2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
33 #include <asm/stacktrace.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
42 #include <asm/unwind.h>
44 #include "perf_event.h"
46 struct x86_pmu x86_pmu __read_mostly;
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64 x86_perf_event_update(struct perf_event *event)
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
127 if (event->attr.config1 & ~er->valid_mask)
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
134 reg->config = event->attr.config1;
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
145 #ifdef CONFIG_X86_LOCAL_APIC
147 static bool reserve_pmc_hardware(void)
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
167 i = x86_pmu.num_counters;
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
176 static void release_pmc_hardware(void)
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
193 static bool check_hw_exists(void)
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
201 * Check to see if the BIOS enabled any of the counters, if so
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
238 if (reg_safe == -1) {
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
258 * We still allow the PMU driver to operate:
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
280 static void hw_perf_event_destroy(struct perf_event *event)
282 x86_release_hardware();
283 atomic_dec(&active_events);
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
288 hw_perf_event_destroy(event);
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
294 static inline int x86_pmu_initialized(void)
296 return x86_pmu.handle_irq != NULL;
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
306 config = attr->config;
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
336 int x86_reserve_hardware(void)
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
346 reserve_ds_buffers();
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
356 void x86_release_hardware(void)
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
366 * Check if we can create event of a certain type (that no conflicting events
369 int x86_add_exclusive(unsigned int what)
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
391 atomic_inc(&active_events);
395 mutex_unlock(&pmc_reserve_mutex);
399 void x86_del_exclusive(unsigned int what)
401 atomic_dec(&active_events);
404 * See the comment in x86_add_exclusive().
406 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
409 atomic_dec(&x86_pmu.lbr_exclusive[what]);
412 int x86_setup_perfctr(struct perf_event *event)
414 struct perf_event_attr *attr = &event->attr;
415 struct hw_perf_event *hwc = &event->hw;
418 if (!is_sampling_event(event)) {
419 hwc->sample_period = x86_pmu.max_period;
420 hwc->last_period = hwc->sample_period;
421 local64_set(&hwc->period_left, hwc->sample_period);
424 if (attr->type == PERF_TYPE_RAW)
425 return x86_pmu_extra_regs(event->attr.config, event);
427 if (attr->type == PERF_TYPE_HW_CACHE)
428 return set_ext_hw_attr(hwc, event);
430 if (attr->config >= x86_pmu.max_events)
433 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
438 config = x86_pmu.event_map(attr->config);
446 hwc->config |= config;
452 * check that branch_sample_type is compatible with
453 * settings needed for precise_ip > 1 which implies
454 * using the LBR to capture ALL taken branches at the
455 * priv levels of the measurement
457 static inline int precise_br_compat(struct perf_event *event)
459 u64 m = event->attr.branch_sample_type;
462 /* must capture all branches */
463 if (!(m & PERF_SAMPLE_BRANCH_ANY))
466 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
468 if (!event->attr.exclude_user)
469 b |= PERF_SAMPLE_BRANCH_USER;
471 if (!event->attr.exclude_kernel)
472 b |= PERF_SAMPLE_BRANCH_KERNEL;
475 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
481 int x86_pmu_max_precise(void)
485 /* Support for constant skid */
486 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
489 /* Support for IP fixup */
490 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
493 if (x86_pmu.pebs_prec_dist)
499 int x86_pmu_hw_config(struct perf_event *event)
501 if (event->attr.precise_ip) {
502 int precise = x86_pmu_max_precise();
504 if (event->attr.precise_ip > precise)
507 /* There's no sense in having PEBS for non sampling events: */
508 if (!is_sampling_event(event))
512 * check that PEBS LBR correction does not conflict with
513 * whatever the user is asking with attr->branch_sample_type
515 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
516 u64 *br_type = &event->attr.branch_sample_type;
518 if (has_branch_stack(event)) {
519 if (!precise_br_compat(event))
522 /* branch_sample_type is compatible */
526 * user did not specify branch_sample_type
528 * For PEBS fixups, we capture all
529 * the branches at the priv level of the
532 *br_type = PERF_SAMPLE_BRANCH_ANY;
534 if (!event->attr.exclude_user)
535 *br_type |= PERF_SAMPLE_BRANCH_USER;
537 if (!event->attr.exclude_kernel)
538 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
542 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
543 event->attach_state |= PERF_ATTACH_TASK_DATA;
547 * (keep 'enabled' bit clear for now)
549 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
552 * Count user and OS events unless requested not to
554 if (!event->attr.exclude_user)
555 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
556 if (!event->attr.exclude_kernel)
557 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
559 if (event->attr.type == PERF_TYPE_RAW)
560 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
562 if (event->attr.sample_period && x86_pmu.limit_period) {
563 if (x86_pmu.limit_period(event, event->attr.sample_period) >
564 event->attr.sample_period)
568 return x86_setup_perfctr(event);
572 * Setup the hardware configuration for a given attr_type
574 static int __x86_pmu_event_init(struct perf_event *event)
578 if (!x86_pmu_initialized())
581 err = x86_reserve_hardware();
585 atomic_inc(&active_events);
586 event->destroy = hw_perf_event_destroy;
589 event->hw.last_cpu = -1;
590 event->hw.last_tag = ~0ULL;
593 event->hw.extra_reg.idx = EXTRA_REG_NONE;
594 event->hw.branch_reg.idx = EXTRA_REG_NONE;
596 return x86_pmu.hw_config(event);
599 void x86_pmu_disable_all(void)
601 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
604 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
607 if (!test_bit(idx, cpuc->active_mask))
609 rdmsrl(x86_pmu_config_addr(idx), val);
610 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
612 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
613 wrmsrl(x86_pmu_config_addr(idx), val);
618 * There may be PMI landing after enabled=0. The PMI hitting could be before or
621 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
622 * It will not be re-enabled in the NMI handler again, because enabled=0. After
623 * handling the NMI, disable_all will be called, which will not change the
624 * state either. If PMI hits after disable_all, the PMU is already disabled
625 * before entering NMI handler. The NMI handler will not change the state
628 * So either situation is harmless.
