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1742         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1743         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1744         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1745         ssize_t ret;
1746
1747         /*
1748         * We have whole page size to spend and just little data
1749         * to write, so we can safely use sprintf.
1750         */
1751         ret = sprintf(page, "event=0x%02llx", event);
1752
1753         if (umask)
1754                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1755
1756         if (edge)
1757                 ret += sprintf(page + ret, ",edge");
1758
1759         if (pc)
1760                 ret += sprintf(page + ret, ",pc");
1761
1762         if (any)
1763                 ret += sprintf(page + ret, ",any");
1764
1765         if (inv)
1766                 ret += sprintf(page + ret, ",inv");
1767
1768         if (cmask)
1769                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1770
1771         ret += sprintf(page + ret, "\n");
1772
1773         return ret;
1774 }
1775
1776 static struct attribute_group x86_pmu_attr_group;
1777 static struct attribute_group x86_pmu_caps_group;
1778
1779 static int __init init_hw_perf_events(void)
1780 {
1781         struct x86_pmu_quirk *quirk;
1782         int err;
1783
1784         pr_info("Performance Events: ");
1785
1786         switch (boot_cpu_data.x86_vendor) {
1787         case X86_VENDOR_INTEL:
1788                 err = intel_pmu_init();
1789                 break;
1790         case X86_VENDOR_AMD:
1791                 err = amd_pmu_init();
1792                 break;
1793         case X86_VENDOR_HYGON:
1794                 err = amd_pmu_init();
1795                 x86_pmu.name = "HYGON";
1796                 break;
1797         default:
1798                 err = -ENOTSUPP;
1799         }
1800         if (err != 0) {
1801                 pr_cont("no PMU driver, software events only.\n");
1802                 return 0;
1803         }
1804
1805         pmu_check_apic();
1806
1807         /* sanity check that the hardware exists or is emulated */
1808         if (!check_hw_exists())
1809                 return 0;
1810
1811         pr_cont("%s PMU driver.\n", x86_pmu.name);
1812
1813         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1814
1815         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1816                 quirk->func();
1817
1818         if (!x86_pmu.intel_ctrl)
1819                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1820
1821         perf_events_lapic_init();
1822         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1823
1824         unconstrained = (struct event_constraint)
1825                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1826                                    0, x86_pmu.num_counters, 0, 0);
1827
1828         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1829
1830         if (!x86_pmu.events_sysfs_show)
1831                 x86_pmu_events_group.attrs = &empty_attrs;
1832
1833         pmu.attr_update = x86_pmu.attr_update;
1834
1835         pr_info("... version:                %d\n",     x86_pmu.version);
1836         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1837         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1838         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1839         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1840         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1841         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1842
1843         /*
1844          * Install callbacks. Core will call them for each online
1845          * cpu.
1846          */
1847         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1848                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1849         if (err)
1850                 return err;
1851
1852         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1853                                 "perf/x86:starting", x86_pmu_starting_cpu,
1854                                 x86_pmu_dying_cpu);
1855         if (err)
1856                 goto out;
1857
1858         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1859                                 x86_pmu_online_cpu, NULL);
1860         if (err)
1861                 goto out1;
1862
1863         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1864         if (err)
1865                 goto out2;
1866
1867         return 0;
1868
1869 out2:
1870         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1871 out1:
1872         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1873 out:
1874         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1875         return err;
1876 }
1877 early_initcall(init_hw_perf_events);
1878
1879 static inline void x86_pmu_read(struct perf_event *event)
1880 {
1881         if (x86_pmu.read)
1882                 return x86_pmu.read(event);
1883         x86_perf_event_update(event);
1884 }
1885
1886 /*
1887  * Start group events scheduling transaction
1888  * Set the flag to make pmu::enable() not perform the
1889  * schedulability test, it will be performed at commit time
1890  *
1891  * We only support PERF_PMU_TXN_ADD transactions. Save the
1892  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1893  * transactions.
