GNU Linux-libre 4.14.251-gnu1
[releases.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
53
54 u64 __read_mostly hw_cache_event_ids
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59                                 [PERF_COUNT_HW_CACHE_MAX]
60                                 [PERF_COUNT_HW_CACHE_OP_MAX]
61                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70         struct hw_perf_event *hwc = &event->hw;
71         int shift = 64 - x86_pmu.cntval_bits;
72         u64 prev_raw_count, new_raw_count;
73         int idx = hwc->idx;
74         u64 delta;
75
76         if (idx == INTEL_PMC_IDX_FIXED_BTS)
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129                 /* Check if the extra msrs can be safely accessed*/
130                 if (!er->extra_msr_access)
131                         return -ENXIO;
132
133                 reg->idx = er->idx;
134                 reg->config = event->attr.config1;
135                 reg->reg = er->msr;
136                 break;
137         }
138         return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149         int i;
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153                         goto perfctr_fail;
154         }
155
156         for (i = 0; i < x86_pmu.num_counters; i++) {
157                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158                         goto eventsel_fail;
159         }
160
161         return true;
162
163 eventsel_fail:
164         for (i--; i >= 0; i--)
165                 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167         i = x86_pmu.num_counters;
168
169 perfctr_fail:
170         for (i--; i >= 0; i--)
171                 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173         return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178         int i;
179
180         for (i = 0; i < x86_pmu.num_counters; i++) {
181                 release_perfctr_nmi(x86_pmu_event_addr(i));
182                 release_evntsel_nmi(x86_pmu_config_addr(i));
183         }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195         u64 val, val_fail = -1, val_new= ~0;
196         int i, reg, reg_fail = -1, ret = 0;
197         int bios_fail = 0;
198         int reg_safe = -1;
199
200         /*
201          * Check to see if the BIOS enabled any of the counters, if so
202          * complain and bail.
203          */
204         for (i = 0; i < x86_pmu.num_counters; i++) {
205                 reg = x86_pmu_config_addr(i);
206                 ret = rdmsrl_safe(reg, &val);
207                 if (ret)
208                         goto msr_fail;
209                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210                         bios_fail = 1;
211                         val_fail = val;
212                         reg_fail = reg;
213                 } else {
214                         reg_safe = i;
215                 }
216         }
217
218         if (x86_pmu.num_counters_fixed) {
219                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220                 ret = rdmsrl_safe(reg, &val);
221                 if (ret)
222                         goto msr_fail;
223                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224                         if (val & (0x03 << i*4)) {
225                                 bios_fail = 1;
226                                 val_fail = val;
227                                 reg_fail = reg;
228                         }
229                 }
230         }
231
232         /*
233          * If all the counters are enabled, the below test will always
234          * fail.  The tools will also become useless in this scenario.
235          * Just fail and disable the hardware counters.
236          */
237
238         if (reg_safe == -1) {
239                 reg = reg_safe;
240                 goto msr_fail;
241         }
242
243         /*
244          * Read the current value, change it and read it back to see if it
245          * matches, this is needed to detect certain hardware emulators
246          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247          */
248         reg = x86_pmu_event_addr(reg_safe);
249         if (rdmsrl_safe(reg, &val))
250                 goto msr_fail;
251         val ^= 0xffffUL;
252         ret = wrmsrl_safe(reg, val);
253         ret |= rdmsrl_safe(reg, &val_new);
254         if (ret || val != val_new)
255                 goto msr_fail;
256
257         /*
258          * We still allow the PMU driver to operate:
259          */
260         if (bios_fail) {
261                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263                               reg_fail, val_fail);
264         }
265
266         return true;
267
268 msr_fail:
269         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270                 pr_cont("PMU not available due to virtualization, using software events only.\n");
271         } else {
272                 pr_cont("Broken PMU hardware detected, using software events only.\n");
273                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274                        reg, val_new);
275         }
276
277         return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282         x86_release_hardware();
283         atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288         hw_perf_event_destroy(event);
289
290         /* undo the lbr/bts event accounting */
291         x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296         return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         unsigned int cache_type, cache_op, cache_result;
304         u64 config, val;
305
306         config = attr->config;
307
308         cache_type = (config >> 0) & 0xff;
309         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310                 return -EINVAL;
311         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313         cache_op = (config >>  8) & 0xff;
314         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315                 return -EINVAL;
316         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318         cache_result = (config >> 16) & 0xff;
319         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320                 return -EINVAL;
321         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325         if (val == 0)
326                 return -ENOENT;
327
328         if (val == -1)
329                 return -EINVAL;
330
331         hwc->config |= val;
332         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333         return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338         int err = 0;
339
340         if (!atomic_inc_not_zero(&pmc_refcount)) {
341                 mutex_lock(&pmc_reserve_mutex);
342                 if (atomic_read(&pmc_refcount) == 0) {
343                         if (!reserve_pmc_hardware())
344                                 err = -EBUSY;
345                         else
346                                 reserve_ds_buffers();
347                 }
348                 if (!err)
349                         atomic_inc(&pmc_refcount);
350                 mutex_unlock(&pmc_reserve_mutex);
351         }
352
353         return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359                 release_pmc_hardware();
360                 release_ds_buffers();
361                 mutex_unlock(&pmc_reserve_mutex);
362         }
363 }
364
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371         int i;
372
373         /*
374          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375          * LBR and BTS are still mutually exclusive.
376          */
377         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378                 goto out;
379
380         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381                 mutex_lock(&pmc_reserve_mutex);
382                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384                                 goto fail_unlock;
385                 }
386                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389
390 out:
391         atomic_inc(&active_events);
392         return 0;
393
394 fail_unlock:
395         mutex_unlock(&pmc_reserve_mutex);
396         return -EBUSY;
397 }
398
399 void x86_del_exclusive(unsigned int what)
400 {
401         atomic_dec(&active_events);
402
403         /*
404          * See the comment in x86_add_exclusive().
405          */
406         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
407                 return;
408
409         atomic_dec(&x86_pmu.lbr_exclusive[what]);
410 }
411
412 int x86_setup_perfctr(struct perf_event *event)
413 {
414         struct perf_event_attr *attr = &event->attr;
415         struct hw_perf_event *hwc = &event->hw;
416         u64 config;
417
418         if (!is_sampling_event(event)) {
419                 hwc->sample_period = x86_pmu.max_period;
420                 hwc->last_period = hwc->sample_period;
421                 local64_set(&hwc->period_left, hwc->sample_period);
422         }
423
424         if (attr->type == PERF_TYPE_RAW)
425                 return x86_pmu_extra_regs(event->attr.config, event);
426
427         if (attr->type == PERF_TYPE_HW_CACHE)
428                 return set_ext_hw_attr(hwc, event);
429
430         if (attr->config >= x86_pmu.max_events)
431                 return -EINVAL;
432
433         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
434
435         /*
436          * The generic map:
437          */
438         config = x86_pmu.event_map(attr->config);
439
440         if (config == 0)
441                 return -ENOENT;
442
443         if (config == -1LL)
444                 return -EINVAL;
445
446         hwc->config |= config;
447
448         return 0;
449 }
450
451 /*
452  * check that branch_sample_type is compatible with
453  * settings needed for precise_ip > 1 which implies
454  * using the LBR to capture ALL taken branches at the
455  * priv levels of the measurement
456  */
457 static inline int precise_br_compat(struct perf_event *event)
458 {
459         u64 m = event->attr.branch_sample_type;
460         u64 b = 0;
461
462         /* must capture all branches */
463         if (!(m & PERF_SAMPLE_BRANCH_ANY))
464                 return 0;
465
466         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
467
468         if (!event->attr.exclude_user)
469                 b |= PERF_SAMPLE_BRANCH_USER;
470
471         if (!event->attr.exclude_kernel)
472                 b |= PERF_SAMPLE_BRANCH_KERNEL;
473
474         /*
475          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
476          */
477
478         return m == b;
479 }
480
481 int x86_pmu_max_precise(void)
482 {
483         int precise = 0;
484
485         /* Support for constant skid */
486         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487                 precise++;
488
489                 /* Support for IP fixup */
490                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491                         precise++;
492
493                 if (x86_pmu.pebs_prec_dist)
494                         precise++;
495         }
496         return precise;
497 }
498
499 int x86_pmu_hw_config(struct perf_event *event)
500 {
501         if (event->attr.precise_ip) {
502                 int precise = x86_pmu_max_precise();
503
504                 if (event->attr.precise_ip > precise)
505                         return -EOPNOTSUPP;
506
507                 /* There's no sense in having PEBS for non sampling events: */
508                 if (!is_sampling_event(event))
509                         return -EINVAL;
510         }
511         /*
512          * check that PEBS LBR correction does not conflict with
513          * whatever the user is asking with attr->branch_sample_type
514          */
515         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
516                 u64 *br_type = &event->attr.branch_sample_type;
517
518                 if (has_branch_stack(event)) {
519                         if (!precise_br_compat(event))
520                                 return -EOPNOTSUPP;
521
522                         /* branch_sample_type is compatible */
523
524                 } else {
525                         /*
526                          * user did not specify  branch_sample_type
527                          *
528                          * For PEBS fixups, we capture all
529                          * the branches at the priv level of the
530                          * event.