630 static void x86_pmu_disable(struct pmu *pmu)
632 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
634 if (!x86_pmu_initialized())
644 x86_pmu.disable_all();
647 void x86_pmu_enable_all(int added)
649 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
653 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
655 if (!test_bit(idx, cpuc->active_mask))
658 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
662 static struct pmu pmu;
664 static inline int is_x86_event(struct perf_event *event)
666 return event->pmu == &pmu;
670 * Event scheduler state:
672 * Assign events iterating over all events and counters, beginning
673 * with events with least weights first. Keep the current iterator
674 * state in struct sched_state.
678 int event; /* event index */
679 int counter; /* counter index */
680 int unassigned; /* number of events to be assigned left */
681 int nr_gp; /* number of GP counters used */
682 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
685 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
686 #define SCHED_STATES_MAX 2
693 struct event_constraint **constraints;
694 struct sched_state state;
695 struct sched_state saved[SCHED_STATES_MAX];
699 * Initialize interator that runs through all events and counters.
701 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
702 int num, int wmin, int wmax, int gpmax)
706 memset(sched, 0, sizeof(*sched));
707 sched->max_events = num;
708 sched->max_weight = wmax;
709 sched->max_gp = gpmax;
710 sched->constraints = constraints;
712 for (idx = 0; idx < num; idx++) {
713 if (constraints[idx]->weight == wmin)
717 sched->state.event = idx; /* start with min weight */
718 sched->state.weight = wmin;
719 sched->state.unassigned = num;
722 static void perf_sched_save_state(struct perf_sched *sched)
724 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
727 sched->saved[sched->saved_states] = sched->state;
728 sched->saved_states++;
731 static bool perf_sched_restore_state(struct perf_sched *sched)
733 if (!sched->saved_states)
736 sched->saved_states--;
737 sched->state = sched->saved[sched->saved_states];
739 /* continue with next counter: */
740 clear_bit(sched->state.counter++, sched->state.used);
746 * Select a counter for the current event to schedule. Return true on
749 static bool __perf_sched_find_counter(struct perf_sched *sched)
751 struct event_constraint *c;
754 if (!sched->state.unassigned)
757 if (sched->state.event >= sched->max_events)
760 c = sched->constraints[sched->state.event];
761 /* Prefer fixed purpose counters */
762 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
763 idx = INTEL_PMC_IDX_FIXED;
764 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
765 if (!__test_and_set_bit(idx, sched->state.used))
770 /* Grab the first unused counter starting with idx */
771 idx = sched->state.counter;
772 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
773 if (!__test_and_set_bit(idx, sched->state.used)) {
774 if (sched->state.nr_gp++ >= sched->max_gp)
784 sched->state.counter = idx;
787 perf_sched_save_state(sched);
792 static bool perf_sched_find_counter(struct perf_sched *sched)
794 while (!__perf_sched_find_counter(sched)) {
795 if (!perf_sched_restore_state(sched))
803 * Go through all unassigned events and find the next one to schedule.
804 * Take events with the least weight first. Return true on success.
806 static bool perf_sched_next_event(struct perf_sched *sched)
808 struct event_constraint *c;
810 if (!sched->state.unassigned || !--sched->state.unassigned)
815 sched->state.event++;
816 if (sched->state.event >= sched->max_events) {
818 sched->state.event = 0;
819 sched->state.weight++;
820 if (sched->state.weight > sched->max_weight)
823 c = sched->constraints[sched->state.event];
824 } while (c->weight != sched->state.weight);
826 sched->state.counter = 0; /* start with first counter */
832 * Assign a counter for each event.
834 int perf_assign_events(struct event_constraint **constraints, int n,
835 int wmin, int wmax, int gpmax, int *assign)
837 struct perf_sched sched;
839 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
842 if (!perf_sched_find_counter(&sched))
845 assign[sched.state.event] = sched.state.counter;
846 } while (perf_sched_next_event(&sched));
848 return sched.state.unassigned;
850 EXPORT_SYMBOL_GPL(perf_assign_events);
852 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
854 struct event_constraint *c;
855 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
856 struct perf_event *e;
857 int i, wmin, wmax, unsched = 0;
858 struct hw_perf_event *hwc;
860 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
862 if (x86_pmu.start_scheduling)
863 x86_pmu.start_scheduling(cpuc);
865 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
866 cpuc->event_constraint[i] = NULL;
867 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
868 cpuc->event_constraint[i] = c;
870 wmin = min(wmin, c->weight);
871 wmax = max(wmax, c->weight);
875 * fastpath, try to reuse previous register
877 for (i = 0; i < n; i++) {
878 hwc = &cpuc->event_list[i]->hw;
879 c = cpuc->event_constraint[i];
885 /* constraint still honored */
886 if (!test_bit(hwc->idx, c->idxmsk))
889 /* not already used */
890 if (test_bit(hwc->idx, used_mask))
893 __set_bit(hwc->idx, used_mask);
895 assign[i] = hwc->idx;
900 int gpmax = x86_pmu.num_counters;
903 * Do not allow scheduling of more than half the available
906 * This helps avoid counter starvation of sibling thread by
907 * ensuring at most half the counters cannot be in exclusive
908 * mode. There is no designated counters for the limits. Any
909 * N/2 counters can be used. This helps with events with
910 * specific counter constraints.