1894  */
1895 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1896 {
1897         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898
1899         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1900
1901         cpuc->txn_flags = txn_flags;
1902         if (txn_flags & ~PERF_PMU_TXN_ADD)
1903                 return;
1904
1905         perf_pmu_disable(pmu);
1906         __this_cpu_write(cpu_hw_events.n_txn, 0);
1907 }
1908
1909 /*
1910  * Stop group events scheduling transaction
1911  * Clear the flag and pmu::enable() will perform the
1912  * schedulability test.
1913  */
1914 static void x86_pmu_cancel_txn(struct pmu *pmu)
1915 {
1916         unsigned int txn_flags;
1917         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1918
1919         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1920
1921         txn_flags = cpuc->txn_flags;
1922         cpuc->txn_flags = 0;
1923         if (txn_flags & ~PERF_PMU_TXN_ADD)
1924                 return;
1925
1926         /*
1927          * Truncate collected array by the number of events added in this
1928          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1929          */
1930         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1931         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1932         perf_pmu_enable(pmu);
1933 }
1934
1935 /*
1936  * Commit group events scheduling transaction
1937  * Perform the group schedulability test as a whole
1938  * Return 0 if success
1939  *
1940  * Does not cancel the transaction on failure; expects the caller to do this.
1941  */
1942 static int x86_pmu_commit_txn(struct pmu *pmu)
1943 {
1944         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1945         int assign[X86_PMC_IDX_MAX];
1946         int n, ret;
1947
1948         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1949
1950         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1951                 cpuc->txn_flags = 0;
1952                 return 0;
1953         }
1954
1955         n = cpuc->n_events;
1956
1957         if (!x86_pmu_initialized())
1958                 return -EAGAIN;
1959
1960         ret = x86_pmu.schedule_events(cpuc, n, assign);
1961         if (ret)
1962                 return ret;
1963
1964         /*
1965          * copy new assignment, now we know it is possible
1966          * will be used by hw_perf_enable()
1967          */
1968         memcpy(cpuc->assign, assign, n*sizeof(int));
1969
1970         cpuc->txn_flags = 0;
1971         perf_pmu_enable(pmu);
1972         return 0;
1973 }
1974 /*
1975  * a fake_cpuc is used to validate event groups. Due to
1976  * the extra reg logic, we need to also allocate a fake
1977  * per_core and per_cpu structure. Otherwise, group events
1978  * using extra reg may conflict without the kernel being
1979  * able to catch this when the last event gets added to
1980  * the group.
1981  */
1982 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1983 {
1984         intel_cpuc_finish(cpuc);
1985         kfree(cpuc);
1986 }
1987
1988 static struct cpu_hw_events *allocate_fake_cpuc(void)
1989 {
1990         struct cpu_hw_events *cpuc;
1991         int cpu = raw_smp_processor_id();
1992
1993         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1994         if (!cpuc)
1995                 return ERR_PTR(-ENOMEM);
1996         cpuc->is_fake = 1;
1997
1998         if (intel_cpuc_prepare(cpuc, cpu))
1999                 goto error;
2000
2001         return cpuc;
2002 error:
2003         free_fake_cpuc(cpuc);
2004         return ERR_PTR(-ENOMEM);
2005 }
2006
2007 /*
2008  * validate that we can schedule this event
2009  */
2010 static int validate_event(struct perf_event *event)
2011 {
2012         struct cpu_hw_events *fake_cpuc;
2013         struct event_constraint *c;
2014         int ret = 0;
2015
2016         fake_cpuc = allocate_fake_cpuc();
2017         if (IS_ERR(fake_cpuc))
2018                 return PTR_ERR(fake_cpuc);
2019
2020         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2021
2022         if (!c || !c->weight)
2023                 ret = -EINVAL;
2024
2025         if (x86_pmu.put_event_constraints)
2026                 x86_pmu.put_event_constraints(fake_cpuc, event);
2027
2028         free_fake_cpuc(fake_cpuc);
2029
2030         return ret;
2031 }
2032
2033 /*
2034  * validate a single event group
2035  *
2036  * validation include:
2037  *      - check events are compatible which each other
2038  *      - events do not compete for the same counter
2039  *      - number of events <= number of counters
2040  *
2041  * validation ensures the group can be loaded onto the
2042  * PMU if it was the only group available.
