GNU Linux-libre 5.19-rc6-gnu
[releases.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
78
79 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
82
83 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
85
86 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
88
89 /*
90  * This one is magic, it will get called even when PMU init fails (because
91  * there is no PMU), in which case it should simply return NULL.
92  */
93 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
94
95 u64 __read_mostly hw_cache_event_ids
96                                 [PERF_COUNT_HW_CACHE_MAX]
97                                 [PERF_COUNT_HW_CACHE_OP_MAX]
98                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 u64 __read_mostly hw_cache_extra_regs
100                                 [PERF_COUNT_HW_CACHE_MAX]
101                                 [PERF_COUNT_HW_CACHE_OP_MAX]
102                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
103
104 /*
105  * Propagate event elapsed time into the generic event.
106  * Can only be executed on the CPU where the event is active.
107  * Returns the delta events processed.
108  */
109 u64 x86_perf_event_update(struct perf_event *event)
110 {
111         struct hw_perf_event *hwc = &event->hw;
112         int shift = 64 - x86_pmu.cntval_bits;
113         u64 prev_raw_count, new_raw_count;
114         u64 delta;
115
116         if (unlikely(!hwc->event_base))
117                 return 0;
118
119         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
120                 return x86_pmu.update_topdown_event(event);
121
122         /*
123          * Careful: an NMI might modify the previous event value.
124          *
125          * Our tactic to handle this is to first atomically read and
126          * exchange a new raw count - then add that new-prev delta
127          * count to the generic event atomically:
128          */
129 again:
130         prev_raw_count = local64_read(&hwc->prev_count);
131         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
132
133         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
134                                         new_raw_count) != prev_raw_count)
135                 goto again;
136
137         /*
138          * Now we have the new raw value and have updated the prev
139          * timestamp already. We can now calculate the elapsed delta
140          * (event-)time and add that to the generic event.
141          *
142          * Careful, not all hw sign-extends above the physical width
143          * of the count.
144          */
145         delta = (new_raw_count << shift) - (prev_raw_count << shift);
146         delta >>= shift;
147
148         local64_add(delta, &event->count);
149         local64_sub(delta, &hwc->period_left);
150
151         return new_raw_count;
152 }
153
154 /*
155  * Find and validate any extra registers to set up.
156  */
157 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
158 {
159         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
160         struct hw_perf_event_extra *reg;
161         struct extra_reg *er;
162
163         reg = &event->hw.extra_reg;
164
165         if (!extra_regs)
166                 return 0;
167
168         for (er = extra_regs; er->msr; er++) {
169                 if (er->event != (config & er->config_mask))
170                         continue;
171                 if (event->attr.config1 & ~er->valid_mask)
172                         return -EINVAL;
173                 /* Check if the extra msrs can be safely accessed*/
174                 if (!er->extra_msr_access)
175                         return -ENXIO;
176
177                 reg->idx = er->idx;
178                 reg->config = event->attr.config1;
179                 reg->reg = er->msr;
180                 break;
181         }
182         return 0;
183 }
184
185 static atomic_t active_events;
186 static atomic_t pmc_refcount;
187 static DEFINE_MUTEX(pmc_reserve_mutex);
188
189 #ifdef CONFIG_X86_LOCAL_APIC
190
191 static inline int get_possible_num_counters(void)
192 {
193         int i, num_counters = x86_pmu.num_counters;
194
195         if (!is_hybrid())
196                 return num_counters;
197
198         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
199                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
200
201         return num_counters;
202 }
203
204 static bool reserve_pmc_hardware(void)
205 {
206         int i, num_counters = get_possible_num_counters();
207
208         for (i = 0; i < num_counters; i++) {
209                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
210                         goto perfctr_fail;
211         }
212
213         for (i = 0; i < num_counters; i++) {
214                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
215                         goto eventsel_fail;
216         }
217
218         return true;
219
220 eventsel_fail:
221         for (i--; i >= 0; i--)
222                 release_evntsel_nmi(x86_pmu_config_addr(i));
223
224         i = num_counters;
225
226 perfctr_fail:
227         for (i--; i >= 0; i--)
228                 release_perfctr_nmi(x86_pmu_event_addr(i));
229
230         return false;
231 }
232
233 static void release_pmc_hardware(void)
234 {
235         int i, num_counters = get_possible_num_counters();
236
237         for (i = 0; i < num_counters; i++) {
238                 release_perfctr_nmi(x86_pmu_event_addr(i));
239                 release_evntsel_nmi(x86_pmu_config_addr(i));
240         }
241 }
242
243 #else
244
245 static bool reserve_pmc_hardware(void) { return true; }
246 static void release_pmc_hardware(void) {}
247
248 #endif
249
250 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
251 {
252         u64 val, val_fail = -1, val_new= ~0;
253         int i, reg, reg_fail = -1, ret = 0;
254         int bios_fail = 0;
255         int reg_safe = -1;
256
257         /*
258          * Check to see if the BIOS enabled any of the counters, if so
259          * complain and bail.
260          */
261         for (i = 0; i < num_counters; i++) {
262                 reg = x86_pmu_config_addr(i);
263                 ret = rdmsrl_safe(reg, &val);
264                 if (ret)
265                         goto msr_fail;
266                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
267                         bios_fail = 1;
268                         val_fail = val;
269                         reg_fail = reg;
270                 } else {
271                         reg_safe = i;
272                 }
273         }
274
275         if (num_counters_fixed) {
276                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
277                 ret = rdmsrl_safe(reg, &val);
278                 if (ret)
279                         goto msr_fail;
280                 for (i = 0; i < num_counters_fixed; i++) {
281                         if (fixed_counter_disabled(i, pmu))
282                                 continue;
283                         if (val & (0x03ULL << i*4)) {
284                                 bios_fail = 1;
285                                 val_fail = val;
286                                 reg_fail = reg;
287                         }
288                 }
289         }
290
291         /*
292          * If all the counters are enabled, the below test will always
293          * fail.  The tools will also become useless in this scenario.
294          * Just fail and disable the hardware counters.