912 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
913 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
916 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
917 wmax, gpmax, assign);
921 * In case of success (unsched = 0), mark events as committed,
922 * so we do not put_constraint() in case new events are added
923 * and fail to be scheduled
925 * We invoke the lower level commit callback to lock the resource
927 * We do not need to do all of this in case we are called to
928 * validate an event group (assign == NULL)
930 if (!unsched && assign) {
931 for (i = 0; i < n; i++) {
932 e = cpuc->event_list[i];
933 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
934 if (x86_pmu.commit_scheduling)
935 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
938 for (i = 0; i < n; i++) {
939 e = cpuc->event_list[i];
941 * do not put_constraint() on comitted events,
942 * because they are good to go
944 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
948 * release events that failed scheduling
950 if (x86_pmu.put_event_constraints)
951 x86_pmu.put_event_constraints(cpuc, e);
955 if (x86_pmu.stop_scheduling)
956 x86_pmu.stop_scheduling(cpuc);
958 return unsched ? -EINVAL : 0;
962 * dogrp: true if must collect siblings events (group)
963 * returns total number of events and error code
965 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
967 struct perf_event *event;
970 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
972 /* current number of events already accepted */
975 if (is_x86_event(leader)) {
978 cpuc->event_list[n] = leader;
984 list_for_each_entry(event, &leader->sibling_list, group_entry) {
985 if (!is_x86_event(event) ||
986 event->state <= PERF_EVENT_STATE_OFF)
992 cpuc->event_list[n] = event;
998 static inline void x86_assign_hw_event(struct perf_event *event,
999 struct cpu_hw_events *cpuc, int i)
1001 struct hw_perf_event *hwc = &event->hw;
1003 hwc->idx = cpuc->assign[i];
1004 hwc->last_cpu = smp_processor_id();
1005 hwc->last_tag = ++cpuc->tags[i];
1007 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1008 hwc->config_base = 0;
1009 hwc->event_base = 0;
1010 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1011 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1012 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1013 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1015 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1016 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1017 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1021 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1022 struct cpu_hw_events *cpuc,
1025 return hwc->idx == cpuc->assign[i] &&
1026 hwc->last_cpu == smp_processor_id() &&
1027 hwc->last_tag == cpuc->tags[i];
1030 static void x86_pmu_start(struct perf_event *event, int flags);
1032 static void x86_pmu_enable(struct pmu *pmu)
1034 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1035 struct perf_event *event;
1036 struct hw_perf_event *hwc;
1037 int i, added = cpuc->n_added;
1039 if (!x86_pmu_initialized())
1045 if (cpuc->n_added) {
1046 int n_running = cpuc->n_events - cpuc->n_added;
1048 * apply assignment obtained either from
1049 * hw_perf_group_sched_in() or x86_pmu_enable()
1051 * step1: save events moving to new counters
1053 for (i = 0; i < n_running; i++) {
1054 event = cpuc->event_list[i];
1058 * we can avoid reprogramming counter if:
1059 * - assigned same counter as last time
1060 * - running on same CPU as last time
1061 * - no other event has used the counter since
1063 if (hwc->idx == -1 ||
1064 match_prev_assignment(hwc, cpuc, i))
1068 * Ensure we don't accidentally enable a stopped
1069 * counter simply because we rescheduled.
1071 if (hwc->state & PERF_HES_STOPPED)
1072 hwc->state |= PERF_HES_ARCH;
1074 x86_pmu_stop(event, PERF_EF_UPDATE);
1078 * step2: reprogram moved events into new counters
1080 for (i = 0; i < cpuc->n_events; i++) {
1081 event = cpuc->event_list[i];
1084 if (!match_prev_assignment(hwc, cpuc, i))
1085 x86_assign_hw_event(event, cpuc, i);
1086 else if (i < n_running)
1089 if (hwc->state & PERF_HES_ARCH)
1092 x86_pmu_start(event, PERF_EF_RELOAD);
1095 perf_events_lapic_init();
1101 x86_pmu.enable_all(added);
1104 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1107 * Set the next IRQ period, based on the hwc->period_left value.
1108 * To be called with the event disabled in hw:
1110 int x86_perf_event_set_period(struct perf_event *event)
1112 struct hw_perf_event *hwc = &event->hw;
1113 s64 left = local64_read(&hwc->period_left);
1114 s64 period = hwc->sample_period;
1115 int ret = 0, idx = hwc->idx;
1117 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1121 * If we are way outside a reasonable range then just skip forward:
1123 if (unlikely(left <= -period)) {
1125 local64_set(&hwc->period_left, left);
1126 hwc->last_period = period;
1130 if (unlikely(left <= 0)) {
1132 local64_set(&hwc->period_left, left);
1133 hwc->last_period = period;
1137 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1139 if (unlikely(left < 2))
1142 if (left > x86_pmu.max_period)
1143 left = x86_pmu.max_period;
1145 if (x86_pmu.limit_period)
1146 left = x86_pmu.limit_period(event, left);
1148 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1151 * The hw event starts counting from this event offset,
1152 * mark it to be able to extra future deltas:
1154 local64_set(&hwc->prev_count, (u64)-left);
1156 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1159 * Due to erratum on certan cpu we need
1160 * a second write to be sure the register
1161 * is updated properly
1163 if (x86_pmu.perfctr_second_write) {
1164 wrmsrl(hwc->event_base,
1165 (u64)(-left) & x86_pmu.cntval_mask);
1168 perf_event_update_userpage(event);
1173 void x86_pmu_enable_event(struct perf_event *event)
1175 if (__this_cpu_read(cpu_hw_events.enabled))
1176 __x86_pmu_enable_event(&event->hw,
1177 ARCH_PERFMON_EVENTSEL_ENABLE);
1181 * Add a single event to the PMU.