531                          */
532                         *br_type = PERF_SAMPLE_BRANCH_ANY;
533
534                         if (!event->attr.exclude_user)
535                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
536
537                         if (!event->attr.exclude_kernel)
538                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
539                 }
540         }
541
542         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
543                 event->attach_state |= PERF_ATTACH_TASK_DATA;
544
545         /*
546          * Generate PMC IRQs:
547          * (keep 'enabled' bit clear for now)
548          */
549         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
550
551         /*
552          * Count user and OS events unless requested not to
553          */
554         if (!event->attr.exclude_user)
555                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
556         if (!event->attr.exclude_kernel)
557                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
558
559         if (event->attr.type == PERF_TYPE_RAW)
560                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
561
562         if (event->attr.sample_period && x86_pmu.limit_period) {
563                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
564                                 event->attr.sample_period)
565                         return -EINVAL;
566         }
567
568         return x86_setup_perfctr(event);
569 }
570
571 /*
572  * Setup the hardware configuration for a given attr_type
573  */
574 static int __x86_pmu_event_init(struct perf_event *event)
575 {
576         int err;
577
578         if (!x86_pmu_initialized())
579                 return -ENODEV;
580
581         err = x86_reserve_hardware();
582         if (err)
583                 return err;
584
585         atomic_inc(&active_events);
586         event->destroy = hw_perf_event_destroy;
587
588         event->hw.idx = -1;
589         event->hw.last_cpu = -1;
590         event->hw.last_tag = ~0ULL;
591
592         /* mark unused */
593         event->hw.extra_reg.idx = EXTRA_REG_NONE;
594         event->hw.branch_reg.idx = EXTRA_REG_NONE;
595
596         return x86_pmu.hw_config(event);
597 }
598
599 void x86_pmu_disable_all(void)
600 {
601         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
602         int idx;
603
604         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
605                 u64 val;
606
607                 if (!test_bit(idx, cpuc->active_mask))
608                         continue;
609                 rdmsrl(x86_pmu_config_addr(idx), val);
610                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
611                         continue;
612                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
613                 wrmsrl(x86_pmu_config_addr(idx), val);
614         }
615 }
616
617 /*
618  * There may be PMI landing after enabled=0. The PMI hitting could be before or
619  * after disable_all.
620  *
621  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
622  * It will not be re-enabled in the NMI handler again, because enabled=0. After
623  * handling the NMI, disable_all will be called, which will not change the
624  * state either. If PMI hits after disable_all, the PMU is already disabled
625  * before entering NMI handler. The NMI handler will not change the state
626  * either.
627  *
628  * So either situation is harmless.
629  */
630 static void x86_pmu_disable(struct pmu *pmu)
631 {
632         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
633
634         if (!x86_pmu_initialized())
635                 return;
636
637         if (!cpuc->enabled)
638                 return;
639
640         cpuc->n_added = 0;
641         cpuc->enabled = 0;
642         barrier();
643
644         x86_pmu.disable_all();
645 }
646
647 void x86_pmu_enable_all(int added)
648 {
649         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
650         int idx;
651
652         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
653                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
654
655                 if (!test_bit(idx, cpuc->active_mask))
656                         continue;
657
658                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
659         }
660 }
661
662 static struct pmu pmu;
663
664 static inline int is_x86_event(struct perf_event *event)
665 {
666         return event->pmu == &pmu;
667 }
668
669 /*
670  * Event scheduler state:
671  *
672  * Assign events iterating over all events and counters, beginning
673  * with events with least weights first. Keep the current iterator
674  * state in struct sched_state.
675  */
676 struct sched_state {
677         int     weight;
678         int     event;          /* event index */
679         int     counter;        /* counter index */
680         int     unassigned;     /* number of events to be assigned left */
681         int     nr_gp;          /* number of GP counters used */
682         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
683 };
684
685 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
686 #define SCHED_STATES_MAX        2
687
688 struct perf_sched {
689         int                     max_weight;
690         int                     max_events;
691         int                     max_gp;
692         int                     saved_states;
693         struct event_constraint **constraints;
694         struct sched_state      state;
695         struct sched_state      saved[SCHED_STATES_MAX];
696 };
697
698 /*
699  * Initialize interator that runs through all events and counters.
700  */
701 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
702                             int num, int wmin, int wmax, int gpmax)
703 {
704         int idx;
705
706         memset(sched, 0, sizeof(*sched));
707         sched->max_events       = num;
708         sched->max_weight       = wmax;
709         sched->max_gp           = gpmax;
710         sched->constraints      = constraints;
711
712         for (idx = 0; idx < num; idx++) {
713                 if (constraints[idx]->weight == wmin)
714                         break;
715         }
716
717         sched->state.event      = idx;          /* start with min weight */
718         sched->state.weight     = wmin;
719         sched->state.unassigned = num;
720 }
721
722 static void perf_sched_save_state(struct perf_sched *sched)
723 {
724         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
725                 return;
726
727         sched->saved[sched->saved_states] = sched->state;
728         sched->saved_states++;
729 }
730
731 static bool perf_sched_restore_state(struct perf_sched *sched)
732 {
733         if (!sched->saved_states)
734                 return false;
735
736         sched->saved_states--;
737         sched->state = sched->saved[sched->saved_states];
738
739         /* continue with next counter: */
740         clear_bit(sched->state.counter++, sched->state.used);
741
742         return true;
743 }
744
745 /*
746  * Select a counter for the current event to schedule. Return true on
747  * success.
748  */
749 static bool __perf_sched_find_counter(struct perf_sched *sched)
750 {
751         struct event_constraint *c;
752         int idx;
753
754         if (!sched->state.unassigned)
755                 return false;
756
757         if (sched->state.event >= sched->max_events)
758                 return false;
759
760         c = sched->constraints[sched->state.event];
761         /* Prefer fixed purpose counters */
762         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
763                 idx = INTEL_PMC_IDX_FIXED;
764                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
765                         if (!__test_and_set_bit(idx, sched->state.used))
766                                 goto done;
767                 }
768         }
769
770         /* Grab the first unused counter starting with idx */
771         idx = sched->state.counter;
772         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
773                 if (!__test_and_set_bit(idx, sched->state.used)) {
774                         if (sched->state.nr_gp++ >= sched->max_gp)
775                                 return false;
776
777                         goto done;
778                 }
779         }
780
781         return false;
782
783 done:
784         sched->state.counter = idx;
785
786         if (c->overlap)
787                 perf_sched_save_state(sched);
788
789         return true;
790 }
791
792 static bool perf_sched_find_counter(struct perf_sched *sched)
793 {
794         while (!__perf_sched_find_counter(sched)) {
795                 if (!perf_sched_restore_state(sched))
796                         return false;
797         }
798
799         return true;
800 }
801
802 /*
803  * Go through all unassigned events and find the next one to schedule.
804  * Take events with the least weight first. Return true on success.