295          */
296
297         if (reg_safe == -1) {
298                 reg = reg_safe;
299                 goto msr_fail;
300         }
301
302         /*
303          * Read the current value, change it and read it back to see if it
304          * matches, this is needed to detect certain hardware emulators
305          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
306          */
307         reg = x86_pmu_event_addr(reg_safe);
308         if (rdmsrl_safe(reg, &val))
309                 goto msr_fail;
310         val ^= 0xffffUL;
311         ret = wrmsrl_safe(reg, val);
312         ret |= rdmsrl_safe(reg, &val_new);
313         if (ret || val != val_new)
314                 goto msr_fail;
315
316         /*
317          * We still allow the PMU driver to operate:
318          */
319         if (bios_fail) {
320                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
321                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
322                               reg_fail, val_fail);
323         }
324
325         return true;
326
327 msr_fail:
328         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
329                 pr_cont("PMU not available due to virtualization, using software events only.\n");
330         } else {
331                 pr_cont("Broken PMU hardware detected, using software events only.\n");
332                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
333                        reg, val_new);
334         }
335
336         return false;
337 }
338
339 static void hw_perf_event_destroy(struct perf_event *event)
340 {
341         x86_release_hardware();
342         atomic_dec(&active_events);
343 }
344
345 void hw_perf_lbr_event_destroy(struct perf_event *event)
346 {
347         hw_perf_event_destroy(event);
348
349         /* undo the lbr/bts event accounting */
350         x86_del_exclusive(x86_lbr_exclusive_lbr);
351 }
352
353 static inline int x86_pmu_initialized(void)
354 {
355         return x86_pmu.handle_irq != NULL;
356 }
357
358 static inline int
359 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
360 {
361         struct perf_event_attr *attr = &event->attr;
362         unsigned int cache_type, cache_op, cache_result;
363         u64 config, val;
364
365         config = attr->config;
366
367         cache_type = (config >> 0) & 0xff;
368         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
369                 return -EINVAL;
370         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
371
372         cache_op = (config >>  8) & 0xff;
373         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
374                 return -EINVAL;
375         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
376
377         cache_result = (config >> 16) & 0xff;
378         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
379                 return -EINVAL;
380         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
381
382         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
383         if (val == 0)
384                 return -ENOENT;
385
386         if (val == -1)
387                 return -EINVAL;
388
389         hwc->config |= val;
390         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
391         return x86_pmu_extra_regs(val, event);
392 }
393
394 int x86_reserve_hardware(void)
395 {
396         int err = 0;
397
398         if (!atomic_inc_not_zero(&pmc_refcount)) {
399                 mutex_lock(&pmc_reserve_mutex);
400                 if (atomic_read(&pmc_refcount) == 0) {
401                         if (!reserve_pmc_hardware()) {
402                                 err = -EBUSY;
403                         } else {
404                                 reserve_ds_buffers();
405                                 reserve_lbr_buffers();
406                         }
407                 }
408                 if (!err)
409                         atomic_inc(&pmc_refcount);
410                 mutex_unlock(&pmc_reserve_mutex);
411         }
412
413         return err;
414 }
415
416 void x86_release_hardware(void)
417 {
418         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
419                 release_pmc_hardware();
420                 release_ds_buffers();
421                 release_lbr_buffers();
422                 mutex_unlock(&pmc_reserve_mutex);
423         }
424 }
425
426 /*
427  * Check if we can create event of a certain type (that no conflicting events
428  * are present).
429  */
430 int x86_add_exclusive(unsigned int what)
431 {
432         int i;
433
434         /*
435          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
436          * LBR and BTS are still mutually exclusive.
437          */
438         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
439                 goto out;
440
441         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
442                 mutex_lock(&pmc_reserve_mutex);
443                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
444                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
445                                 goto fail_unlock;
446                 }
447                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
448                 mutex_unlock(&pmc_reserve_mutex);
449         }
450
451 out:
452         atomic_inc(&active_events);
453         return 0;
454
455 fail_unlock:
456         mutex_unlock(&pmc_reserve_mutex);
457         return -EBUSY;
458 }
459
460 void x86_del_exclusive(unsigned int what)
461 {
462         atomic_dec(&active_events);
463
464         /*
465          * See the comment in x86_add_exclusive().
466          */
467         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
468                 return;
469
470         atomic_dec(&x86_pmu.lbr_exclusive[what]);
471 }
472
473 int x86_setup_perfctr(struct perf_event *event)
474 {
475         struct perf_event_attr *attr = &event->attr;
476         struct hw_perf_event *hwc = &event->hw;
477         u64 config;
478
479         if (!is_sampling_event(event)) {
480                 hwc->sample_period = x86_pmu.max_period;
481                 hwc->last_period = hwc->sample_period;
482                 local64_set(&hwc->period_left, hwc->sample_period);
483         }
484
485         if (attr->type == event->pmu->type)
486                 return x86_pmu_extra_regs(event->attr.config, event);
487
488         if (attr->type == PERF_TYPE_HW_CACHE)
489                 return set_ext_hw_attr(hwc, event);
490
491         if (attr->config >= x86_pmu.max_events)
492                 return -EINVAL;
493
494         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
495
496         /*
497          * The generic map:
498          */
499         config = x86_pmu.event_map(attr->config);
500
501         if (config == 0)
502                 return -ENOENT;
503
504         if (config == -1LL)
505                 return -EINVAL;
506
507         hwc->config |= config;
508
509         return 0;
510 }
511
512 /*
513  * check that branch_sample_type is compatible with
514  * settings needed for precise_ip > 1 which implies
515  * using the LBR to capture ALL taken branches at the
516  * priv levels of the measurement
517  */
518 static inline int precise_br_compat(struct perf_event *event)
519 {
520         u64 m = event->attr.branch_sample_type;
521         u64 b = 0;
522
523         /* must capture all branches */
524         if (!(m & PERF_SAMPLE_BRANCH_ANY))
525                 return 0;
526
527         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
528
529         if (!event->attr.exclude_user)
530                 b |= PERF_SAMPLE_BRANCH_USER;
531
532         if (!event->attr.exclude_kernel)
533                 b |= PERF_SAMPLE_BRANCH_KERNEL;
534
535         /*
536          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
537          */
538
539         return m == b;
540 }
541
542 int x86_pmu_max_precise(void)
543 {
544         int precise = 0;
545
546         /* Support for constant skid */
547         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
548                 precise++;
549
550                 /* Support for IP fixup */
551                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
552                         precise++;
553
554                 if (x86_pmu.pebs_prec_dist)
555                         precise++;
556         }
557         return precise;
558 }
559
560 int x86_pmu_hw_config(struct perf_event *event)
561 {
562         if (event->attr.precise_ip) {
563                 int precise = x86_pmu_max_precise();
564
565                 if (event->attr.precise_ip > precise)
566                         return -EOPNOTSUPP;
567
568                 /* There's no sense in having PEBS for non sampling events: */
569                 if (!is_sampling_event(event))
570                         return -EINVAL;
571         }
572         /*
573          * check that PEBS LBR correction does not conflict with
574          * whatever the user is asking with attr->branch_sample_type
575          */
576         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
577                 u64 *br_type = &event->attr.branch_sample_type;
578
579                 if (has_branch_stack(event)) {
580                         if (!precise_br_compat(event))
581                                 return -EOPNOTSUPP;
582
583                         /* branch_sample_type is compatible */
584
585                 } else {
586                         /*
587                          * user did not specify  branch_sample_type
588                          *
589                          * For PEBS fixups, we capture all
590                          * the branches at the priv level of the
591                          * event.
592                          */
593                         *br_type = PERF_SAMPLE_BRANCH_ANY;
594
595                         if (!event->attr.exclude_user)
596                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
597
598                         if (!event->attr.exclude_kernel)
599                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
600                 }
601         }
602
603         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
604                 event->attach_state |= PERF_ATTACH_TASK_DATA;
605
606         /*
607          * Generate PMC IRQs:
608          * (keep 'enabled' bit clear for now)
609          */
610         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
611
612         /*
613          * Count user and OS events unless requested not to
614          */
615         if (!event->attr.exclude_user)
616                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
617         if (!event->attr.exclude_kernel)
618                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
619
620         if (event->attr.type == event->pmu->type)
621                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
622
623         if (event->attr.sample_period && x86_pmu.limit_period) {
624                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
625                                 event->attr.sample_period)
626                         return -EINVAL;
627         }
628
629         /* sample_regs_user never support XMM registers */
630         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
631                 return -EINVAL;
632         /*
633          * Besides the general purpose registers, XMM registers may
634          * be collected in PEBS on some platforms, e.g. Icelake
635          */
636         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
637                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
638                         return -EINVAL;
639
640                 if (!event->attr.precise_ip)
641                         return -EINVAL;
642         }
643
644         return x86_setup_perfctr(event);
645 }
646
647 /*
648  * Setup the hardware configuration for a given attr_type
649  */
650 static int __x86_pmu_event_init(struct perf_event *event)
651 {
652         int err;
653
654         if (!x86_pmu_initialized())
655                 return -ENODEV;
656
657         err = x86_reserve_hardware();
658         if (err)
659                 return err;
660
661         atomic_inc(&active_events);
662         event->destroy = hw_perf_event_destroy;
663
664         event->hw.idx = -1;
665         event->hw.last_cpu = -1;
666         event->hw.last_tag = ~0ULL;
667
668         /* mark unused */
669         event->hw.extra_reg.idx = EXTRA_REG_NONE;
670         event->hw.branch_reg.idx = EXTRA_REG_NONE;
671
672         return x86_pmu.hw_config(event);
673 }
674
675 void x86_pmu_disable_all(void)
676 {
677         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
678         int idx;
679
680         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
681                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
682                 u64 val;
683
684                 if (!test_bit(idx, cpuc->active_mask))
685                         continue;
686                 rdmsrl(x86_pmu_config_addr(idx), val);
687                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
688                         continue;
689                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
690                 wrmsrl(x86_pmu_config_addr(idx), val);
691                 if (is_counter_pair(hwc))
692                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
693         }
694 }
695
696 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
697 {
698         return static_call(x86_pmu_guest_get_msrs)(nr);
699 }
700 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
701
702 /*
703  * There may be PMI landing after enabled=0. The PMI hitting could be before or
704  * after disable_all.