1183 * The event is added to the group of enabled events
1184 * but only if it can be scehduled with existing events.
1186 static int x86_pmu_add(struct perf_event *event, int flags)
1188 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189 struct hw_perf_event *hwc;
1190 int assign[X86_PMC_IDX_MAX];
1195 n0 = cpuc->n_events;
1196 ret = n = collect_events(cpuc, event, false);
1200 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1201 if (!(flags & PERF_EF_START))
1202 hwc->state |= PERF_HES_ARCH;
1205 * If group events scheduling transaction was started,
1206 * skip the schedulability test here, it will be performed
1207 * at commit time (->commit_txn) as a whole.
1209 * If commit fails, we'll call ->del() on all events
1210 * for which ->add() was called.
1212 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1215 ret = x86_pmu.schedule_events(cpuc, n, assign);
1219 * copy new assignment, now we know it is possible
1220 * will be used by hw_perf_enable()
1222 memcpy(cpuc->assign, assign, n*sizeof(int));
1226 * Commit the collect_events() state. See x86_pmu_del() and
1230 cpuc->n_added += n - n0;
1231 cpuc->n_txn += n - n0;
1235 * This is before x86_pmu_enable() will call x86_pmu_start(),
1236 * so we enable LBRs before an event needs them etc..
1246 static void x86_pmu_start(struct perf_event *event, int flags)
1248 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1249 int idx = event->hw.idx;
1251 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1254 if (WARN_ON_ONCE(idx == -1))
1257 if (flags & PERF_EF_RELOAD) {
1258 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1259 x86_perf_event_set_period(event);
1262 event->hw.state = 0;
1264 cpuc->events[idx] = event;
1265 __set_bit(idx, cpuc->active_mask);
1266 __set_bit(idx, cpuc->running);
1267 x86_pmu.enable(event);
1268 perf_event_update_userpage(event);
1271 void perf_event_print_debug(void)
1273 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1275 struct cpu_hw_events *cpuc;
1276 unsigned long flags;
1279 if (!x86_pmu.num_counters)
1282 local_irq_save(flags);
1284 cpu = smp_processor_id();
1285 cpuc = &per_cpu(cpu_hw_events, cpu);
1287 if (x86_pmu.version >= 2) {
1288 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1289 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1290 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1291 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1294 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1295 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1296 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1297 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1298 if (x86_pmu.pebs_constraints) {
1299 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1300 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1302 if (x86_pmu.lbr_nr) {
1303 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1304 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1307 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1309 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1310 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1311 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1313 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1315 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1316 cpu, idx, pmc_ctrl);
1317 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1318 cpu, idx, pmc_count);
1319 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1320 cpu, idx, prev_left);
1322 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1323 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1325 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1326 cpu, idx, pmc_count);
1328 local_irq_restore(flags);
1331 void x86_pmu_stop(struct perf_event *event, int flags)
1333 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1334 struct hw_perf_event *hwc = &event->hw;
1336 if (test_bit(hwc->idx, cpuc->active_mask)) {
1337 x86_pmu.disable(event);
1338 __clear_bit(hwc->idx, cpuc->active_mask);
1339 cpuc->events[hwc->idx] = NULL;
1340 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1341 hwc->state |= PERF_HES_STOPPED;
1344 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1346 * Drain the remaining delta count out of a event
1347 * that we are disabling:
1349 x86_perf_event_update(event);
1350 hwc->state |= PERF_HES_UPTODATE;
1354 static void x86_pmu_del(struct perf_event *event, int flags)
1356 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1360 * event is descheduled
1362 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1365 * If we're called during a txn, we only need to undo x86_pmu.add.
1366 * The events never got scheduled and ->cancel_txn will truncate
1369 * XXX assumes any ->del() called during a TXN will only be on
1370 * an event added during that same TXN.
1372 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1376 * Not a TXN, therefore cleanup properly.
1378 x86_pmu_stop(event, PERF_EF_UPDATE);
1380 for (i = 0; i < cpuc->n_events; i++) {
1381 if (event == cpuc->event_list[i])
1385 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1388 /* If we have a newly added event; make sure to decrease n_added. */
1389 if (i >= cpuc->n_events - cpuc->n_added)
1392 if (x86_pmu.put_event_constraints)
1393 x86_pmu.put_event_constraints(cpuc, event);
1395 /* Delete the array entry. */
1396 while (++i < cpuc->n_events) {
1397 cpuc->event_list[i-1] = cpuc->event_list[i];
1398 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1402 perf_event_update_userpage(event);
1407 * This is after x86_pmu_stop(); so we disable LBRs after any
1408 * event can need them etc..
1414 int x86_pmu_handle_irq(struct pt_regs *regs)
1416 struct perf_sample_data data;
1417 struct cpu_hw_events *cpuc;
1418 struct perf_event *event;
1419 int idx, handled = 0;
1422 cpuc = this_cpu_ptr(&cpu_hw_events);
1425 * Some chipsets need to unmask the LVTPC in a particular spot
1426 * inside the nmi handler. As a result, the unmasking was pushed
1427 * into all the nmi handlers.
1429 * This generic handler doesn't seem to have any issues where the
1430 * unmasking occurs so it was left at the top.