2043  */
2044 static int validate_group(struct perf_event *event)
2045 {
2046         struct perf_event *leader = event->group_leader;
2047         struct cpu_hw_events *fake_cpuc;
2048         int ret = -EINVAL, n;
2049
2050         fake_cpuc = allocate_fake_cpuc();
2051         if (IS_ERR(fake_cpuc))
2052                 return PTR_ERR(fake_cpuc);
2053         /*
2054          * the event is not yet connected with its
2055          * siblings therefore we must first collect
2056          * existing siblings, then add the new event
2057          * before we can simulate the scheduling
2058          */
2059         n = collect_events(fake_cpuc, leader, true);
2060         if (n < 0)
2061                 goto out;
2062
2063         fake_cpuc->n_events = n;
2064         n = collect_events(fake_cpuc, event, false);
2065         if (n < 0)
2066                 goto out;
2067
2068         fake_cpuc->n_events = 0;
2069         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2070
2071 out:
2072         free_fake_cpuc(fake_cpuc);
2073         return ret;
2074 }
2075
2076 static int x86_pmu_event_init(struct perf_event *event)
2077 {
2078         struct pmu *tmp;
2079         int err;
2080
2081         switch (event->attr.type) {
2082         case PERF_TYPE_RAW:
2083         case PERF_TYPE_HARDWARE:
2084         case PERF_TYPE_HW_CACHE:
2085                 break;
2086
2087         default:
2088                 return -ENOENT;
2089         }
2090
2091         err = __x86_pmu_event_init(event);
2092         if (!err) {
2093                 /*
2094                  * we temporarily connect event to its pmu
2095                  * such that validate_group() can classify
2096                  * it as an x86 event using is_x86_event()
2097                  */
2098                 tmp = event->pmu;
2099                 event->pmu = &pmu;
2100
2101                 if (event->group_leader != event)
2102                         err = validate_group(event);
2103                 else
2104                         err = validate_event(event);
2105
2106                 event->pmu = tmp;
2107         }
2108         if (err) {
2109                 if (event->destroy)
2110                         event->destroy(event);
2111                 event->destroy = NULL;
2112         }
2113
2114         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2115             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2116                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2117
2118         return err;
2119 }
2120
2121 static void refresh_pce(void *ignored)
2122 {
2123         load_mm_cr4_irqsoff(this_cpu_read(cpu_tlbstate.loaded_mm));
2124 }
2125
2126 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2127 {
2128         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2129                 return;
2130
2131         /*
2132          * This function relies on not being called concurrently in two
2133          * tasks in the same mm.  Otherwise one task could observe
2134          * perf_rdpmc_allowed > 1 and return all the way back to
2135          * userspace with CR4.PCE clear while another task is still
2136          * doing on_each_cpu_mask() to propagate CR4.PCE.
2137          *
2138          * For now, this can't happen because all callers hold mmap_sem
2139          * for write.  If this changes, we'll need a different solution.
2140          */
2141         lockdep_assert_held_write(&mm->mmap_sem);
2142
2143         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2144                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2145 }
2146
2147 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2148 {
2149
2150         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2151                 return;
2152
2153         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2154                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2155 }
2156
2157 static int x86_pmu_event_idx(struct perf_event *event)
2158 {
2159         int idx = event->hw.idx;
2160
2161         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2162                 return 0;
2163
2164         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2165                 idx -= INTEL_PMC_IDX_FIXED;
2166                 idx |= 1 << 30;
2167         }
2168
2169         return idx + 1;
2170 }
2171
2172 static ssize_t get_attr_rdpmc(struct device *cdev,
2173                               struct device_attribute *attr,
2174                               char *buf)
2175 {
2176         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2177 }
2178
2179 static ssize_t set_attr_rdpmc(struct device *cdev,
2180                               struct device_attribute *attr,
2181                               const char *buf, size_t count)
2182 {
2183         unsigned long val;
2184         ssize_t ret;
2185
2186         ret = kstrtoul(buf, 0, &val);
2187         if (ret)
2188                 return ret;
2189
2190         if (val > 2)
2191                 return -EINVAL;
2192
2193         if (x86_pmu.attr_rdpmc_broken)
2194                 return -ENOTSUPP;
2195
2196         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2197                 /*
2198                  * Changing into or out of always available, aka
2199                  * perf-event-bypassing mode.  This path is extremely slow,
2200                  * but only root can trigger it, so it's okay.