705  *
706  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
707  * It will not be re-enabled in the NMI handler again, because enabled=0. After
708  * handling the NMI, disable_all will be called, which will not change the
709  * state either. If PMI hits after disable_all, the PMU is already disabled
710  * before entering NMI handler. The NMI handler will not change the state
711  * either.
712  *
713  * So either situation is harmless.
714  */
715 static void x86_pmu_disable(struct pmu *pmu)
716 {
717         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
718
719         if (!x86_pmu_initialized())
720                 return;
721
722         if (!cpuc->enabled)
723                 return;
724
725         cpuc->n_added = 0;
726         cpuc->enabled = 0;
727         barrier();
728
729         static_call(x86_pmu_disable_all)();
730 }
731
732 void x86_pmu_enable_all(int added)
733 {
734         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
735         int idx;
736
737         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
738                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
739
740                 if (!test_bit(idx, cpuc->active_mask))
741                         continue;
742
743                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
744         }
745 }
746
747 static inline int is_x86_event(struct perf_event *event)
748 {
749         int i;
750
751         if (!is_hybrid())
752                 return event->pmu == &pmu;
753
754         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
755                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
756                         return true;
757         }
758
759         return false;
760 }
761
762 struct pmu *x86_get_pmu(unsigned int cpu)
763 {
764         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
765
766         /*
767          * All CPUs of the hybrid type have been offline.
768          * The x86_get_pmu() should not be invoked.
769          */
770         if (WARN_ON_ONCE(!cpuc->pmu))
771                 return &pmu;
772
773         return cpuc->pmu;
774 }
775 /*
776  * Event scheduler state:
777  *
778  * Assign events iterating over all events and counters, beginning
779  * with events with least weights first. Keep the current iterator
780  * state in struct sched_state.
781  */
782 struct sched_state {
783         int     weight;
784         int     event;          /* event index */
785         int     counter;        /* counter index */
786         int     unassigned;     /* number of events to be assigned left */
787         int     nr_gp;          /* number of GP counters used */
788         u64     used;
789 };
790
791 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
792 #define SCHED_STATES_MAX        2
793
794 struct perf_sched {
795         int                     max_weight;
796         int                     max_events;
797         int                     max_gp;
798         int                     saved_states;
799         struct event_constraint **constraints;
800         struct sched_state      state;
801         struct sched_state      saved[SCHED_STATES_MAX];
802 };
803
804 /*
805  * Initialize iterator that runs through all events and counters.
806  */
807 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
808                             int num, int wmin, int wmax, int gpmax)
809 {
810         int idx;
811
812         memset(sched, 0, sizeof(*sched));
813         sched->max_events       = num;
814         sched->max_weight       = wmax;
815         sched->max_gp           = gpmax;
816         sched->constraints      = constraints;
817
818         for (idx = 0; idx < num; idx++) {
819                 if (constraints[idx]->weight == wmin)
820                         break;
821         }
822
823         sched->state.event      = idx;          /* start with min weight */
824         sched->state.weight     = wmin;
825         sched->state.unassigned = num;
826 }
827
828 static void perf_sched_save_state(struct perf_sched *sched)
829 {
830         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
831                 return;
832
833         sched->saved[sched->saved_states] = sched->state;
834         sched->saved_states++;
835 }
836
837 static bool perf_sched_restore_state(struct perf_sched *sched)
838 {
839         if (!sched->saved_states)
840                 return false;
841
842         sched->saved_states--;
843         sched->state = sched->saved[sched->saved_states];
844
845         /* this assignment didn't work out */
846         /* XXX broken vs EVENT_PAIR */
847         sched->state.used &= ~BIT_ULL(sched->state.counter);
848
849         /* try the next one */
850         sched->state.counter++;
851
852         return true;
853 }
854
855 /*
856  * Select a counter for the current event to schedule. Return true on
857  * success.
858  */
859 static bool __perf_sched_find_counter(struct perf_sched *sched)
860 {
861         struct event_constraint *c;
862         int idx;
863
864         if (!sched->state.unassigned)
865                 return false;
866
867         if (sched->state.event >= sched->max_events)
868                 return false;
869
870         c = sched->constraints[sched->state.event];
871         /* Prefer fixed purpose counters */
872         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
873                 idx = INTEL_PMC_IDX_FIXED;
874                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
875                         u64 mask = BIT_ULL(idx);
876
877                         if (sched->state.used & mask)
878                                 continue;
879
880                         sched->state.used |= mask;
881                         goto done;
882                 }
883         }
884
885         /* Grab the first unused counter starting with idx */
886         idx = sched->state.counter;
887         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
888                 u64 mask = BIT_ULL(idx);
889
890                 if (c->flags & PERF_X86_EVENT_PAIR)
891                         mask |= mask << 1;
892
893                 if (sched->state.used & mask)
894                         continue;
895
896                 if (sched->state.nr_gp++ >= sched->max_gp)
897                         return false;
898
899                 sched->state.used |= mask;
900                 goto done;
901         }
902
903         return false;
904
905 done:
906         sched->state.counter = idx;
907
908         if (c->overlap)
909                 perf_sched_save_state(sched);
910
911         return true;
912 }
913
914 static bool perf_sched_find_counter(struct perf_sched *sched)
915 {
916         while (!__perf_sched_find_counter(sched)) {
917                 if (!perf_sched_restore_state(sched))
918                         return false;
919         }
920
921         return true;
922 }
923
924 /*
925  * Go through all unassigned events and find the next one to schedule.
926  * Take events with the least weight first. Return true on success.
927  */
928 static bool perf_sched_next_event(struct perf_sched *sched)
929 {
930         struct event_constraint *c;
931
932         if (!sched->state.unassigned || !--sched->state.unassigned)
933                 return false;
934
935         do {
936                 /* next event */
937                 sched->state.event++;
938                 if (sched->state.event >= sched->max_events) {
939                         /* next weight */
940                         sched->state.event = 0;
941                         sched->state.weight++;
942                         if (sched->state.weight > sched->max_weight)
943                                 return false;
944                 }
945                 c = sched->constraints[sched->state.event];
946         } while (c->weight != sched->state.weight);
947
948         sched->state.counter = 0;       /* start with first counter */
949
950         return true;
951 }
952
953 /*
954  * Assign a counter for each event.