1432 apic_write(APIC_LVTPC, APIC_DM_NMI);
1434 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1435 if (!test_bit(idx, cpuc->active_mask))
1438 event = cpuc->events[idx];
1440 val = x86_perf_event_update(event);
1441 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1448 perf_sample_data_init(&data, 0, event->hw.last_period);
1450 if (!x86_perf_event_set_period(event))
1453 if (perf_event_overflow(event, &data, regs))
1454 x86_pmu_stop(event, 0);
1458 inc_irq_stat(apic_perf_irqs);
1463 void perf_events_lapic_init(void)
1465 if (!x86_pmu.apic || !x86_pmu_initialized())
1469 * Always use NMI for PMU
1471 apic_write(APIC_LVTPC, APIC_DM_NMI);
1475 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1482 * All PMUs/events that share this PMI handler should make sure to
1483 * increment active_events for their events.
1485 if (!atomic_read(&active_events))
1488 start_clock = sched_clock();
1489 ret = x86_pmu.handle_irq(regs);
1490 finish_clock = sched_clock();
1492 perf_sample_event_took(finish_clock - start_clock);
1496 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1498 struct event_constraint emptyconstraint;
1499 struct event_constraint unconstrained;
1501 static int x86_pmu_prepare_cpu(unsigned int cpu)
1503 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1506 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1507 cpuc->kfree_on_online[i] = NULL;
1508 if (x86_pmu.cpu_prepare)
1509 return x86_pmu.cpu_prepare(cpu);
1513 static int x86_pmu_dead_cpu(unsigned int cpu)
1515 if (x86_pmu.cpu_dead)
1516 x86_pmu.cpu_dead(cpu);
1520 static int x86_pmu_online_cpu(unsigned int cpu)
1522 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1525 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1526 kfree(cpuc->kfree_on_online[i]);
1527 cpuc->kfree_on_online[i] = NULL;
1532 static int x86_pmu_starting_cpu(unsigned int cpu)
1534 if (x86_pmu.cpu_starting)
1535 x86_pmu.cpu_starting(cpu);
1539 static int x86_pmu_dying_cpu(unsigned int cpu)
1541 if (x86_pmu.cpu_dying)
1542 x86_pmu.cpu_dying(cpu);
1546 static void __init pmu_check_apic(void)
1548 if (boot_cpu_has(X86_FEATURE_APIC))
1552 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1553 pr_info("no hardware sampling interrupt available.\n");
1556 * If we have a PMU initialized but no APIC
1557 * interrupts, we cannot sample hardware
1558 * events (user-space has to fall back and
1559 * sample via a hrtimer based software event):
1561 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1565 static struct attribute_group x86_pmu_format_group = {
1571 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1572 * out of events_attr attributes.
1574 static void __init filter_events(struct attribute **attrs)
1576 struct device_attribute *d;
1577 struct perf_pmu_events_attr *pmu_attr;
1581 for (i = 0; attrs[i]; i++) {
1582 d = (struct device_attribute *)attrs[i];
1583 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1585 if (pmu_attr->event_str)
1587 if (x86_pmu.event_map(i + offset))
1590 for (j = i; attrs[j]; j++)
1591 attrs[j] = attrs[j + 1];
1593 /* Check the shifted attr. */
1597 * event_map() is index based, the attrs array is organized
1598 * by increasing event index. If we shift the events, then
1599 * we need to compensate for the event_map(), otherwise
1600 * we are looking up the wrong event in the map
1606 /* Merge two pointer arrays */
1607 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1609 struct attribute **new;
1612 for (j = 0; a[j]; j++)
1614 for (i = 0; b[i]; i++)
1618 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1623 for (i = 0; a[i]; i++)
1625 for (i = 0; b[i]; i++)
1632 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1634 struct perf_pmu_events_attr *pmu_attr = \
1635 container_of(attr, struct perf_pmu_events_attr, attr);
1636 u64 config = x86_pmu.event_map(pmu_attr->id);
1638 /* string trumps id */
1639 if (pmu_attr->event_str)
1640 return sprintf(page, "%s", pmu_attr->event_str);
1642 return x86_pmu.events_sysfs_show(page, config);
1644 EXPORT_SYMBOL_GPL(events_sysfs_show);
1646 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1649 struct perf_pmu_events_ht_attr *pmu_attr =
1650 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1653 * Report conditional events depending on Hyper-Threading.
1655 * This is overly conservative as usually the HT special
1656 * handling is not needed if the other CPU thread is idle.
1658 * Note this does not (and cannot) handle the case when thread
1659 * siblings are invisible, for example with virtualization
1660 * if they are owned by some other guest. The user tool
1661 * has to re-read when a thread sibling gets onlined later.
1663 return sprintf(page, "%s",
1664 topology_max_smt_threads() > 1 ?
1665 pmu_attr->event_str_ht :
1666 pmu_attr->event_str_noht);
1669 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1670 EVENT_ATTR(instructions, INSTRUCTIONS );
1671 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1672 EVENT_ATTR(cache-misses, CACHE_MISSES );
1673 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1674 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1675 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1676 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1677 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1678 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1680 static struct attribute *empty_attrs;
1682 static struct attribute *events_attr[] = {
1683 EVENT_PTR(CPU_CYCLES),
1684 EVENT_PTR(INSTRUCTIONS),
1685 EVENT_PTR(CACHE_REFERENCES),
1686 EVENT_PTR(CACHE_MISSES),
1687 EVENT_PTR(BRANCH_INSTRUCTIONS),
1688 EVENT_PTR(BRANCH_MISSES),
1689 EVENT_PTR(BUS_CYCLES),
1690 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1691 EVENT_PTR(STALLED_CYCLES_BACKEND),
1692 EVENT_PTR(REF_CPU_CYCLES),
1696 static struct attribute_group x86_pmu_events_group = {
1698 .attrs = events_attr,
1701 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1703 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1704 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1705 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1706 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1707 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1708 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1712 * We have whole page size to spend and just little data
1713 * to write, so we can safely use sprintf.