805  */
806 static bool perf_sched_next_event(struct perf_sched *sched)
807 {
808         struct event_constraint *c;
809
810         if (!sched->state.unassigned || !--sched->state.unassigned)
811                 return false;
812
813         do {
814                 /* next event */
815                 sched->state.event++;
816                 if (sched->state.event >= sched->max_events) {
817                         /* next weight */
818                         sched->state.event = 0;
819                         sched->state.weight++;
820                         if (sched->state.weight > sched->max_weight)
821                                 return false;
822                 }
823                 c = sched->constraints[sched->state.event];
824         } while (c->weight != sched->state.weight);
825
826         sched->state.counter = 0;       /* start with first counter */
827
828         return true;
829 }
830
831 /*
832  * Assign a counter for each event.
833  */
834 int perf_assign_events(struct event_constraint **constraints, int n,
835                         int wmin, int wmax, int gpmax, int *assign)
836 {
837         struct perf_sched sched;
838
839         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
840
841         do {
842                 if (!perf_sched_find_counter(&sched))
843                         break;  /* failed */
844                 if (assign)
845                         assign[sched.state.event] = sched.state.counter;
846         } while (perf_sched_next_event(&sched));
847
848         return sched.state.unassigned;
849 }
850 EXPORT_SYMBOL_GPL(perf_assign_events);
851
852 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
853 {
854         struct event_constraint *c;
855         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
856         struct perf_event *e;
857         int i, wmin, wmax, unsched = 0;
858         struct hw_perf_event *hwc;
859
860         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
861
862         if (x86_pmu.start_scheduling)
863                 x86_pmu.start_scheduling(cpuc);
864
865         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
866                 cpuc->event_constraint[i] = NULL;
867                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
868                 cpuc->event_constraint[i] = c;
869
870                 wmin = min(wmin, c->weight);
871                 wmax = max(wmax, c->weight);
872         }
873
874         /*
875          * fastpath, try to reuse previous register
876          */
877         for (i = 0; i < n; i++) {
878                 hwc = &cpuc->event_list[i]->hw;
879                 c = cpuc->event_constraint[i];
880
881                 /* never assigned */
882                 if (hwc->idx == -1)
883                         break;
884
885                 /* constraint still honored */
886                 if (!test_bit(hwc->idx, c->idxmsk))
887                         break;
888
889                 /* not already used */
890                 if (test_bit(hwc->idx, used_mask))
891                         break;
892
893                 __set_bit(hwc->idx, used_mask);
894                 if (assign)
895                         assign[i] = hwc->idx;
896         }
897
898         /* slow path */
899         if (i != n) {
900                 int gpmax = x86_pmu.num_counters;
901
902                 /*
903                  * Do not allow scheduling of more than half the available
904                  * generic counters.
905                  *
906                  * This helps avoid counter starvation of sibling thread by
907                  * ensuring at most half the counters cannot be in exclusive
908                  * mode. There is no designated counters for the limits. Any
909                  * N/2 counters can be used. This helps with events with
910                  * specific counter constraints.
911                  */
912                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
913                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
914                         gpmax /= 2;
915
916                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
917                                              wmax, gpmax, assign);
918         }
919
920         /*
921          * In case of success (unsched = 0), mark events as committed,
922          * so we do not put_constraint() in case new events are added
923          * and fail to be scheduled
924          *
925          * We invoke the lower level commit callback to lock the resource
926          *
927          * We do not need to do all of this in case we are called to
928          * validate an event group (assign == NULL)
929          */
930         if (!unsched && assign) {
931                 for (i = 0; i < n; i++) {
932                         e = cpuc->event_list[i];
933                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
934                         if (x86_pmu.commit_scheduling)
935                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
936                 }
937         } else {
938                 for (i = 0; i < n; i++) {
939                         e = cpuc->event_list[i];
940                         /*
941                          * do not put_constraint() on comitted events,
942                          * because they are good to go
943                          */
944                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
945                                 continue;
946
947                         /*
948                          * release events that failed scheduling
949                          */
950                         if (x86_pmu.put_event_constraints)
951                                 x86_pmu.put_event_constraints(cpuc, e);
952                 }
953         }
954
955         if (x86_pmu.stop_scheduling)
956                 x86_pmu.stop_scheduling(cpuc);
957
958         return unsched ? -EINVAL : 0;
959 }
960
961 /*
962  * dogrp: true if must collect siblings events (group)
963  * returns total number of events and error code
964  */
965 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
966 {
967         struct perf_event *event;
968         int n, max_count;
969
970         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
971
972         /* current number of events already accepted */
973         n = cpuc->n_events;
974
975         if (is_x86_event(leader)) {
976                 if (n >= max_count)
977                         return -EINVAL;
978                 cpuc->event_list[n] = leader;
979                 n++;
980         }
981         if (!dogrp)
982                 return n;
983
984         list_for_each_entry(event, &leader->sibling_list, group_entry) {
985                 if (!is_x86_event(event) ||
986                     event->state <= PERF_EVENT_STATE_OFF)
987                         continue;
988
989                 if (n >= max_count)
990                         return -EINVAL;
991
992                 cpuc->event_list[n] = event;
993                 n++;
994         }
995         return n;
996 }
997
998 static inline void x86_assign_hw_event(struct perf_event *event,
999                                 struct cpu_hw_events *cpuc, int i)
1000 {
1001         struct hw_perf_event *hwc = &event->hw;
1002
1003         hwc->idx = cpuc->assign[i];
1004         hwc->last_cpu = smp_processor_id();
1005         hwc->last_tag = ++cpuc->tags[i];
1006
1007         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1008                 hwc->config_base = 0;
1009                 hwc->event_base = 0;
1010         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1011                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1012                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1013                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1014         } else {
1015                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1016                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1017                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1018         }
1019 }
1020
1021 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1022                                         struct cpu_hw_events *cpuc,
1023                                         int i)
1024 {
1025         return hwc->idx == cpuc->assign[i] &&
1026                 hwc->last_cpu == smp_processor_id() &&
1027                 hwc->last_tag == cpuc->tags[i];
1028 }
1029
1030 static void x86_pmu_start(struct perf_event *event, int flags);
1031
1032 static void x86_pmu_enable(struct pmu *pmu)
1033 {
1034         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1035         struct perf_event *event;
1036         struct hw_perf_event *hwc;
1037         int i, added = cpuc->n_added;
1038
1039         if (!x86_pmu_initialized())
1040                 return;
1041
1042         if (cpuc->enabled)
1043                 return;
1044
1045         if (cpuc->n_added) {
1046                 int n_running = cpuc->n_events - cpuc->n_added;
1047                 /*
1048                  * apply assignment obtained either from
1049                  * hw_perf_group_sched_in() or x86_pmu_enable()
1050                  *
1051                  * step1: save events moving to new counters
1052                  */
1053                 for (i = 0; i < n_running; i++) {
1054                         event = cpuc->event_list[i];
1055                         hwc = &event->hw;
1056
1057                         /*
1058                          * we can avoid reprogramming counter if:
1059                          * - assigned same counter as last time
1060                          * - running on same CPU as last time
1061                          * - no other event has used the counter since
1062                          */
1063                         if (hwc->idx == -1 ||
1064                             match_prev_assignment(hwc, cpuc, i))
1065                                 continue;
1066
1067                         /*
1068                          * Ensure we don't accidentally enable a stopped
1069                          * counter simply because we rescheduled.
1070                          */
1071                         if (hwc->state & PERF_HES_STOPPED)
1072                                 hwc->state |= PERF_HES_ARCH;
1073
1074                         x86_pmu_stop(event, PERF_EF_UPDATE);
1075                 }
1076
1077                 /*
1078                  * step2: reprogram moved events into new counters
1079                  */
1080                 for (i = 0; i < cpuc->n_events; i++) {
1081                         event = cpuc->event_list[i];
1082                         hwc = &event->hw;
1083
1084                         if (!match_prev_assignment(hwc, cpuc, i))
1085                                 x86_assign_hw_event(event, cpuc, i);
1086                         else if (i < n_running)
1087                                 continue;
1088
1089                         if (hwc->state & PERF_HES_ARCH)
1090                                 continue;
1091
1092                         x86_pmu_start(event, PERF_EF_RELOAD);
1093                 }
1094                 cpuc->n_added = 0;
1095                 perf_events_lapic_init();
1096         }
1097
1098         cpuc->enabled = 1;
1099         barrier();
1100
1101         x86_pmu.enable_all(added);
1102 }
1103
1104 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1105
1106 /*
1107  * Set the next IRQ period, based on the hwc->period_left value.