955  */
956 int perf_assign_events(struct event_constraint **constraints, int n,
957                         int wmin, int wmax, int gpmax, int *assign)
958 {
959         struct perf_sched sched;
960
961         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
962
963         do {
964                 if (!perf_sched_find_counter(&sched))
965                         break;  /* failed */
966                 if (assign)
967                         assign[sched.state.event] = sched.state.counter;
968         } while (perf_sched_next_event(&sched));
969
970         return sched.state.unassigned;
971 }
972 EXPORT_SYMBOL_GPL(perf_assign_events);
973
974 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
975 {
976         int num_counters = hybrid(cpuc->pmu, num_counters);
977         struct event_constraint *c;
978         struct perf_event *e;
979         int n0, i, wmin, wmax, unsched = 0;
980         struct hw_perf_event *hwc;
981         u64 used_mask = 0;
982
983         /*
984          * Compute the number of events already present; see x86_pmu_add(),
985          * validate_group() and x86_pmu_commit_txn(). For the former two
986          * cpuc->n_events hasn't been updated yet, while for the latter
987          * cpuc->n_txn contains the number of events added in the current
988          * transaction.
989          */
990         n0 = cpuc->n_events;
991         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
992                 n0 -= cpuc->n_txn;
993
994         static_call_cond(x86_pmu_start_scheduling)(cpuc);
995
996         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
997                 c = cpuc->event_constraint[i];
998
999                 /*
1000                  * Previously scheduled events should have a cached constraint,
1001                  * while new events should not have one.
1002                  */
1003                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1004
1005                 /*
1006                  * Request constraints for new events; or for those events that
1007                  * have a dynamic constraint -- for those the constraint can
1008                  * change due to external factors (sibling state, allow_tfa).
1009                  */
1010                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1011                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1012                         cpuc->event_constraint[i] = c;
1013                 }
1014
1015                 wmin = min(wmin, c->weight);
1016                 wmax = max(wmax, c->weight);
1017         }
1018
1019         /*
1020          * fastpath, try to reuse previous register
1021          */
1022         for (i = 0; i < n; i++) {
1023                 u64 mask;
1024
1025                 hwc = &cpuc->event_list[i]->hw;
1026                 c = cpuc->event_constraint[i];
1027
1028                 /* never assigned */
1029                 if (hwc->idx == -1)
1030                         break;
1031
1032                 /* constraint still honored */
1033                 if (!test_bit(hwc->idx, c->idxmsk))
1034                         break;
1035
1036                 mask = BIT_ULL(hwc->idx);
1037                 if (is_counter_pair(hwc))
1038                         mask |= mask << 1;
1039
1040                 /* not already used */
1041                 if (used_mask & mask)
1042                         break;
1043
1044                 used_mask |= mask;
1045
1046                 if (assign)
1047                         assign[i] = hwc->idx;
1048         }
1049
1050         /* slow path */
1051         if (i != n) {
1052                 int gpmax = num_counters;
1053
1054                 /*
1055                  * Do not allow scheduling of more than half the available
1056                  * generic counters.
1057                  *
1058                  * This helps avoid counter starvation of sibling thread by
1059                  * ensuring at most half the counters cannot be in exclusive
1060                  * mode. There is no designated counters for the limits. Any
1061                  * N/2 counters can be used. This helps with events with
1062                  * specific counter constraints.
1063                  */
1064                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1065                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1066                         gpmax /= 2;
1067
1068                 /*
1069                  * Reduce the amount of available counters to allow fitting
1070                  * the extra Merge events needed by large increment events.
1071                  */
1072                 if (x86_pmu.flags & PMU_FL_PAIR) {
1073                         gpmax = num_counters - cpuc->n_pair;
1074                         WARN_ON(gpmax <= 0);
1075                 }
1076
1077                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1078                                              wmax, gpmax, assign);
1079         }
1080
1081         /*
1082          * In case of success (unsched = 0), mark events as committed,
1083          * so we do not put_constraint() in case new events are added
1084          * and fail to be scheduled
1085          *
1086          * We invoke the lower level commit callback to lock the resource
1087          *
1088          * We do not need to do all of this in case we are called to
1089          * validate an event group (assign == NULL)
1090          */
1091         if (!unsched && assign) {
1092                 for (i = 0; i < n; i++)
1093                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1094         } else {
1095                 for (i = n0; i < n; i++) {
1096                         e = cpuc->event_list[i];
1097
1098                         /*
1099                          * release events that failed scheduling
1100                          */
1101                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102
1103                         cpuc->event_constraint[i] = NULL;
1104                 }
1105         }
1106
1107         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108
1109         return unsched ? -EINVAL : 0;
1110 }
1111
1112 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113                                struct perf_event *event)
1114 {
1115         if (is_metric_event(event)) {
1116                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117                         return -EINVAL;
1118                 cpuc->n_metric++;
1119                 cpuc->n_txn_metric++;
1120         }
1121
1122         return 0;
1123 }
1124
1125 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126                                 struct perf_event *event)
1127 {
1128         if (is_metric_event(event))
1129                 cpuc->n_metric--;
1130 }
1131
1132 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133                          int max_count, int n)
1134 {
1135         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136
1137         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138                 return -EINVAL;
1139
1140         if (n >= max_count + cpuc->n_metric)
1141                 return -EINVAL;
1142
1143         cpuc->event_list[n] = event;
1144         if (is_counter_pair(&event->hw)) {
1145                 cpuc->n_pair++;
1146                 cpuc->n_txn_pair++;
1147         }
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * dogrp: true if must collect siblings events (group)
1154  * returns total number of events and error code
1155  */
1156 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157 {
1158         int num_counters = hybrid(cpuc->pmu, num_counters);
1159         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160         struct perf_event *event;
1161         int n, max_count;
1162
1163         max_count = num_counters + num_counters_fixed;
1164
1165         /* current number of events already accepted */
1166         n = cpuc->n_events;
1167         if (!cpuc->n_events)
1168                 cpuc->pebs_output = 0;
1169
1170         if (!cpuc->is_fake && leader->attr.precise_ip) {
1171                 /*
1172                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1173                  * away, the group was broken down and this singleton event
1174                  * can't schedule any more.
1175                  */
1176                 if (is_pebs_pt(leader) && !leader->aux_event)
1177                         return -EINVAL;
1178
1179                 /*
1180                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181                  */
1182                 if (cpuc->pebs_output &&
1183                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184                         return -EINVAL;
1185
1186                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187         }
1188
1189         if (is_x86_event(leader)) {
1190                 if (collect_event(cpuc, leader, max_count, n))
1191                         return -EINVAL;
1192                 n++;
1193         }
1194
1195         if (!dogrp)
1196                 return n;
1197
1198         for_each_sibling_event(event, leader) {
1199                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200                         continue;
1201
1202                 if (collect_event(cpuc, event, max_count, n))
1203                         return -EINVAL;
1204
1205                 n++;
1206         }
1207         return n;
1208 }
1209
1210 static inline void x86_assign_hw_event(struct perf_event *event,
1211                                 struct cpu_hw_events *cpuc, int i)
1212 {
1213         struct hw_perf_event *hwc = &event->hw;
1214         int idx;
1215
1216         idx = hwc->idx = cpuc->assign[i];
1217         hwc->last_cpu = smp_processor_id();
1218         hwc->last_tag = ++cpuc->tags[i];
1219
1220         static_call_cond(x86_pmu_assign)(event, idx);
1221
1222         switch (hwc->idx) {
1223         case INTEL_PMC_IDX_FIXED_BTS:
1224         case INTEL_PMC_IDX_FIXED_VLBR:
1225                 hwc->config_base = 0;
1226                 hwc->event_base = 0;
1227                 break;
1228
1229         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1230                 /* All the metric events are mapped onto the fixed counter 3. */
1231                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1232                 fallthrough;
1233         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1234                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1235                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1236                                 (idx - INTEL_PMC_IDX_FIXED);
1237                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1238                                         INTEL_PMC_FIXED_RDPMC_BASE;
1239                 break;
1240
1241         default:
1242                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1243                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1244                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1245                 break;
1246         }
1247 }
1248
1249 /**
1250  * x86_perf_rdpmc_index - Return PMC counter used for event
1251  * @event: the perf_event to which the PMC counter was assigned
1252  *
1253  * The counter assigned to this performance event may change if interrupts
1254  * are enabled. This counter should thus never be used while interrupts are
1255  * enabled. Before this function is used to obtain the assigned counter the
1256  * event should be checked for validity using, for example,
1257  * perf_event_read_local(), within the same interrupt disabled section in
1258  * which this counter is planned to be used.