1715 ret = sprintf(page, "event=0x%02llx", event);
1718 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1721 ret += sprintf(page + ret, ",edge");
1724 ret += sprintf(page + ret, ",pc");
1727 ret += sprintf(page + ret, ",any");
1730 ret += sprintf(page + ret, ",inv");
1733 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1735 ret += sprintf(page + ret, "\n");
1740 static struct attribute_group x86_pmu_attr_group;
1741 static struct attribute_group x86_pmu_caps_group;
1743 static int __init init_hw_perf_events(void)
1745 struct x86_pmu_quirk *quirk;
1748 pr_info("Performance Events: ");
1750 switch (boot_cpu_data.x86_vendor) {
1751 case X86_VENDOR_INTEL:
1752 err = intel_pmu_init();
1754 case X86_VENDOR_AMD:
1755 err = amd_pmu_init();
1761 pr_cont("no PMU driver, software events only.\n");
1767 /* sanity check that the hardware exists or is emulated */
1768 if (!check_hw_exists())
1771 pr_cont("%s PMU driver.\n", x86_pmu.name);
1773 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1775 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1778 if (!x86_pmu.intel_ctrl)
1779 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1781 perf_events_lapic_init();
1782 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1784 unconstrained = (struct event_constraint)
1785 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1786 0, x86_pmu.num_counters, 0, 0);
1788 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1790 if (x86_pmu.caps_attrs) {
1791 struct attribute **tmp;
1793 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1795 x86_pmu_caps_group.attrs = tmp;
1798 if (x86_pmu.event_attrs)
1799 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1801 if (!x86_pmu.events_sysfs_show)
1802 x86_pmu_events_group.attrs = &empty_attrs;
1804 filter_events(x86_pmu_events_group.attrs);
1806 if (x86_pmu.cpu_events) {
1807 struct attribute **tmp;
1809 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1811 x86_pmu_events_group.attrs = tmp;
1814 if (x86_pmu.attrs) {
1815 struct attribute **tmp;
1817 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1819 x86_pmu_attr_group.attrs = tmp;
1822 pr_info("... version: %d\n", x86_pmu.version);
1823 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1824 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1825 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1826 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1827 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1828 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1831 * Install callbacks. Core will call them for each online
1834 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1835 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1839 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1840 "perf/x86:starting", x86_pmu_starting_cpu,
1845 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1846 x86_pmu_online_cpu, NULL);
1850 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1857 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1859 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1861 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1864 early_initcall(init_hw_perf_events);
1866 static inline void x86_pmu_read(struct perf_event *event)
1868 x86_perf_event_update(event);
1872 * Start group events scheduling transaction
1873 * Set the flag to make pmu::enable() not perform the
1874 * schedulability test, it will be performed at commit time
1876 * We only support PERF_PMU_TXN_ADD transactions. Save the
1877 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1880 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1882 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1884 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1886 cpuc->txn_flags = txn_flags;
1887 if (txn_flags & ~PERF_PMU_TXN_ADD)
1890 perf_pmu_disable(pmu);
1891 __this_cpu_write(cpu_hw_events.n_txn, 0);
1895 * Stop group events scheduling transaction
1896 * Clear the flag and pmu::enable() will perform the
1897 * schedulability test.
1899 static void x86_pmu_cancel_txn(struct pmu *pmu)
1901 unsigned int txn_flags;
1902 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1904 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1906 txn_flags = cpuc->txn_flags;
1907 cpuc->txn_flags = 0;
1908 if (txn_flags & ~PERF_PMU_TXN_ADD)
1912 * Truncate collected array by the number of events added in this
1913 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1915 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1916 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1917 perf_pmu_enable(pmu);
1921 * Commit group events scheduling transaction
1922 * Perform the group schedulability test as a whole
1923 * Return 0 if success
1925 * Does not cancel the transaction on failure; expects the caller to do this.
1927 static int x86_pmu_commit_txn(struct pmu *pmu)
1929 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1930 int assign[X86_PMC_IDX_MAX];
1933 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1935 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1936 cpuc->txn_flags = 0;
1942 if (!x86_pmu_initialized())
1945 ret = x86_pmu.schedule_events(cpuc, n, assign);
1950 * copy new assignment, now we know it is possible
1951 * will be used by hw_perf_enable()
1953 memcpy(cpuc->assign, assign, n*sizeof(int));
1955 cpuc->txn_flags = 0;
1956 perf_pmu_enable(pmu);
1960 * a fake_cpuc is used to validate event groups. Due to
1961 * the extra reg logic, we need to also allocate a fake
1962 * per_core and per_cpu structure. Otherwise, group events
1963 * using extra reg may conflict without the kernel being
1964 * able to catch this when the last event gets added to
1967 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1969 intel_cpuc_finish(cpuc);
1973 static struct cpu_hw_events *allocate_fake_cpuc(void)
1975 struct cpu_hw_events *cpuc;
1976 int cpu = raw_smp_processor_id();
1978 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1980 return ERR_PTR(-ENOMEM);
1983 if (intel_cpuc_prepare(cpuc, cpu))
1988 free_fake_cpuc(cpuc);
1989 return ERR_PTR(-ENOMEM);
1993 * validate that we can schedule this event
1995 static int validate_event(struct perf_event *event)
1997 struct cpu_hw_events *fake_cpuc;
1998 struct event_constraint *c;
2001 fake_cpuc = allocate_fake_cpuc();
2002 if (IS_ERR(fake_cpuc))
2003 return PTR_ERR(fake_cpuc);
2005 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2007 if (!c || !c->weight)
2010 if (x86_pmu.put_event_constraints)
2011 x86_pmu.put_event_constraints(fake_cpuc, event);
2013 free_fake_cpuc(fake_cpuc);
2019 * validate a single event group
2021 * validation include:
2022 * - check events are compatible which each other
2023 * - events do not compete for the same counter
2024 * - number of events <= number of counters
2026 * validation ensures the group can be loaded onto the
2027 * PMU if it was the only group available.