1108  * To be called with the event disabled in hw:
1109  */
1110 int x86_perf_event_set_period(struct perf_event *event)
1111 {
1112         struct hw_perf_event *hwc = &event->hw;
1113         s64 left = local64_read(&hwc->period_left);
1114         s64 period = hwc->sample_period;
1115         int ret = 0, idx = hwc->idx;
1116
1117         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1118                 return 0;
1119
1120         /*
1121          * If we are way outside a reasonable range then just skip forward:
1122          */
1123         if (unlikely(left <= -period)) {
1124                 left = period;
1125                 local64_set(&hwc->period_left, left);
1126                 hwc->last_period = period;
1127                 ret = 1;
1128         }
1129
1130         if (unlikely(left <= 0)) {
1131                 left += period;
1132                 local64_set(&hwc->period_left, left);
1133                 hwc->last_period = period;
1134                 ret = 1;
1135         }
1136         /*
1137          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1138          */
1139         if (unlikely(left < 2))
1140                 left = 2;
1141
1142         if (left > x86_pmu.max_period)
1143                 left = x86_pmu.max_period;
1144
1145         if (x86_pmu.limit_period)
1146                 left = x86_pmu.limit_period(event, left);
1147
1148         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1149
1150         /*
1151          * The hw event starts counting from this event offset,
1152          * mark it to be able to extra future deltas:
1153          */
1154         local64_set(&hwc->prev_count, (u64)-left);
1155
1156         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1157
1158         /*
1159          * Due to erratum on certan cpu we need
1160          * a second write to be sure the register
1161          * is updated properly
1162          */
1163         if (x86_pmu.perfctr_second_write) {
1164                 wrmsrl(hwc->event_base,
1165                         (u64)(-left) & x86_pmu.cntval_mask);
1166         }
1167
1168         perf_event_update_userpage(event);
1169
1170         return ret;
1171 }
1172
1173 void x86_pmu_enable_event(struct perf_event *event)
1174 {
1175         if (__this_cpu_read(cpu_hw_events.enabled))
1176                 __x86_pmu_enable_event(&event->hw,
1177                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1178 }
1179
1180 /*
1181  * Add a single event to the PMU.
1182  *
1183  * The event is added to the group of enabled events
1184  * but only if it can be scehduled with existing events.
1185  */
1186 static int x86_pmu_add(struct perf_event *event, int flags)
1187 {
1188         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189         struct hw_perf_event *hwc;
1190         int assign[X86_PMC_IDX_MAX];
1191         int n, n0, ret;
1192
1193         hwc = &event->hw;
1194
1195         n0 = cpuc->n_events;
1196         ret = n = collect_events(cpuc, event, false);
1197         if (ret < 0)
1198                 goto out;
1199
1200         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1201         if (!(flags & PERF_EF_START))
1202                 hwc->state |= PERF_HES_ARCH;
1203
1204         /*
1205          * If group events scheduling transaction was started,
1206          * skip the schedulability test here, it will be performed
1207          * at commit time (->commit_txn) as a whole.
1208          *
1209          * If commit fails, we'll call ->del() on all events
1210          * for which ->add() was called.
1211          */
1212         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1213                 goto done_collect;
1214
1215         ret = x86_pmu.schedule_events(cpuc, n, assign);
1216         if (ret)
1217                 goto out;
1218         /*
1219          * copy new assignment, now we know it is possible
1220          * will be used by hw_perf_enable()
1221          */
1222         memcpy(cpuc->assign, assign, n*sizeof(int));
1223
1224 done_collect:
1225         /*
1226          * Commit the collect_events() state. See x86_pmu_del() and
1227          * x86_pmu_*_txn().
1228          */
1229         cpuc->n_events = n;
1230         cpuc->n_added += n - n0;
1231         cpuc->n_txn += n - n0;
1232
1233         if (x86_pmu.add) {
1234                 /*
1235                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1236                  * so we enable LBRs before an event needs them etc..
1237                  */
1238                 x86_pmu.add(event);
1239         }
1240
1241         ret = 0;
1242 out:
1243         return ret;
1244 }
1245
1246 static void x86_pmu_start(struct perf_event *event, int flags)
1247 {
1248         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1249         int idx = event->hw.idx;
1250
1251         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1252                 return;
1253
1254         if (WARN_ON_ONCE(idx == -1))
1255                 return;
1256
1257         if (flags & PERF_EF_RELOAD) {
1258                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1259                 x86_perf_event_set_period(event);
1260         }
1261
1262         event->hw.state = 0;
1263
1264         cpuc->events[idx] = event;
1265         __set_bit(idx, cpuc->active_mask);
1266         __set_bit(idx, cpuc->running);
1267         x86_pmu.enable(event);
1268         perf_event_update_userpage(event);
1269 }
1270
1271 void perf_event_print_debug(void)
1272 {
1273         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1274         u64 pebs, debugctl;
1275         struct cpu_hw_events *cpuc;
1276         unsigned long flags;
1277         int cpu, idx;
1278
1279         if (!x86_pmu.num_counters)
1280                 return;
1281
1282         local_irq_save(flags);
1283
1284         cpu = smp_processor_id();
1285         cpuc = &per_cpu(cpu_hw_events, cpu);
1286
1287         if (x86_pmu.version >= 2) {
1288                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1289                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1290                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1291                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1292
1293                 pr_info("\n");
1294                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1295                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1296                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1297                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1298                 if (x86_pmu.pebs_constraints) {
1299                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1300                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1301                 }
1302                 if (x86_pmu.lbr_nr) {
1303                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1304                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1305                 }
1306         }
1307         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1308
1309         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1310                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1311                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1312
1313                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1314
1315                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1316                         cpu, idx, pmc_ctrl);
1317                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1318                         cpu, idx, pmc_count);
1319                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1320                         cpu, idx, prev_left);
1321         }
1322         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1323                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1324
1325                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1326                         cpu, idx, pmc_count);
1327         }
1328         local_irq_restore(flags);
1329 }
1330
1331 void x86_pmu_stop(struct perf_event *event, int flags)
1332 {
1333         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1334         struct hw_perf_event *hwc = &event->hw;
1335
1336         if (test_bit(hwc->idx, cpuc->active_mask)) {
1337                 x86_pmu.disable(event);
1338                 __clear_bit(hwc->idx, cpuc->active_mask);
1339                 cpuc->events[hwc->idx] = NULL;
1340                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1341                 hwc->state |= PERF_HES_STOPPED;
1342         }
1343
1344         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1345                 /*
1346                  * Drain the remaining delta count out of a event
1347                  * that we are disabling:
1348                  */
1349                 x86_perf_event_update(event);
1350                 hwc->state |= PERF_HES_UPTODATE;
1351         }
1352 }
1353
1354 static void x86_pmu_del(struct perf_event *event, int flags)
1355 {
1356         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357         int i;
1358
1359         /*
1360          * event is descheduled
1361          */
1362         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1363
1364         /*
1365          * If we're called during a txn, we only need to undo x86_pmu.add.
1366          * The events never got scheduled and ->cancel_txn will truncate
1367          * the event_list.
1368          *
1369          * XXX assumes any ->del() called during a TXN will only be on
1370          * an event added during that same TXN.
1371          */
1372         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1373                 goto do_del;
1374
1375         /*
1376          * Not a TXN, therefore cleanup properly.
1377          */
1378         x86_pmu_stop(event, PERF_EF_UPDATE);
1379
1380         for (i = 0; i < cpuc->n_events; i++) {
1381                 if (event == cpuc->event_list[i])
1382                         break;
1383         }
1384
1385         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1386                 return;
1387
1388         /* If we have a newly added event; make sure to decrease n_added. */
1389         if (i >= cpuc->n_events - cpuc->n_added)
1390                 --cpuc->n_added;
1391
1392         if (x86_pmu.put_event_constraints)
1393                 x86_pmu.put_event_constraints(cpuc, event);
1394
1395         /* Delete the array entry. */
1396         while (++i < cpuc->n_events) {
1397                 cpuc->event_list[i-1] = cpuc->event_list[i];
1398                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1399         }
1400         --cpuc->n_events;
1401
1402         perf_event_update_userpage(event);
1403
1404 do_del:
1405         if (x86_pmu.del) {
1406                 /*
1407                  * This is after x86_pmu_stop(); so we disable LBRs after any
1408                  * event can need them etc..