1259  *
1260  * Return: The index of the performance monitoring counter assigned to
1261  * @perf_event.
1262  */
1263 int x86_perf_rdpmc_index(struct perf_event *event)
1264 {
1265         lockdep_assert_irqs_disabled();
1266
1267         return event->hw.event_base_rdpmc;
1268 }
1269
1270 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1271                                         struct cpu_hw_events *cpuc,
1272                                         int i)
1273 {
1274         return hwc->idx == cpuc->assign[i] &&
1275                 hwc->last_cpu == smp_processor_id() &&
1276                 hwc->last_tag == cpuc->tags[i];
1277 }
1278
1279 static void x86_pmu_start(struct perf_event *event, int flags);
1280
1281 static void x86_pmu_enable(struct pmu *pmu)
1282 {
1283         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1284         struct perf_event *event;
1285         struct hw_perf_event *hwc;
1286         int i, added = cpuc->n_added;
1287
1288         if (!x86_pmu_initialized())
1289                 return;
1290
1291         if (cpuc->enabled)
1292                 return;
1293
1294         if (cpuc->n_added) {
1295                 int n_running = cpuc->n_events - cpuc->n_added;
1296                 /*
1297                  * apply assignment obtained either from
1298                  * hw_perf_group_sched_in() or x86_pmu_enable()
1299                  *
1300                  * step1: save events moving to new counters
1301                  */
1302                 for (i = 0; i < n_running; i++) {
1303                         event = cpuc->event_list[i];
1304                         hwc = &event->hw;
1305
1306                         /*
1307                          * we can avoid reprogramming counter if:
1308                          * - assigned same counter as last time
1309                          * - running on same CPU as last time
1310                          * - no other event has used the counter since
1311                          */
1312                         if (hwc->idx == -1 ||
1313                             match_prev_assignment(hwc, cpuc, i))
1314                                 continue;
1315
1316                         /*
1317                          * Ensure we don't accidentally enable a stopped
1318                          * counter simply because we rescheduled.
1319                          */
1320                         if (hwc->state & PERF_HES_STOPPED)
1321                                 hwc->state |= PERF_HES_ARCH;
1322
1323                         x86_pmu_stop(event, PERF_EF_UPDATE);
1324                 }
1325
1326                 /*
1327                  * step2: reprogram moved events into new counters
1328                  */
1329                 for (i = 0; i < cpuc->n_events; i++) {
1330                         event = cpuc->event_list[i];
1331                         hwc = &event->hw;
1332
1333                         if (!match_prev_assignment(hwc, cpuc, i))
1334                                 x86_assign_hw_event(event, cpuc, i);
1335                         else if (i < n_running)
1336                                 continue;
1337
1338                         if (hwc->state & PERF_HES_ARCH)
1339                                 continue;
1340
1341                         /*
1342                          * if cpuc->enabled = 0, then no wrmsr as
1343                          * per x86_pmu_enable_event()
1344                          */
1345                         x86_pmu_start(event, PERF_EF_RELOAD);
1346                 }
1347                 cpuc->n_added = 0;
1348                 perf_events_lapic_init();
1349         }
1350
1351         cpuc->enabled = 1;
1352         barrier();
1353
1354         static_call(x86_pmu_enable_all)(added);
1355 }
1356
1357 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1358
1359 /*
1360  * Set the next IRQ period, based on the hwc->period_left value.
1361  * To be called with the event disabled in hw:
1362  */
1363 int x86_perf_event_set_period(struct perf_event *event)
1364 {
1365         struct hw_perf_event *hwc = &event->hw;
1366         s64 left = local64_read(&hwc->period_left);
1367         s64 period = hwc->sample_period;
1368         int ret = 0, idx = hwc->idx;
1369
1370         if (unlikely(!hwc->event_base))
1371                 return 0;
1372
1373         if (unlikely(is_topdown_count(event)) &&
1374             x86_pmu.set_topdown_event_period)
1375                 return x86_pmu.set_topdown_event_period(event);
1376
1377         /*
1378          * If we are way outside a reasonable range then just skip forward:
1379          */
1380         if (unlikely(left <= -period)) {
1381                 left = period;
1382                 local64_set(&hwc->period_left, left);
1383                 hwc->last_period = period;
1384                 ret = 1;
1385         }
1386
1387         if (unlikely(left <= 0)) {
1388                 left += period;
1389                 local64_set(&hwc->period_left, left);
1390                 hwc->last_period = period;
1391                 ret = 1;
1392         }
1393         /*
1394          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1395          */
1396         if (unlikely(left < 2))
1397                 left = 2;
1398
1399         if (left > x86_pmu.max_period)
1400                 left = x86_pmu.max_period;
1401
1402         if (x86_pmu.limit_period)
1403                 left = x86_pmu.limit_period(event, left);
1404
1405         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1406
1407         /*
1408          * The hw event starts counting from this event offset,
1409          * mark it to be able to extra future deltas:
1410          */
1411         local64_set(&hwc->prev_count, (u64)-left);
1412
1413         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414
1415         /*
1416          * Sign extend the Merge event counter's upper 16 bits since
1417          * we currently declare a 48-bit counter width
1418          */
1419         if (is_counter_pair(hwc))
1420                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421
1422         /*
1423          * Due to erratum on certan cpu we need
1424          * a second write to be sure the register
1425          * is updated properly
1426          */
1427         if (x86_pmu.perfctr_second_write) {
1428                 wrmsrl(hwc->event_base,
1429                         (u64)(-left) & x86_pmu.cntval_mask);
1430         }
1431
1432         perf_event_update_userpage(event);
1433
1434         return ret;
1435 }
1436
1437 void x86_pmu_enable_event(struct perf_event *event)
1438 {
1439         if (__this_cpu_read(cpu_hw_events.enabled))
1440                 __x86_pmu_enable_event(&event->hw,
1441                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1442 }
1443
1444 /*
1445  * Add a single event to the PMU.
1446  *
1447  * The event is added to the group of enabled events
1448  * but only if it can be scheduled with existing events.
1449  */
1450 static int x86_pmu_add(struct perf_event *event, int flags)
1451 {
1452         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1453         struct hw_perf_event *hwc;
1454         int assign[X86_PMC_IDX_MAX];
1455         int n, n0, ret;
1456
1457         hwc = &event->hw;
1458
1459         n0 = cpuc->n_events;
1460         ret = n = collect_events(cpuc, event, false);
1461         if (ret < 0)
1462                 goto out;
1463
1464         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1465         if (!(flags & PERF_EF_START))
1466                 hwc->state |= PERF_HES_ARCH;
1467
1468         /*
1469          * If group events scheduling transaction was started,
1470          * skip the schedulability test here, it will be performed
1471          * at commit time (->commit_txn) as a whole.
1472          *
1473          * If commit fails, we'll call ->del() on all events
1474          * for which ->add() was called.
1475          */
1476         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1477                 goto done_collect;
1478
1479         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1480         if (ret)
1481                 goto out;
1482         /*
1483          * copy new assignment, now we know it is possible
1484          * will be used by hw_perf_enable()
1485          */
1486         memcpy(cpuc->assign, assign, n*sizeof(int));
1487
1488 done_collect:
1489         /*
1490          * Commit the collect_events() state. See x86_pmu_del() and
1491          * x86_pmu_*_txn().