2029 static int validate_group(struct perf_event *event)
2031 struct perf_event *leader = event->group_leader;
2032 struct cpu_hw_events *fake_cpuc;
2033 int ret = -EINVAL, n;
2035 fake_cpuc = allocate_fake_cpuc();
2036 if (IS_ERR(fake_cpuc))
2037 return PTR_ERR(fake_cpuc);
2039 * the event is not yet connected with its
2040 * siblings therefore we must first collect
2041 * existing siblings, then add the new event
2042 * before we can simulate the scheduling
2044 n = collect_events(fake_cpuc, leader, true);
2048 fake_cpuc->n_events = n;
2049 n = collect_events(fake_cpuc, event, false);
2053 fake_cpuc->n_events = n;
2055 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2058 free_fake_cpuc(fake_cpuc);
2062 static int x86_pmu_event_init(struct perf_event *event)
2067 switch (event->attr.type) {
2069 case PERF_TYPE_HARDWARE:
2070 case PERF_TYPE_HW_CACHE:
2077 err = __x86_pmu_event_init(event);
2080 * we temporarily connect event to its pmu
2081 * such that validate_group() can classify
2082 * it as an x86 event using is_x86_event()
2087 if (event->group_leader != event)
2088 err = validate_group(event);
2090 err = validate_event(event);
2096 event->destroy(event);
2097 event->destroy = NULL;
2100 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2101 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2106 static void refresh_pce(void *ignored)
2108 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2111 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2113 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2117 * This function relies on not being called concurrently in two
2118 * tasks in the same mm. Otherwise one task could observe
2119 * perf_rdpmc_allowed > 1 and return all the way back to
2120 * userspace with CR4.PCE clear while another task is still
2121 * doing on_each_cpu_mask() to propagate CR4.PCE.
2123 * For now, this can't happen because all callers hold mmap_sem
2124 * for write. If this changes, we'll need a different solution.
2126 lockdep_assert_held_exclusive(&mm->mmap_sem);
2128 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2129 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2132 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2135 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2138 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2139 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2142 static int x86_pmu_event_idx(struct perf_event *event)
2144 int idx = event->hw.idx;
2146 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2149 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2150 idx -= INTEL_PMC_IDX_FIXED;
2157 static ssize_t get_attr_rdpmc(struct device *cdev,
2158 struct device_attribute *attr,
2161 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2164 static ssize_t set_attr_rdpmc(struct device *cdev,
2165 struct device_attribute *attr,
2166 const char *buf, size_t count)
2171 ret = kstrtoul(buf, 0, &val);
2178 if (x86_pmu.attr_rdpmc_broken)
2181 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2183 * Changing into or out of always available, aka
2184 * perf-event-bypassing mode. This path is extremely slow,
2185 * but only root can trigger it, so it's okay.
2188 static_key_slow_inc(&rdpmc_always_available);
2190 static_key_slow_dec(&rdpmc_always_available);
2191 on_each_cpu(refresh_pce, NULL, 1);
2194 x86_pmu.attr_rdpmc = val;
2199 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2201 static struct attribute *x86_pmu_attrs[] = {
2202 &dev_attr_rdpmc.attr,
2206 static struct attribute_group x86_pmu_attr_group = {
2207 .attrs = x86_pmu_attrs,
2210 static ssize_t max_precise_show(struct device *cdev,
2211 struct device_attribute *attr,
2214 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2217 static DEVICE_ATTR_RO(max_precise);
2219 static struct attribute *x86_pmu_caps_attrs[] = {
2220 &dev_attr_max_precise.attr,
2224 static struct attribute_group x86_pmu_caps_group = {
2226 .attrs = x86_pmu_caps_attrs,
2229 static const struct attribute_group *x86_pmu_attr_groups[] = {
2230 &x86_pmu_attr_group,
2231 &x86_pmu_format_group,
2232 &x86_pmu_events_group,
2233 &x86_pmu_caps_group,
2237 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2239 if (x86_pmu.sched_task)
2240 x86_pmu.sched_task(ctx, sched_in);
2243 void perf_check_microcode(void)
2245 if (x86_pmu.check_microcode)
2246 x86_pmu.check_microcode();
2249 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2251 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2254 if (value && x86_pmu.limit_period) {
2255 if (x86_pmu.limit_period(event, value) > value)
2262 static struct pmu pmu = {
2263 .pmu_enable = x86_pmu_enable,
2264 .pmu_disable = x86_pmu_disable,
2266 .attr_groups = x86_pmu_attr_groups,
2268 .event_init = x86_pmu_event_init,
2270 .event_mapped = x86_pmu_event_mapped,
2271 .event_unmapped = x86_pmu_event_unmapped,
2275 .start = x86_pmu_start,
2276 .stop = x86_pmu_stop,
2277 .read = x86_pmu_read,
2279 .start_txn = x86_pmu_start_txn,
2280 .cancel_txn = x86_pmu_cancel_txn,
2281 .commit_txn = x86_pmu_commit_txn,
2283 .event_idx = x86_pmu_event_idx,
2284 .sched_task = x86_pmu_sched_task,
2285 .task_ctx_size = sizeof(struct x86_perf_task_context),
2286 .check_period = x86_pmu_check_period,
2289 void arch_perf_update_userpage(struct perf_event *event,
2290 struct perf_event_mmap_page *userpg, u64 now)
2292 struct cyc2ns_data data;
2295 userpg->cap_user_time = 0;
2296 userpg->cap_user_time_zero = 0;
2297 userpg->cap_user_rdpmc =
2298 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2299 userpg->pmc_width = x86_pmu.cntval_bits;
2301 if (!using_native_sched_clock() || !sched_clock_stable())
2304 cyc2ns_read_begin(&data);
2306 offset = data.cyc2ns_offset + __sched_clock_offset;
2309 * Internal timekeeping for enabled/running/stopped times
2310 * is always in the local_clock domain.