1409                  */
1410                 x86_pmu.del(event);
1411         }
1412 }
1413
1414 int x86_pmu_handle_irq(struct pt_regs *regs)
1415 {
1416         struct perf_sample_data data;
1417         struct cpu_hw_events *cpuc;
1418         struct perf_event *event;
1419         int idx, handled = 0;
1420         u64 val;
1421
1422         cpuc = this_cpu_ptr(&cpu_hw_events);
1423
1424         /*
1425          * Some chipsets need to unmask the LVTPC in a particular spot
1426          * inside the nmi handler.  As a result, the unmasking was pushed
1427          * into all the nmi handlers.
1428          *
1429          * This generic handler doesn't seem to have any issues where the
1430          * unmasking occurs so it was left at the top.
1431          */
1432         apic_write(APIC_LVTPC, APIC_DM_NMI);
1433
1434         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1435                 if (!test_bit(idx, cpuc->active_mask))
1436                         continue;
1437
1438                 event = cpuc->events[idx];
1439
1440                 val = x86_perf_event_update(event);
1441                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1442                         continue;
1443
1444                 /*
1445                  * event overflow
1446                  */
1447                 handled++;
1448                 perf_sample_data_init(&data, 0, event->hw.last_period);
1449
1450                 if (!x86_perf_event_set_period(event))
1451                         continue;
1452
1453                 if (perf_event_overflow(event, &data, regs))
1454                         x86_pmu_stop(event, 0);
1455         }
1456
1457         if (handled)
1458                 inc_irq_stat(apic_perf_irqs);
1459
1460         return handled;
1461 }
1462
1463 void perf_events_lapic_init(void)
1464 {
1465         if (!x86_pmu.apic || !x86_pmu_initialized())
1466                 return;
1467
1468         /*
1469          * Always use NMI for PMU
1470          */
1471         apic_write(APIC_LVTPC, APIC_DM_NMI);
1472 }
1473
1474 static int
1475 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1476 {
1477         u64 start_clock;
1478         u64 finish_clock;
1479         int ret;
1480
1481         /*
1482          * All PMUs/events that share this PMI handler should make sure to
1483          * increment active_events for their events.
1484          */
1485         if (!atomic_read(&active_events))
1486                 return NMI_DONE;
1487
1488         start_clock = sched_clock();
1489         ret = x86_pmu.handle_irq(regs);
1490         finish_clock = sched_clock();
1491
1492         perf_sample_event_took(finish_clock - start_clock);
1493
1494         return ret;
1495 }
1496 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1497
1498 struct event_constraint emptyconstraint;
1499 struct event_constraint unconstrained;
1500
1501 static int x86_pmu_prepare_cpu(unsigned int cpu)
1502 {
1503         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1504         int i;
1505
1506         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1507                 cpuc->kfree_on_online[i] = NULL;
1508         if (x86_pmu.cpu_prepare)
1509                 return x86_pmu.cpu_prepare(cpu);
1510         return 0;
1511 }
1512
1513 static int x86_pmu_dead_cpu(unsigned int cpu)
1514 {
1515         if (x86_pmu.cpu_dead)
1516                 x86_pmu.cpu_dead(cpu);
1517         return 0;
1518 }
1519
1520 static int x86_pmu_online_cpu(unsigned int cpu)
1521 {
1522         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1523         int i;
1524
1525         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1526                 kfree(cpuc->kfree_on_online[i]);
1527                 cpuc->kfree_on_online[i] = NULL;
1528         }
1529         return 0;
1530 }
1531
1532 static int x86_pmu_starting_cpu(unsigned int cpu)
1533 {
1534         if (x86_pmu.cpu_starting)
1535                 x86_pmu.cpu_starting(cpu);
1536         return 0;
1537 }
1538
1539 static int x86_pmu_dying_cpu(unsigned int cpu)
1540 {
1541         if (x86_pmu.cpu_dying)
1542                 x86_pmu.cpu_dying(cpu);
1543         return 0;
1544 }
1545
1546 static void __init pmu_check_apic(void)
1547 {
1548         if (boot_cpu_has(X86_FEATURE_APIC))
1549                 return;
1550
1551         x86_pmu.apic = 0;
1552         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1553         pr_info("no hardware sampling interrupt available.\n");
1554
1555         /*
1556          * If we have a PMU initialized but no APIC
1557          * interrupts, we cannot sample hardware
1558          * events (user-space has to fall back and
1559          * sample via a hrtimer based software event):
1560          */
1561         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1562
1563 }
1564
1565 static struct attribute_group x86_pmu_format_group = {
1566         .name = "format",
1567         .attrs = NULL,
1568 };
1569
1570 /*
1571  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1572  * out of events_attr attributes.
1573  */
1574 static void __init filter_events(struct attribute **attrs)
1575 {
1576         struct device_attribute *d;
1577         struct perf_pmu_events_attr *pmu_attr;
1578         int offset = 0;
1579         int i, j;
1580
1581         for (i = 0; attrs[i]; i++) {
1582                 d = (struct device_attribute *)attrs[i];
1583                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1584                 /* str trumps id */
1585                 if (pmu_attr->event_str)
1586                         continue;
1587                 if (x86_pmu.event_map(i + offset))
1588                         continue;
1589
1590                 for (j = i; attrs[j]; j++)
1591                         attrs[j] = attrs[j + 1];
1592
1593                 /* Check the shifted attr. */
1594                 i--;
1595
1596                 /*
1597                  * event_map() is index based, the attrs array is organized
1598                  * by increasing event index. If we shift the events, then
1599                  * we need to compensate for the event_map(), otherwise
1600                  * we are looking up the wrong event in the map
1601                  */
1602                 offset++;
1603         }
1604 }
1605
1606 /* Merge two pointer arrays */
1607 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1608 {
1609         struct attribute **new;
1610         int j, i;
1611
1612         for (j = 0; a[j]; j++)
1613                 ;
1614         for (i = 0; b[i]; i++)
1615                 j++;
1616         j++;
1617
1618         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1619         if (!new)
1620                 return NULL;
1621
1622         j = 0;
1623         for (i = 0; a[i]; i++)
1624                 new[j++] = a[i];
1625         for (i = 0; b[i]; i++)
1626                 new[j++] = b[i];
1627         new[j] = NULL;
1628
1629         return new;
1630 }
1631
1632 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1633 {
1634         struct perf_pmu_events_attr *pmu_attr = \
1635                 container_of(attr, struct perf_pmu_events_attr, attr);
1636         u64 config = x86_pmu.event_map(pmu_attr->id);
1637
1638         /* string trumps id */
1639         if (pmu_attr->event_str)
1640                 return sprintf(page, "%s", pmu_attr->event_str);
1641
1642         return x86_pmu.events_sysfs_show(page, config);
1643 }
1644 EXPORT_SYMBOL_GPL(events_sysfs_show);
1645
1646 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1647                           char *page)
1648 {
1649         struct perf_pmu_events_ht_attr *pmu_attr =
1650                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1651
1652         /*
1653          * Report conditional events depending on Hyper-Threading.
1654          *
1655          * This is overly conservative as usually the HT special
1656          * handling is not needed if the other CPU thread is idle.
1657          *
1658          * Note this does not (and cannot) handle the case when thread
1659          * siblings are invisible, for example with virtualization
1660          * if they are owned by some other guest.  The user tool
1661          * has to re-read when a thread sibling gets onlined later.
1662          */
1663         return sprintf(page, "%s",
1664                         topology_max_smt_threads() > 1 ?