1492          */
1493         cpuc->n_events = n;
1494         cpuc->n_added += n - n0;
1495         cpuc->n_txn += n - n0;
1496
1497         /*
1498          * This is before x86_pmu_enable() will call x86_pmu_start(),
1499          * so we enable LBRs before an event needs them etc..
1500          */
1501         static_call_cond(x86_pmu_add)(event);
1502
1503         ret = 0;
1504 out:
1505         return ret;
1506 }
1507
1508 static void x86_pmu_start(struct perf_event *event, int flags)
1509 {
1510         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1511         int idx = event->hw.idx;
1512
1513         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1514                 return;
1515
1516         if (WARN_ON_ONCE(idx == -1))
1517                 return;
1518
1519         if (flags & PERF_EF_RELOAD) {
1520                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1521                 x86_perf_event_set_period(event);
1522         }
1523
1524         event->hw.state = 0;
1525
1526         cpuc->events[idx] = event;
1527         __set_bit(idx, cpuc->active_mask);
1528         static_call(x86_pmu_enable)(event);
1529         perf_event_update_userpage(event);
1530 }
1531
1532 void perf_event_print_debug(void)
1533 {
1534         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1535         u64 pebs, debugctl;
1536         int cpu = smp_processor_id();
1537         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1538         int num_counters = hybrid(cpuc->pmu, num_counters);
1539         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1540         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1541         unsigned long flags;
1542         int idx;
1543
1544         if (!num_counters)
1545                 return;
1546
1547         local_irq_save(flags);
1548
1549         if (x86_pmu.version >= 2) {
1550                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1551                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1552                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1553                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1554
1555                 pr_info("\n");
1556                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1557                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1558                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1559                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1560                 if (pebs_constraints) {
1561                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1562                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1563                 }
1564                 if (x86_pmu.lbr_nr) {
1565                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1566                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1567                 }
1568         }
1569         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1570
1571         for (idx = 0; idx < num_counters; idx++) {
1572                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1573                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1574
1575                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1576
1577                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1578                         cpu, idx, pmc_ctrl);
1579                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1580                         cpu, idx, pmc_count);
1581                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1582                         cpu, idx, prev_left);
1583         }
1584         for (idx = 0; idx < num_counters_fixed; idx++) {
1585                 if (fixed_counter_disabled(idx, cpuc->pmu))
1586                         continue;
1587                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1588
1589                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1590                         cpu, idx, pmc_count);
1591         }
1592         local_irq_restore(flags);
1593 }
1594
1595 void x86_pmu_stop(struct perf_event *event, int flags)
1596 {
1597         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1598         struct hw_perf_event *hwc = &event->hw;
1599
1600         if (test_bit(hwc->idx, cpuc->active_mask)) {
1601                 static_call(x86_pmu_disable)(event);
1602                 __clear_bit(hwc->idx, cpuc->active_mask);
1603                 cpuc->events[hwc->idx] = NULL;
1604                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1605                 hwc->state |= PERF_HES_STOPPED;
1606         }
1607
1608         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1609                 /*
1610                  * Drain the remaining delta count out of a event
1611                  * that we are disabling:
1612                  */
1613                 x86_perf_event_update(event);
1614                 hwc->state |= PERF_HES_UPTODATE;
1615         }
1616 }
1617
1618 static void x86_pmu_del(struct perf_event *event, int flags)
1619 {
1620         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1621         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1622         int i;
1623
1624         /*
1625          * If we're called during a txn, we only need to undo x86_pmu.add.
1626          * The events never got scheduled and ->cancel_txn will truncate
1627          * the event_list.
1628          *
1629          * XXX assumes any ->del() called during a TXN will only be on
1630          * an event added during that same TXN.
1631          */
1632         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1633                 goto do_del;
1634
1635         __set_bit(event->hw.idx, cpuc->dirty);
1636
1637         /*
1638          * Not a TXN, therefore cleanup properly.
1639          */
1640         x86_pmu_stop(event, PERF_EF_UPDATE);
1641
1642         for (i = 0; i < cpuc->n_events; i++) {
1643                 if (event == cpuc->event_list[i])
1644                         break;
1645         }
1646
1647         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1648                 return;
1649
1650         /* If we have a newly added event; make sure to decrease n_added. */
1651         if (i >= cpuc->n_events - cpuc->n_added)
1652                 --cpuc->n_added;
1653
1654         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1655
1656         /* Delete the array entry. */
1657         while (++i < cpuc->n_events) {
1658                 cpuc->event_list[i-1] = cpuc->event_list[i];
1659                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1660         }
1661         cpuc->event_constraint[i-1] = NULL;
1662         --cpuc->n_events;
1663         if (intel_cap.perf_metrics)
1664                 del_nr_metric_event(cpuc, event);
1665
1666         perf_event_update_userpage(event);
1667
1668 do_del:
1669
1670         /*
1671          * This is after x86_pmu_stop(); so we disable LBRs after any
1672          * event can need them etc..
1673          */
1674         static_call_cond(x86_pmu_del)(event);
1675 }
1676
1677 int x86_pmu_handle_irq(struct pt_regs *regs)
1678 {
1679         struct perf_sample_data data;
1680         struct cpu_hw_events *cpuc;
1681         struct perf_event *event;
1682         int idx, handled = 0;
1683         u64 val;
1684
1685         cpuc = this_cpu_ptr(&cpu_hw_events);
1686
1687         /*
1688          * Some chipsets need to unmask the LVTPC in a particular spot
1689          * inside the nmi handler.  As a result, the unmasking was pushed
1690          * into all the nmi handlers.
1691          *
1692          * This generic handler doesn't seem to have any issues where the
1693          * unmasking occurs so it was left at the top.
1694          */
1695         apic_write(APIC_LVTPC, APIC_DM_NMI);
1696
1697         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1698                 if (!test_bit(idx, cpuc->active_mask))
1699                         continue;
1700
1701                 event = cpuc->events[idx];
1702
1703                 val = x86_perf_event_update(event);
1704                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1705                         continue;
1706
1707                 /*
1708                  * event overflow
1709                  */
1710                 handled++;
1711
1712                 if (!x86_perf_event_set_period(event))
1713                         continue;
1714
1715                 perf_sample_data_init(&data, 0, event->hw.last_period);
1716
1717                 if (has_branch_stack(event))
1718                         data.br_stack = &cpuc->lbr_stack;
1719
1720                 if (perf_event_overflow(event, &data, regs))
1721                         x86_pmu_stop(event, 0);
1722         }
1723
1724         if (handled)
1725                 inc_irq_stat(apic_perf_irqs);
1726
1727         return handled;
1728 }
1729
1730 void perf_events_lapic_init(void)
1731 {
1732         if (!x86_pmu.apic || !x86_pmu_initialized())
1733                 return;
1734
1735         /*
1736          * Always use NMI for PMU
1737          */
1738         apic_write(APIC_LVTPC, APIC_DM_NMI);
1739 }
1740
1741 static int
1742 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1743 {
1744         u64 start_clock;
1745         u64 finish_clock;
1746         int ret;
1747
1748         /*
1749          * All PMUs/events that share this PMI handler should make sure to
1750          * increment active_events for their events.