2201                  */
2202                 if (val == 2)
2203                         static_branch_inc(&rdpmc_always_available_key);
2204                 else
2205                         static_branch_dec(&rdpmc_always_available_key);
2206                 on_each_cpu(refresh_pce, NULL, 1);
2207         }
2208
2209         x86_pmu.attr_rdpmc = val;
2210
2211         return count;
2212 }
2213
2214 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2215
2216 static struct attribute *x86_pmu_attrs[] = {
2217         &dev_attr_rdpmc.attr,
2218         NULL,
2219 };
2220
2221 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2222         .attrs = x86_pmu_attrs,
2223 };
2224
2225 static ssize_t max_precise_show(struct device *cdev,
2226                                   struct device_attribute *attr,
2227                                   char *buf)
2228 {
2229         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2230 }
2231
2232 static DEVICE_ATTR_RO(max_precise);
2233
2234 static struct attribute *x86_pmu_caps_attrs[] = {
2235         &dev_attr_max_precise.attr,
2236         NULL
2237 };
2238
2239 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2240         .name = "caps",
2241         .attrs = x86_pmu_caps_attrs,
2242 };
2243
2244 static const struct attribute_group *x86_pmu_attr_groups[] = {
2245         &x86_pmu_attr_group,
2246         &x86_pmu_format_group,
2247         &x86_pmu_events_group,
2248         &x86_pmu_caps_group,
2249         NULL,
2250 };
2251
2252 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2253 {
2254         if (x86_pmu.sched_task)
2255                 x86_pmu.sched_task(ctx, sched_in);
2256 }
2257
2258 void perf_check_microcode(void)
2259 {
2260         if (x86_pmu.check_microcode)
2261                 x86_pmu.check_microcode();
2262 }
2263
2264 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2265 {
2266         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2267                 return -EINVAL;
2268
2269         if (value && x86_pmu.limit_period) {
2270                 if (x86_pmu.limit_period(event, value) > value)
2271                         return -EINVAL;
2272         }
2273
2274         return 0;
2275 }
2276
2277 static int x86_pmu_aux_output_match(struct perf_event *event)
2278 {
2279         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2280                 return 0;
2281
2282         if (x86_pmu.aux_output_match)
2283                 return x86_pmu.aux_output_match(event);
2284
2285         return 0;
2286 }
2287
2288 static struct pmu pmu = {
2289         .pmu_enable             = x86_pmu_enable,
2290         .pmu_disable            = x86_pmu_disable,
2291
2292         .attr_groups            = x86_pmu_attr_groups,
2293
2294         .event_init             = x86_pmu_event_init,
2295
2296         .event_mapped           = x86_pmu_event_mapped,
2297         .event_unmapped         = x86_pmu_event_unmapped,
2298
2299         .add                    = x86_pmu_add,
2300         .del                    = x86_pmu_del,
2301         .start                  = x86_pmu_start,
2302         .stop                   = x86_pmu_stop,
2303         .read                   = x86_pmu_read,
2304
2305         .start_txn              = x86_pmu_start_txn,
2306         .cancel_txn             = x86_pmu_cancel_txn,
2307         .commit_txn             = x86_pmu_commit_txn,
2308
2309         .event_idx              = x86_pmu_event_idx,
2310         .sched_task             = x86_pmu_sched_task,
2311         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2312         .check_period           = x86_pmu_check_period,
2313
2314         .aux_output_match       = x86_pmu_aux_output_match,
2315 };
2316
2317 void arch_perf_update_userpage(struct perf_event *event,
2318                                struct perf_event_mmap_page *userpg, u64 now)
2319 {
2320         struct cyc2ns_data data;
2321         u64 offset;
2322
2323         userpg->cap_user_time = 0;
2324         userpg->cap_user_time_zero = 0;
2325         userpg->cap_user_rdpmc =
2326                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2327         userpg->pmc_width = x86_pmu.cntval_bits;
2328
2329         if (!using_native_sched_clock() || !sched_clock_stable())
2330                 return;
2331
2332         cyc2ns_read_begin(&data);
2333
2334         offset = data.cyc2ns_offset + __sched_clock_offset;
2335
2336         /*
2337          * Internal timekeeping for enabled/running/stopped times
2338          * is always in the local_clock domain.