1665                         pmu_attr->event_str_ht :
1666                         pmu_attr->event_str_noht);
1667 }
1668
1669 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1670 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1671 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1672 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1673 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1674 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1675 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1676 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1677 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1678 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1679
1680 static struct attribute *empty_attrs;
1681
1682 static struct attribute *events_attr[] = {
1683         EVENT_PTR(CPU_CYCLES),
1684         EVENT_PTR(INSTRUCTIONS),
1685         EVENT_PTR(CACHE_REFERENCES),
1686         EVENT_PTR(CACHE_MISSES),
1687         EVENT_PTR(BRANCH_INSTRUCTIONS),
1688         EVENT_PTR(BRANCH_MISSES),
1689         EVENT_PTR(BUS_CYCLES),
1690         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1691         EVENT_PTR(STALLED_CYCLES_BACKEND),
1692         EVENT_PTR(REF_CPU_CYCLES),
1693         NULL,
1694 };
1695
1696 static struct attribute_group x86_pmu_events_group = {
1697         .name = "events",
1698         .attrs = events_attr,
1699 };
1700
1701 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1702 {
1703         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1704         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1705         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1706         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1707         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1708         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1709         ssize_t ret;
1710
1711         /*
1712         * We have whole page size to spend and just little data
1713         * to write, so we can safely use sprintf.
1714         */
1715         ret = sprintf(page, "event=0x%02llx", event);
1716
1717         if (umask)
1718                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1719
1720         if (edge)
1721                 ret += sprintf(page + ret, ",edge");
1722
1723         if (pc)
1724                 ret += sprintf(page + ret, ",pc");
1725
1726         if (any)
1727                 ret += sprintf(page + ret, ",any");
1728
1729         if (inv)
1730                 ret += sprintf(page + ret, ",inv");
1731
1732         if (cmask)
1733                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1734
1735         ret += sprintf(page + ret, "\n");
1736
1737         return ret;
1738 }
1739
1740 static struct attribute_group x86_pmu_attr_group;
1741 static struct attribute_group x86_pmu_caps_group;
1742
1743 static int __init init_hw_perf_events(void)
1744 {
1745         struct x86_pmu_quirk *quirk;
1746         int err;
1747
1748         pr_info("Performance Events: ");
1749
1750         switch (boot_cpu_data.x86_vendor) {
1751         case X86_VENDOR_INTEL:
1752                 err = intel_pmu_init();
1753                 break;
1754         case X86_VENDOR_AMD:
1755                 err = amd_pmu_init();
1756                 break;
1757         default:
1758                 err = -ENOTSUPP;
1759         }
1760         if (err != 0) {
1761                 pr_cont("no PMU driver, software events only.\n");
1762                 return 0;
1763         }
1764
1765         pmu_check_apic();
1766
1767         /* sanity check that the hardware exists or is emulated */
1768         if (!check_hw_exists())
1769                 return 0;
1770
1771         pr_cont("%s PMU driver.\n", x86_pmu.name);
1772
1773         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1774
1775         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1776                 quirk->func();
1777
1778         if (!x86_pmu.intel_ctrl)
1779                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1780
1781         perf_events_lapic_init();
1782         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1783
1784         unconstrained = (struct event_constraint)
1785                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1786                                    0, x86_pmu.num_counters, 0, 0);
1787
1788         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1789
1790         if (x86_pmu.caps_attrs) {
1791                 struct attribute **tmp;
1792
1793                 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1794                 if (!WARN_ON(!tmp))
1795                         x86_pmu_caps_group.attrs = tmp;
1796         }
1797
1798         if (x86_pmu.event_attrs)
1799                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1800
1801         if (!x86_pmu.events_sysfs_show)
1802                 x86_pmu_events_group.attrs = &empty_attrs;
1803         else
1804                 filter_events(x86_pmu_events_group.attrs);
1805
1806         if (x86_pmu.cpu_events) {
1807                 struct attribute **tmp;
1808
1809                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1810                 if (!WARN_ON(!tmp))
1811                         x86_pmu_events_group.attrs = tmp;
1812         }
1813
1814         if (x86_pmu.attrs) {
1815                 struct attribute **tmp;
1816
1817                 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1818                 if (!WARN_ON(!tmp))
1819                         x86_pmu_attr_group.attrs = tmp;
1820         }
1821
1822         pr_info("... version:                %d\n",     x86_pmu.version);
1823         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1824         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1825         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1826         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1827         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1828         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1829
1830         /*
1831          * Install callbacks. Core will call them for each online
1832          * cpu.
1833          */
1834         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1835                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1836         if (err)
1837                 return err;
1838
1839         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1840                                 "perf/x86:starting", x86_pmu_starting_cpu,
1841                                 x86_pmu_dying_cpu);
1842         if (err)
1843                 goto out;
1844
1845         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1846                                 x86_pmu_online_cpu, NULL);
1847         if (err)
1848                 goto out1;
1849
1850         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1851         if (err)
1852                 goto out2;
1853
1854         return 0;
1855
1856 out2:
1857         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1858 out1:
1859         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1860 out:
1861         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1862         return err;
1863 }
1864 early_initcall(init_hw_perf_events);
1865
1866 static inline void x86_pmu_read(struct perf_event *event)
1867 {
1868         x86_perf_event_update(event);
1869 }
1870
1871 /*
1872  * Start group events scheduling transaction
1873  * Set the flag to make pmu::enable() not perform the
1874  * schedulability test, it will be performed at commit time
1875  *
1876  * We only support PERF_PMU_TXN_ADD transactions. Save the
1877  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1878  * transactions.
1879  */
1880 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1881 {
1882         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1883
1884         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1885
1886         cpuc->txn_flags = txn_flags;
1887         if (txn_flags & ~PERF_PMU_TXN_ADD)
1888                 return;
1889
1890         perf_pmu_disable(pmu);
1891         __this_cpu_write(cpu_hw_events.n_txn, 0);
1892 }
1893
1894 /*
1895  * Stop group events scheduling transaction
1896  * Clear the flag and pmu::enable() will perform the
1897  * schedulability test.
1898  */
1899 static void x86_pmu_cancel_txn(struct pmu *pmu)
1900 {
1901         unsigned int txn_flags;
1902         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1903
1904         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1905
1906         txn_flags = cpuc->txn_flags;
1907         cpuc->txn_flags = 0;
1908         if (txn_flags & ~PERF_PMU_TXN_ADD)
1909                 return;
1910
1911         /*
1912          * Truncate collected array by the number of events added in this
1913          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1914          */
1915         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1916         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1917         perf_pmu_enable(pmu);
1918 }
1919
1920 /*
1921  * Commit group events scheduling transaction
1922  * Perform the group schedulability test as a whole
1923  * Return 0 if success
1924  *
1925  * Does not cancel the transaction on failure; expects the caller to do this.
1926  */
1927 static int x86_pmu_commit_txn(struct pmu *pmu)
1928 {
1929         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1930         int assign[X86_PMC_IDX_MAX];
1931         int n, ret;
1932
1933         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1934
1935         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1936                 cpuc->txn_flags = 0;
1937                 return 0;
1938         }
1939
1940         n = cpuc->n_events;
1941
1942         if (!x86_pmu_initialized())
1943                 return -EAGAIN;
1944
1945         ret = x86_pmu.schedule_events(cpuc, n, assign);
1946         if (ret)
1947                 return ret;
1948
1949         /*
1950          * copy new assignment, now we know it is possible
1951          * will be used by hw_perf_enable()
1952          */
1953         memcpy(cpuc->assign, assign, n*sizeof(int));
1954
1955         cpuc->txn_flags = 0;
1956         perf_pmu_enable(pmu);
1957         return 0;
1958 }
1959 /*
1960  * a fake_cpuc is used to validate event groups. Due to
1961  * the extra reg logic, we need to also allocate a fake
1962  * per_core and per_cpu structure. Otherwise, group events
1963  * using extra reg may conflict without the kernel being
1964  * able to catch this when the last event gets added to
1965  * the group.