2312 userpg->cap_user_time = 1;
2313 userpg->time_mult = data.cyc2ns_mul;
2314 userpg->time_shift = data.cyc2ns_shift;
2315 userpg->time_offset = offset - now;
2318 * cap_user_time_zero doesn't make sense when we're using a different
2319 * time base for the records.
2321 if (!event->attr.use_clockid) {
2322 userpg->cap_user_time_zero = 1;
2323 userpg->time_zero = offset;
2330 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2332 struct unwind_state state;
2335 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2336 /* TODO: We don't support guest os callchain now */
2340 if (perf_callchain_store(entry, regs->ip))
2343 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2344 unwind_next_frame(&state)) {
2345 addr = unwind_get_return_address(&state);
2346 if (!addr || perf_callchain_store(entry, addr))
2352 valid_user_frame(const void __user *fp, unsigned long size)
2354 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2357 static unsigned long get_segment_base(unsigned int segment)
2359 struct desc_struct *desc;
2360 unsigned int idx = segment >> 3;
2362 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2363 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2364 struct ldt_struct *ldt;
2366 /* IRQs are off, so this synchronizes with smp_store_release */
2367 ldt = READ_ONCE(current->active_mm->context.ldt);
2368 if (!ldt || idx >= ldt->nr_entries)
2371 desc = &ldt->entries[idx];
2376 if (idx >= GDT_ENTRIES)
2379 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2382 return get_desc_base(desc);
2385 #ifdef CONFIG_IA32_EMULATION
2387 #include <asm/compat.h>
2390 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2392 /* 32-bit process in 64-bit kernel. */
2393 unsigned long ss_base, cs_base;
2394 struct stack_frame_ia32 frame;
2395 const void __user *fp;
2397 if (!test_thread_flag(TIF_IA32))
2400 cs_base = get_segment_base(regs->cs);
2401 ss_base = get_segment_base(regs->ss);
2403 fp = compat_ptr(ss_base + regs->bp);
2404 pagefault_disable();
2405 while (entry->nr < entry->max_stack) {
2406 unsigned long bytes;
2407 frame.next_frame = 0;
2408 frame.return_address = 0;
2410 if (!valid_user_frame(fp, sizeof(frame)))
2413 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2416 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2420 perf_callchain_store(entry, cs_base + frame.return_address);
2421 fp = compat_ptr(ss_base + frame.next_frame);
2428 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2435 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2437 struct stack_frame frame;
2438 const unsigned long __user *fp;
2440 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2441 /* TODO: We don't support guest os callchain now */
2446 * We don't know what to do with VM86 stacks.. ignore them for now.
2448 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2451 fp = (unsigned long __user *)regs->bp;
2453 perf_callchain_store(entry, regs->ip);
2455 if (!nmi_uaccess_okay())
2458 if (perf_callchain_user32(regs, entry))
2461 pagefault_disable();
2462 while (entry->nr < entry->max_stack) {
2463 unsigned long bytes;
2465 frame.next_frame = NULL;
2466 frame.return_address = 0;
2468 if (!valid_user_frame(fp, sizeof(frame)))
2471 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2474 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2478 perf_callchain_store(entry, frame.return_address);
2479 fp = (void __user *)frame.next_frame;
2485 * Deal with code segment offsets for the various execution modes:
2487 * VM86 - the good olde 16 bit days, where the linear address is
2488 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2490 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2491 * to figure out what the 32bit base address is.
2493 * X32 - has TIF_X32 set, but is running in x86_64
2495 * X86_64 - CS,DS,SS,ES are all zero based.
2497 static unsigned long code_segment_base(struct pt_regs *regs)
2500 * For IA32 we look at the GDT/LDT segment base to convert the
2501 * effective IP to a linear address.
2504 #ifdef CONFIG_X86_32
2506 * If we are in VM86 mode, add the segment offset to convert to a
2509 if (regs->flags & X86_VM_MASK)
2510 return 0x10 * regs->cs;
2512 if (user_mode(regs) && regs->cs != __USER_CS)
2513 return get_segment_base(regs->cs);
2515 if (user_mode(regs) && !user_64bit_mode(regs) &&
2516 regs->cs != __USER32_CS)
2517 return get_segment_base(regs->cs);
2522 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2524 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2525 return perf_guest_cbs->get_guest_ip();
2527 return regs->ip + code_segment_base(regs);
2530 unsigned long perf_misc_flags(struct pt_regs *regs)
2534 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2535 if (perf_guest_cbs->is_user_mode())
2536 misc |= PERF_RECORD_MISC_GUEST_USER;
2538 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2540 if (user_mode(regs))
2541 misc |= PERF_RECORD_MISC_USER;
2543 misc |= PERF_RECORD_MISC_KERNEL;
2546 if (regs->flags & PERF_EFLAGS_EXACT)
2547 misc |= PERF_RECORD_MISC_EXACT_IP;
2552 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2554 cap->version = x86_pmu.version;
2555 cap->num_counters_gp = x86_pmu.num_counters;
2556 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2557 cap->bit_width_gp = x86_pmu.cntval_bits;
2558 cap->bit_width_fixed = x86_pmu.cntval_bits;
2559 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2560 cap->events_mask_len = x86_pmu.events_mask_len;
2562 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);