2339          */
2340         userpg->cap_user_time = 1;
2341         userpg->time_mult = data.cyc2ns_mul;
2342         userpg->time_shift = data.cyc2ns_shift;
2343         userpg->time_offset = offset - now;
2344
2345         /*
2346          * cap_user_time_zero doesn't make sense when we're using a different
2347          * time base for the records.
2348          */
2349         if (!event->attr.use_clockid) {
2350                 userpg->cap_user_time_zero = 1;
2351                 userpg->time_zero = offset;
2352         }
2353
2354         cyc2ns_read_end();
2355 }
2356
2357 /*
2358  * Determine whether the regs were taken from an irq/exception handler rather
2359  * than from perf_arch_fetch_caller_regs().
2360  */
2361 static bool perf_hw_regs(struct pt_regs *regs)
2362 {
2363         return regs->flags & X86_EFLAGS_FIXED;
2364 }
2365
2366 void
2367 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2368 {
2369         struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2370         struct unwind_state state;
2371         unsigned long addr;
2372
2373         if (guest_cbs && guest_cbs->is_in_guest()) {
2374                 /* TODO: We don't support guest os callchain now */
2375                 return;
2376         }
2377
2378         if (perf_callchain_store(entry, regs->ip))
2379                 return;
2380
2381         if (perf_hw_regs(regs))
2382                 unwind_start(&state, current, regs, NULL);
2383         else
2384                 unwind_start(&state, current, NULL, (void *)regs->sp);
2385
2386         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2387                 addr = unwind_get_return_address(&state);
2388                 if (!addr || perf_callchain_store(entry, addr))
2389                         return;
2390         }
2391 }
2392
2393 static inline int
2394 valid_user_frame(const void __user *fp, unsigned long size)
2395 {
2396         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2397 }
2398
2399 static unsigned long get_segment_base(unsigned int segment)
2400 {
2401         struct desc_struct *desc;
2402         unsigned int idx = segment >> 3;
2403
2404         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2405 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2406                 struct ldt_struct *ldt;
2407
2408                 /* IRQs are off, so this synchronizes with smp_store_release */
2409                 ldt = READ_ONCE(current->active_mm->context.ldt);
2410                 if (!ldt || idx >= ldt->nr_entries)
2411                         return 0;
2412
2413                 desc = &ldt->entries[idx];
2414 #else
2415                 return 0;
2416 #endif
2417         } else {
2418                 if (idx >= GDT_ENTRIES)
2419                         return 0;
2420
2421                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2422         }
2423
2424         return get_desc_base(desc);
2425 }
2426
2427 #ifdef CONFIG_IA32_EMULATION
2428
2429 #include <linux/compat.h>
2430
2431 static inline int
2432 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2433 {
2434         /* 32-bit process in 64-bit kernel. */
2435         unsigned long ss_base, cs_base;
2436         struct stack_frame_ia32 frame;
2437         const void __user *fp;
2438
2439         if (!test_thread_flag(TIF_IA32))
2440                 return 0;
2441
2442         cs_base = get_segment_base(regs->cs);
2443         ss_base = get_segment_base(regs->ss);
2444
2445         fp = compat_ptr(ss_base + regs->bp);
2446         pagefault_disable();
2447         while (entry->nr < entry->max_stack) {
2448                 unsigned long bytes;
2449                 frame.next_frame     = 0;
2450                 frame.return_address = 0;
2451
2452                 if (!valid_user_frame(fp, sizeof(frame)))
2453                         break;
2454
2455                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2456                 if (bytes != 0)
2457                         break;
2458                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2459                 if (bytes != 0)
2460                         break;
2461
2462                 perf_callchain_store(entry, cs_base + frame.return_address);
2463                 fp = compat_ptr(ss_base + frame.next_frame);
2464         }
2465         pagefault_enable();
2466         return 1;
2467 }
2468 #else
2469 static inline int
2470 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2471 {
2472     return 0;
2473 }
2474 #endif
2475
2476 void
2477 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2478 {
2479         struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2480         struct stack_frame frame;
2481         const unsigned long __user *fp;
2482
2483         if (guest_cbs && guest_cbs->is_in_guest()) {
2484                 /* TODO: We don't support guest os callchain now */
2485                 return;
2486         }
2487
2488         /*
2489          * We don't know what to do with VM86 stacks.. ignore them for now.