1966  */
1967 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1968 {
1969         intel_cpuc_finish(cpuc);
1970         kfree(cpuc);
1971 }
1972
1973 static struct cpu_hw_events *allocate_fake_cpuc(void)
1974 {
1975         struct cpu_hw_events *cpuc;
1976         int cpu = raw_smp_processor_id();
1977
1978         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1979         if (!cpuc)
1980                 return ERR_PTR(-ENOMEM);
1981         cpuc->is_fake = 1;
1982
1983         if (intel_cpuc_prepare(cpuc, cpu))
1984                 goto error;
1985
1986         return cpuc;
1987 error:
1988         free_fake_cpuc(cpuc);
1989         return ERR_PTR(-ENOMEM);
1990 }
1991
1992 /*
1993  * validate that we can schedule this event
1994  */
1995 static int validate_event(struct perf_event *event)
1996 {
1997         struct cpu_hw_events *fake_cpuc;
1998         struct event_constraint *c;
1999         int ret = 0;
2000
2001         fake_cpuc = allocate_fake_cpuc();
2002         if (IS_ERR(fake_cpuc))
2003                 return PTR_ERR(fake_cpuc);
2004
2005         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2006
2007         if (!c || !c->weight)
2008                 ret = -EINVAL;
2009
2010         if (x86_pmu.put_event_constraints)
2011                 x86_pmu.put_event_constraints(fake_cpuc, event);
2012
2013         free_fake_cpuc(fake_cpuc);
2014
2015         return ret;
2016 }
2017
2018 /*
2019  * validate a single event group
2020  *
2021  * validation include:
2022  *      - check events are compatible which each other
2023  *      - events do not compete for the same counter
2024  *      - number of events <= number of counters
2025  *
2026  * validation ensures the group can be loaded onto the
2027  * PMU if it was the only group available.
2028  */
2029 static int validate_group(struct perf_event *event)
2030 {
2031         struct perf_event *leader = event->group_leader;
2032         struct cpu_hw_events *fake_cpuc;
2033         int ret = -EINVAL, n;
2034
2035         fake_cpuc = allocate_fake_cpuc();
2036         if (IS_ERR(fake_cpuc))
2037                 return PTR_ERR(fake_cpuc);
2038         /*
2039          * the event is not yet connected with its
2040          * siblings therefore we must first collect
2041          * existing siblings, then add the new event
2042          * before we can simulate the scheduling
2043          */
2044         n = collect_events(fake_cpuc, leader, true);
2045         if (n < 0)
2046                 goto out;
2047
2048         fake_cpuc->n_events = n;
2049         n = collect_events(fake_cpuc, event, false);
2050         if (n < 0)
2051                 goto out;
2052
2053         fake_cpuc->n_events = n;
2054
2055         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2056
2057 out:
2058         free_fake_cpuc(fake_cpuc);
2059         return ret;
2060 }
2061
2062 static int x86_pmu_event_init(struct perf_event *event)
2063 {
2064         struct pmu *tmp;
2065         int err;
2066
2067         switch (event->attr.type) {
2068         case PERF_TYPE_RAW:
2069         case PERF_TYPE_HARDWARE:
2070         case PERF_TYPE_HW_CACHE:
2071                 break;
2072
2073         default:
2074                 return -ENOENT;
2075         }
2076
2077         err = __x86_pmu_event_init(event);
2078         if (!err) {
2079                 /*
2080                  * we temporarily connect event to its pmu
2081                  * such that validate_group() can classify
2082                  * it as an x86 event using is_x86_event()
2083                  */
2084                 tmp = event->pmu;
2085                 event->pmu = &pmu;
2086
2087                 if (event->group_leader != event)
2088                         err = validate_group(event);
2089                 else
2090                         err = validate_event(event);
2091
2092                 event->pmu = tmp;
2093         }
2094         if (err) {
2095                 if (event->destroy)
2096                         event->destroy(event);
2097                 event->destroy = NULL;
2098         }
2099
2100         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2101                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2102
2103         return err;
2104 }
2105
2106 static void refresh_pce(void *ignored)
2107 {
2108         load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2109 }
2110
2111 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2112 {
2113         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2114                 return;
2115
2116         /*
2117          * This function relies on not being called concurrently in two
2118          * tasks in the same mm.  Otherwise one task could observe
2119          * perf_rdpmc_allowed > 1 and return all the way back to
2120          * userspace with CR4.PCE clear while another task is still
2121          * doing on_each_cpu_mask() to propagate CR4.PCE.
2122          *
2123          * For now, this can't happen because all callers hold mmap_sem
2124          * for write.  If this changes, we'll need a different solution.
2125          */
2126         lockdep_assert_held_exclusive(&mm->mmap_sem);
2127
2128         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2129                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2130 }
2131
2132 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2133 {
2134
2135         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2136                 return;
2137
2138         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2139                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2140 }
2141
2142 static int x86_pmu_event_idx(struct perf_event *event)
2143 {
2144         int idx = event->hw.idx;
2145
2146         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2147                 return 0;
2148
2149         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2150                 idx -= INTEL_PMC_IDX_FIXED;
2151                 idx |= 1 << 30;
2152         }
2153
2154         return idx + 1;
2155 }
2156
2157 static ssize_t get_attr_rdpmc(struct device *cdev,
2158                               struct device_attribute *attr,
2159                               char *buf)
2160 {
2161         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2162 }
2163
2164 static ssize_t set_attr_rdpmc(struct device *cdev,
2165                               struct device_attribute *attr,
2166                               const char *buf, size_t count)
2167 {
2168         unsigned long val;
2169         ssize_t ret;
2170
2171         ret = kstrtoul(buf, 0, &val);
2172         if (ret)
2173                 return ret;
2174
2175         if (val > 2)
2176                 return -EINVAL;
2177
2178         if (x86_pmu.attr_rdpmc_broken)
2179                 return -ENOTSUPP;
2180
2181         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2182                 /*
2183                  * Changing into or out of always available, aka
2184                  * perf-event-bypassing mode.  This path is extremely slow,
2185                  * but only root can trigger it, so it's okay.
2186                  */
2187                 if (val == 2)
2188                         static_key_slow_inc(&rdpmc_always_available);
2189                 else
2190                         static_key_slow_dec(&rdpmc_always_available);
2191                 on_each_cpu(refresh_pce, NULL, 1);
2192         }
2193
2194         x86_pmu.attr_rdpmc = val;
2195
2196         return count;
2197 }
2198
2199 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2200
2201 static struct attribute *x86_pmu_attrs[] = {
2202         &dev_attr_rdpmc.attr,
2203         NULL,
2204 };
2205
2206 static struct attribute_group x86_pmu_attr_group = {
2207         .attrs = x86_pmu_attrs,
2208 };
2209
2210 static ssize_t max_precise_show(struct device *cdev,
2211                                   struct device_attribute *attr,
2212                                   char *buf)
2213 {
2214         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2215 }
2216
2217 static DEVICE_ATTR_RO(max_precise);
2218
2219 static struct attribute *x86_pmu_caps_attrs[] = {
2220         &dev_attr_max_precise.attr,
2221         NULL
2222 };
2223
2224 static struct attribute_group x86_pmu_caps_group = {
2225         .name = "caps",
2226         .attrs = x86_pmu_caps_attrs,
2227 };
2228
2229 static const struct attribute_group *x86_pmu_attr_groups[] = {
2230         &x86_pmu_attr_group,
2231         &x86_pmu_format_group,
2232         &x86_pmu_events_group,
2233         &x86_pmu_caps_group,
2234         NULL,
2235 };
2236
2237 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2238 {
2239         if (x86_pmu.sched_task)
2240                 x86_pmu.sched_task(ctx, sched_in);
2241 }
2242
2243 void perf_check_microcode(void)
2244 {
2245         if (x86_pmu.check_microcode)
2246                 x86_pmu.check_microcode();
2247 }
2248
2249 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2250 {
2251         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2252                 return -EINVAL;
2253
2254         if (value && x86_pmu.limit_period) {
2255                 if (x86_pmu.limit_period(event, value) > value)
2256                         return -EINVAL;
2257         }
2258
2259         return 0;
2260 }
2261
2262 static struct pmu pmu = {
2263         .pmu_enable             = x86_pmu_enable,
2264         .pmu_disable            = x86_pmu_disable,
2265
2266         .attr_groups            = x86_pmu_attr_groups,
2267
2268         .event_init             = x86_pmu_event_init,
2269
2270         .event_mapped           = x86_pmu_event_mapped,
2271         .event_unmapped         = x86_pmu_event_unmapped,
2272
2273         .add                    = x86_pmu_add,
2274         .del                    = x86_pmu_del,
2275         .start                  = x86_pmu_start,
2276         .stop                   = x86_pmu_stop,
2277         .read                   = x86_pmu_read,
2278
2279         .start_txn              = x86_pmu_start_txn,
2280         .cancel_txn             = x86_pmu_cancel_txn,
2281         .commit_txn             = x86_pmu_commit_txn,
2282
2283         .event_idx              = x86_pmu_event_idx,
2284         .sched_task             = x86_pmu_sched_task,
2285         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2286         .check_period           = x86_pmu_check_period,
2287 };
2288
2289 void arch_perf_update_userpage(struct perf_event *event,
2290                                struct perf_event_mmap_page *userpg, u64 now)
2291 {
2292         struct cyc2ns_data data;
2293         u64 offset;
2294
2295         userpg->cap_user_time = 0;
2296         userpg->cap_user_time_zero = 0;
2297         userpg->cap_user_rdpmc =
2298                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2299         userpg->pmc_width = x86_pmu.cntval_bits;
2300
2301         if (!using_native_sched_clock() || !sched_clock_stable())
2302                 return;
2303
2304         cyc2ns_read_begin(&data);
2305
2306         offset = data.cyc2ns_offset + __sched_clock_offset;
2307
2308         /*
2309          * Internal timekeeping for enabled/running/stopped times
2310          * is always in the local_clock domain.