1751          */
1752         if (!atomic_read(&active_events))
1753                 return NMI_DONE;
1754
1755         start_clock = sched_clock();
1756         ret = static_call(x86_pmu_handle_irq)(regs);
1757         finish_clock = sched_clock();
1758
1759         perf_sample_event_took(finish_clock - start_clock);
1760
1761         return ret;
1762 }
1763 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1764
1765 struct event_constraint emptyconstraint;
1766 struct event_constraint unconstrained;
1767
1768 static int x86_pmu_prepare_cpu(unsigned int cpu)
1769 {
1770         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1771         int i;
1772
1773         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1774                 cpuc->kfree_on_online[i] = NULL;
1775         if (x86_pmu.cpu_prepare)
1776                 return x86_pmu.cpu_prepare(cpu);
1777         return 0;
1778 }
1779
1780 static int x86_pmu_dead_cpu(unsigned int cpu)
1781 {
1782         if (x86_pmu.cpu_dead)
1783                 x86_pmu.cpu_dead(cpu);
1784         return 0;
1785 }
1786
1787 static int x86_pmu_online_cpu(unsigned int cpu)
1788 {
1789         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1790         int i;
1791
1792         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1793                 kfree(cpuc->kfree_on_online[i]);
1794                 cpuc->kfree_on_online[i] = NULL;
1795         }
1796         return 0;
1797 }
1798
1799 static int x86_pmu_starting_cpu(unsigned int cpu)
1800 {
1801         if (x86_pmu.cpu_starting)
1802                 x86_pmu.cpu_starting(cpu);
1803         return 0;
1804 }
1805
1806 static int x86_pmu_dying_cpu(unsigned int cpu)
1807 {
1808         if (x86_pmu.cpu_dying)
1809                 x86_pmu.cpu_dying(cpu);
1810         return 0;
1811 }
1812
1813 static void __init pmu_check_apic(void)
1814 {
1815         if (boot_cpu_has(X86_FEATURE_APIC))
1816                 return;
1817
1818         x86_pmu.apic = 0;
1819         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1820         pr_info("no hardware sampling interrupt available.\n");
1821
1822         /*
1823          * If we have a PMU initialized but no APIC
1824          * interrupts, we cannot sample hardware
1825          * events (user-space has to fall back and
1826          * sample via a hrtimer based software event):
1827          */
1828         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1829
1830 }
1831
1832 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1833         .name = "format",
1834         .attrs = NULL,
1835 };
1836
1837 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1838 {
1839         struct perf_pmu_events_attr *pmu_attr =
1840                 container_of(attr, struct perf_pmu_events_attr, attr);
1841         u64 config = 0;
1842
1843         if (pmu_attr->id < x86_pmu.max_events)
1844                 config = x86_pmu.event_map(pmu_attr->id);
1845
1846         /* string trumps id */
1847         if (pmu_attr->event_str)
1848                 return sprintf(page, "%s\n", pmu_attr->event_str);
1849
1850         return x86_pmu.events_sysfs_show(page, config);
1851 }
1852 EXPORT_SYMBOL_GPL(events_sysfs_show);
1853
1854 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1855                           char *page)
1856 {
1857         struct perf_pmu_events_ht_attr *pmu_attr =
1858                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1859
1860         /*
1861          * Report conditional events depending on Hyper-Threading.
1862          *
1863          * This is overly conservative as usually the HT special
1864          * handling is not needed if the other CPU thread is idle.
1865          *
1866          * Note this does not (and cannot) handle the case when thread
1867          * siblings are invisible, for example with virtualization
1868          * if they are owned by some other guest.  The user tool
1869          * has to re-read when a thread sibling gets onlined later.
1870          */
1871         return sprintf(page, "%s",
1872                         topology_max_smt_threads() > 1 ?
1873                         pmu_attr->event_str_ht :
1874                         pmu_attr->event_str_noht);
1875 }
1876
1877 ssize_t events_hybrid_sysfs_show(struct device *dev,
1878                                  struct device_attribute *attr,
1879                                  char *page)
1880 {
1881         struct perf_pmu_events_hybrid_attr *pmu_attr =
1882                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1883         struct x86_hybrid_pmu *pmu;
1884         const char *str, *next_str;
1885         int i;
1886
1887         if (hweight64(pmu_attr->pmu_type) == 1)
1888                 return sprintf(page, "%s", pmu_attr->event_str);
1889
1890         /*
1891          * Hybrid PMUs may support the same event name, but with different
1892          * event encoding, e.g., the mem-loads event on an Atom PMU has
1893          * different event encoding from a Core PMU.
1894          *
1895          * The event_str includes all event encodings. Each event encoding
1896          * is divided by ";". The order of the event encodings must follow
1897          * the order of the hybrid PMU index.
1898          */
1899         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1900
1901         str = pmu_attr->event_str;
1902         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1903                 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1904                         continue;
1905                 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1906                         next_str = strchr(str, ';');
1907                         if (next_str)
1908                                 return snprintf(page, next_str - str + 1, "%s", str);
1909                         else
1910                                 return sprintf(page, "%s", str);
1911                 }
1912                 str = strchr(str, ';');
1913                 str++;
1914         }
1915
1916         return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1919
1920 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1921 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1922 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1923 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1924 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1925 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1926 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1927 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1928 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1929 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1930
1931 static struct attribute *empty_attrs;
1932
1933 static struct attribute *events_attr[] = {
1934         EVENT_PTR(CPU_CYCLES),
1935         EVENT_PTR(INSTRUCTIONS),
1936         EVENT_PTR(CACHE_REFERENCES),
1937         EVENT_PTR(CACHE_MISSES),
1938         EVENT_PTR(BRANCH_INSTRUCTIONS),
1939         EVENT_PTR(BRANCH_MISSES),
1940         EVENT_PTR(BUS_CYCLES),
1941         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1942         EVENT_PTR(STALLED_CYCLES_BACKEND),
1943         EVENT_PTR(REF_CPU_CYCLES),
1944         NULL,
1945 };
1946
1947 /*
1948  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1949  * out of events_attr attributes.
1950  */
1951 static umode_t
1952 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1953 {
1954         struct perf_pmu_events_attr *pmu_attr;
1955
1956         if (idx >= x86_pmu.max_events)
1957                 return 0;
1958
1959         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1960         /* str trumps id */
1961         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1962 }
1963
1964 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1965         .name = "events",
1966         .attrs = events_attr,
1967         .is_visible = is_visible,
1968 };
1969
1970 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1971 {
1972         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1973         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1974         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1975         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1976         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1977         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1978         ssize_t ret;
1979
1980         /*
1981         * We have whole page size to spend and just little data
1982         * to write, so we can safely use sprintf.
1983         */
1984         ret = sprintf(page, "event=0x%02llx", event);
1985
1986         if (umask)
1987                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1988
1989         if (edge)
1990                 ret += sprintf(page + ret, ",edge");
1991
1992         if (pc)
1993                 ret += sprintf(page + ret, ",pc");
1994
1995         if (any)
1996                 ret += sprintf(page + ret, ",any");
1997
1998         if (inv)
1999                 ret += sprintf(page + ret, ",inv");
2000
2001         if (cmask)
2002                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2003
2004         ret += sprintf(page + ret, "\n");
2005
2006         return ret;
2007 }
2008
2009 static struct attribute_group x86_pmu_attr_group;
2010 static struct attribute_group x86_pmu_caps_group;
2011
2012 static void x86_pmu_static_call_update(void)
2013 {
2014         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2015         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2016         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2017         static_call_update(x86_pmu_enable, x86_pmu.enable);
2018         static_call_update(x86_pmu_disable, x86_pmu.disable);
2019
2020         static_call_update(x86_pmu_assign, x86_pmu.assign);
2021
2022         static_call_update(x86_pmu_add, x86_pmu.add);
2023         static_call_update(x86_pmu_del, x86_pmu.del);
2024         static_call_update(x86_pmu_read, x86_pmu.read);
2025
2026         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2027         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2028         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2029
2030         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2031         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2032         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2033
2034         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2035         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2036
2037         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2038         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2039
2040         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2041 }
2042
2043 static void _x86_pmu_read(struct perf_event *event)
2044 {
2045         x86_perf_event_update(event);
2046 }
2047
2048 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2049                           u64 intel_ctrl)
2050 {
2051         pr_info("... version:                %d\n",     x86_pmu.version);
2052         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2053         pr_info("... generic registers:      %d\n",     num_counters);
2054         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2055         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2056         pr_info("... fixed-purpose events:   %lu\n",
2057                         hweight64((((1ULL << num_counters_fixed) - 1)
2058                                         << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2059         pr_info("... event mask:             %016Lx\n", intel_ctrl);
2060 }
2061
2062 /*
2063  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2064  * of the first registered PMU is unconditionally assigned to
2065  * each possible cpuctx->ctx.pmu.