2490          */
2491         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2492                 return;
2493
2494         fp = (unsigned long __user *)regs->bp;
2495
2496         perf_callchain_store(entry, regs->ip);
2497
2498         if (!nmi_uaccess_okay())
2499                 return;
2500
2501         if (perf_callchain_user32(regs, entry))
2502                 return;
2503
2504         pagefault_disable();
2505         while (entry->nr < entry->max_stack) {
2506                 unsigned long bytes;
2507
2508                 frame.next_frame             = NULL;
2509                 frame.return_address = 0;
2510
2511                 if (!valid_user_frame(fp, sizeof(frame)))
2512                         break;
2513
2514                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2515                 if (bytes != 0)
2516                         break;
2517                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2518                 if (bytes != 0)
2519                         break;
2520
2521                 perf_callchain_store(entry, frame.return_address);
2522                 fp = (void __user *)frame.next_frame;
2523         }
2524         pagefault_enable();
2525 }
2526
2527 /*
2528  * Deal with code segment offsets for the various execution modes:
2529  *
2530  *   VM86 - the good olde 16 bit days, where the linear address is
2531  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2532  *
2533  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2534  *          to figure out what the 32bit base address is.
2535  *
2536  *    X32 - has TIF_X32 set, but is running in x86_64
2537  *
2538  * X86_64 - CS,DS,SS,ES are all zero based.
2539  */
2540 static unsigned long code_segment_base(struct pt_regs *regs)
2541 {
2542         /*
2543          * For IA32 we look at the GDT/LDT segment base to convert the
2544          * effective IP to a linear address.
2545          */
2546
2547 #ifdef CONFIG_X86_32
2548         /*
2549          * If we are in VM86 mode, add the segment offset to convert to a
2550          * linear address.
2551          */
2552         if (regs->flags & X86_VM_MASK)
2553                 return 0x10 * regs->cs;
2554
2555         if (user_mode(regs) && regs->cs != __USER_CS)
2556                 return get_segment_base(regs->cs);
2557 #else
2558         if (user_mode(regs) && !user_64bit_mode(regs) &&
2559             regs->cs != __USER32_CS)
2560                 return get_segment_base(regs->cs);
2561 #endif
2562         return 0;
2563 }
2564
2565 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2566 {
2567         struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2568
2569         if (guest_cbs && guest_cbs->is_in_guest())
2570                 return guest_cbs->get_guest_ip();
2571
2572         return regs->ip + code_segment_base(regs);
2573 }
2574
2575 unsigned long perf_misc_flags(struct pt_regs *regs)
2576 {
2577         struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2578         int misc = 0;
2579
2580         if (guest_cbs && guest_cbs->is_in_guest()) {
2581                 if (guest_cbs->is_user_mode())
2582                         misc |= PERF_RECORD_MISC_GUEST_USER;
2583                 else
2584                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2585         } else {
2586                 if (user_mode(regs))
2587                         misc |= PERF_RECORD_MISC_USER;
2588                 else
2589                         misc |= PERF_RECORD_MISC_KERNEL;
2590         }
2591
2592         if (regs->flags & PERF_EFLAGS_EXACT)
2593                 misc |= PERF_RECORD_MISC_EXACT_IP;
2594
2595         return misc;
2596 }
2597
2598 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2599 {
2600         cap->version            = x86_pmu.version;
2601         cap->num_counters_gp    = x86_pmu.num_counters;
2602         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2603         cap->bit_width_gp       = x86_pmu.cntval_bits;
2604         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2605         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2606         cap->events_mask_len    = x86_pmu.events_mask_len;
2607 }
2608 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);