2311          */
2312         userpg->cap_user_time = 1;
2313         userpg->time_mult = data.cyc2ns_mul;
2314         userpg->time_shift = data.cyc2ns_shift;
2315         userpg->time_offset = offset - now;
2316
2317         /*
2318          * cap_user_time_zero doesn't make sense when we're using a different
2319          * time base for the records.
2320          */
2321         if (!event->attr.use_clockid) {
2322                 userpg->cap_user_time_zero = 1;
2323                 userpg->time_zero = offset;
2324         }
2325
2326         cyc2ns_read_end();
2327 }
2328
2329 void
2330 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2331 {
2332         struct unwind_state state;
2333         unsigned long addr;
2334
2335         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2336                 /* TODO: We don't support guest os callchain now */
2337                 return;
2338         }
2339
2340         if (perf_callchain_store(entry, regs->ip))
2341                 return;
2342
2343         for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2344              unwind_next_frame(&state)) {
2345                 addr = unwind_get_return_address(&state);
2346                 if (!addr || perf_callchain_store(entry, addr))
2347                         return;
2348         }
2349 }
2350
2351 static inline int
2352 valid_user_frame(const void __user *fp, unsigned long size)
2353 {
2354         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2355 }
2356
2357 static unsigned long get_segment_base(unsigned int segment)
2358 {
2359         struct desc_struct *desc;
2360         unsigned int idx = segment >> 3;
2361
2362         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2363 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2364                 struct ldt_struct *ldt;
2365
2366                 /* IRQs are off, so this synchronizes with smp_store_release */
2367                 ldt = READ_ONCE(current->active_mm->context.ldt);
2368                 if (!ldt || idx >= ldt->nr_entries)
2369                         return 0;
2370
2371                 desc = &ldt->entries[idx];
2372 #else
2373                 return 0;
2374 #endif
2375         } else {
2376                 if (idx >= GDT_ENTRIES)
2377                         return 0;
2378
2379                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2380         }
2381
2382         return get_desc_base(desc);
2383 }
2384
2385 #ifdef CONFIG_IA32_EMULATION
2386
2387 #include <asm/compat.h>
2388
2389 static inline int
2390 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2391 {
2392         /* 32-bit process in 64-bit kernel. */
2393         unsigned long ss_base, cs_base;
2394         struct stack_frame_ia32 frame;
2395         const void __user *fp;
2396
2397         if (!test_thread_flag(TIF_IA32))
2398                 return 0;
2399
2400         cs_base = get_segment_base(regs->cs);
2401         ss_base = get_segment_base(regs->ss);
2402
2403         fp = compat_ptr(ss_base + regs->bp);
2404         pagefault_disable();
2405         while (entry->nr < entry->max_stack) {
2406                 unsigned long bytes;
2407                 frame.next_frame     = 0;
2408                 frame.return_address = 0;
2409
2410                 if (!valid_user_frame(fp, sizeof(frame)))
2411                         break;
2412
2413                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2414                 if (bytes != 0)
2415                         break;
2416                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2417                 if (bytes != 0)
2418                         break;
2419
2420                 perf_callchain_store(entry, cs_base + frame.return_address);
2421                 fp = compat_ptr(ss_base + frame.next_frame);
2422         }
2423         pagefault_enable();
2424         return 1;
2425 }
2426 #else
2427 static inline int
2428 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2429 {
2430     return 0;
2431 }
2432 #endif
2433
2434 void
2435 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2436 {
2437         struct stack_frame frame;
2438         const unsigned long __user *fp;
2439
2440         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2441                 /* TODO: We don't support guest os callchain now */
2442                 return;
2443         }
2444
2445         /*
2446          * We don't know what to do with VM86 stacks.. ignore them for now.
2447          */
2448         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2449                 return;
2450
2451         fp = (unsigned long __user *)regs->bp;
2452
2453         perf_callchain_store(entry, regs->ip);
2454
2455         if (!nmi_uaccess_okay())
2456                 return;
2457
2458         if (perf_callchain_user32(regs, entry))
2459                 return;
2460
2461         pagefault_disable();
2462         while (entry->nr < entry->max_stack) {
2463                 unsigned long bytes;
2464
2465                 frame.next_frame             = NULL;
2466                 frame.return_address = 0;
2467
2468                 if (!valid_user_frame(fp, sizeof(frame)))
2469                         break;
2470
2471                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2472                 if (bytes != 0)
2473                         break;
2474                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2475                 if (bytes != 0)
2476                         break;
2477
2478                 perf_callchain_store(entry, frame.return_address);
2479                 fp = (void __user *)frame.next_frame;
2480         }
2481         pagefault_enable();
2482 }
2483
2484 /*
2485  * Deal with code segment offsets for the various execution modes:
2486  *
2487  *   VM86 - the good olde 16 bit days, where the linear address is
2488  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2489  *
2490  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2491  *          to figure out what the 32bit base address is.
2492  *
2493  *    X32 - has TIF_X32 set, but is running in x86_64
2494  *
2495  * X86_64 - CS,DS,SS,ES are all zero based.
2496  */
2497 static unsigned long code_segment_base(struct pt_regs *regs)
2498 {
2499         /*
2500          * For IA32 we look at the GDT/LDT segment base to convert the
2501          * effective IP to a linear address.
2502          */
2503
2504 #ifdef CONFIG_X86_32
2505         /*
2506          * If we are in VM86 mode, add the segment offset to convert to a
2507          * linear address.
2508          */
2509         if (regs->flags & X86_VM_MASK)
2510                 return 0x10 * regs->cs;
2511
2512         if (user_mode(regs) && regs->cs != __USER_CS)
2513                 return get_segment_base(regs->cs);
2514 #else
2515         if (user_mode(regs) && !user_64bit_mode(regs) &&
2516             regs->cs != __USER32_CS)
2517                 return get_segment_base(regs->cs);
2518 #endif
2519         return 0;
2520 }
2521
2522 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2523 {
2524         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2525                 return perf_guest_cbs->get_guest_ip();
2526
2527         return regs->ip + code_segment_base(regs);
2528 }
2529
2530 unsigned long perf_misc_flags(struct pt_regs *regs)
2531 {
2532         int misc = 0;
2533
2534         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2535                 if (perf_guest_cbs->is_user_mode())
2536                         misc |= PERF_RECORD_MISC_GUEST_USER;
2537                 else
2538                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2539         } else {
2540                 if (user_mode(regs))
2541                         misc |= PERF_RECORD_MISC_USER;
2542                 else
2543                         misc |= PERF_RECORD_MISC_KERNEL;
2544         }
2545
2546         if (regs->flags & PERF_EFLAGS_EXACT)
2547                 misc |= PERF_RECORD_MISC_EXACT_IP;
2548
2549         return misc;
2550 }
2551
2552 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2553 {
2554         cap->version            = x86_pmu.version;
2555         cap->num_counters_gp    = x86_pmu.num_counters;
2556         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2557         cap->bit_width_gp       = x86_pmu.cntval_bits;
2558         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2559         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2560         cap->events_mask_len    = x86_pmu.events_mask_len;
2561 }
2562 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);