2066  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2067  */
2068 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2069 {
2070         struct perf_cpu_context *cpuctx;
2071
2072         if (!pmu->pmu_cpu_context)
2073                 return;
2074
2075         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2076         cpuctx->ctx.pmu = pmu;
2077 }
2078
2079 static int __init init_hw_perf_events(void)
2080 {
2081         struct x86_pmu_quirk *quirk;
2082         int err;
2083
2084         pr_info("Performance Events: ");
2085
2086         switch (boot_cpu_data.x86_vendor) {
2087         case X86_VENDOR_INTEL:
2088                 err = intel_pmu_init();
2089                 break;
2090         case X86_VENDOR_AMD:
2091                 err = amd_pmu_init();
2092                 break;
2093         case X86_VENDOR_HYGON:
2094                 err = amd_pmu_init();
2095                 x86_pmu.name = "HYGON";
2096                 break;
2097         case X86_VENDOR_ZHAOXIN:
2098         case X86_VENDOR_CENTAUR:
2099                 err = zhaoxin_pmu_init();
2100                 break;
2101         default:
2102                 err = -ENOTSUPP;
2103         }
2104         if (err != 0) {
2105                 pr_cont("no PMU driver, software events only.\n");
2106                 return 0;
2107         }
2108
2109         pmu_check_apic();
2110
2111         /* sanity check that the hardware exists or is emulated */
2112         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2113                 return 0;
2114
2115         pr_cont("%s PMU driver.\n", x86_pmu.name);
2116
2117         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2118
2119         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2120                 quirk->func();
2121
2122         if (!x86_pmu.intel_ctrl)
2123                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2124
2125         perf_events_lapic_init();
2126         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2127
2128         unconstrained = (struct event_constraint)
2129                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2130                                    0, x86_pmu.num_counters, 0, 0);
2131
2132         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2133
2134         if (!x86_pmu.events_sysfs_show)
2135                 x86_pmu_events_group.attrs = &empty_attrs;
2136
2137         pmu.attr_update = x86_pmu.attr_update;
2138
2139         if (!is_hybrid()) {
2140                 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2141                                      x86_pmu.num_counters_fixed,
2142                                      x86_pmu.intel_ctrl);
2143         }
2144
2145         if (!x86_pmu.read)
2146                 x86_pmu.read = _x86_pmu_read;
2147
2148         if (!x86_pmu.guest_get_msrs)
2149                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2150
2151         x86_pmu_static_call_update();
2152
2153         /*
2154          * Install callbacks. Core will call them for each online
2155          * cpu.
2156          */
2157         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2158                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2159         if (err)
2160                 return err;
2161
2162         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2163                                 "perf/x86:starting", x86_pmu_starting_cpu,
2164                                 x86_pmu_dying_cpu);
2165         if (err)
2166                 goto out;
2167
2168         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2169                                 x86_pmu_online_cpu, NULL);
2170         if (err)
2171                 goto out1;
2172
2173         if (!is_hybrid()) {
2174                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2175                 if (err)
2176                         goto out2;
2177         } else {
2178                 u8 cpu_type = get_this_hybrid_cpu_type();
2179                 struct x86_hybrid_pmu *hybrid_pmu;
2180                 int i, j;
2181
2182                 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2183                         cpu_type = x86_pmu.get_hybrid_cpu_type();
2184
2185                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2186                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2187
2188                         hybrid_pmu->pmu = pmu;
2189                         hybrid_pmu->pmu.type = -1;
2190                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2191                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2192                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2193
2194                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2195                                                 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2196                         if (err)
2197                                 break;
2198
2199                         if (cpu_type == hybrid_pmu->cpu_type)
2200                                 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2201                 }
2202
2203                 if (i < x86_pmu.num_hybrid_pmus) {
2204                         for (j = 0; j < i; j++)
2205                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2206                         pr_warn("Failed to register hybrid PMUs\n");
2207                         kfree(x86_pmu.hybrid_pmu);
2208                         x86_pmu.hybrid_pmu = NULL;
2209                         x86_pmu.num_hybrid_pmus = 0;
2210                         goto out2;
2211                 }
2212         }
2213
2214         return 0;
2215
2216 out2:
2217         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2218 out1:
2219         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2220 out:
2221         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2222         return err;
2223 }
2224 early_initcall(init_hw_perf_events);
2225
2226 static void x86_pmu_read(struct perf_event *event)
2227 {
2228         static_call(x86_pmu_read)(event);
2229 }
2230
2231 /*
2232  * Start group events scheduling transaction
2233  * Set the flag to make pmu::enable() not perform the
2234  * schedulability test, it will be performed at commit time
2235  *
2236  * We only support PERF_PMU_TXN_ADD transactions. Save the
2237  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2238  * transactions.
2239  */
2240 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2241 {
2242         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2243
2244         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2245
2246         cpuc->txn_flags = txn_flags;
2247         if (txn_flags & ~PERF_PMU_TXN_ADD)
2248                 return;
2249
2250         perf_pmu_disable(pmu);
2251         __this_cpu_write(cpu_hw_events.n_txn, 0);
2252         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2253         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2254 }
2255
2256 /*
2257  * Stop group events scheduling transaction
2258  * Clear the flag and pmu::enable() will perform the
2259  * schedulability test.
2260  */
2261 static void x86_pmu_cancel_txn(struct pmu *pmu)
2262 {
2263         unsigned int txn_flags;
2264         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2265
2266         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2267
2268         txn_flags = cpuc->txn_flags;
2269         cpuc->txn_flags = 0;
2270         if (txn_flags & ~PERF_PMU_TXN_ADD)
2271                 return;
2272
2273         /*
2274          * Truncate collected array by the number of events added in this
2275          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2276          */
2277         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2278         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2279         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2280         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2281         perf_pmu_enable(pmu);
2282 }
2283
2284 /*
2285  * Commit group events scheduling transaction
2286  * Perform the group schedulability test as a whole
2287  * Return 0 if success
2288  *
2289  * Does not cancel the transaction on failure; expects the caller to do this.
2290  */
2291 static int x86_pmu_commit_txn(struct pmu *pmu)
2292 {
2293         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2294         int assign[X86_PMC_IDX_MAX];
2295         int n, ret;
2296
2297         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2298
2299         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2300                 cpuc->txn_flags = 0;
2301                 return 0;
2302         }
2303
2304         n = cpuc->n_events;
2305
2306         if (!x86_pmu_initialized())
2307                 return -EAGAIN;
2308
2309         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2310         if (ret)
2311                 return ret;
2312
2313         /*
2314          * copy new assignment, now we know it is possible
2315          * will be used by hw_perf_enable()
2316          */
2317         memcpy(cpuc->assign, assign, n*sizeof(int));
2318
2319         cpuc->txn_flags = 0;
2320         perf_pmu_enable(pmu);
2321         return 0;
2322 }
2323 /*
2324  * a fake_cpuc is used to validate event groups. Due to
2325  * the extra reg logic, we need to also allocate a fake
2326  * per_core and per_cpu structure. Otherwise, group events
2327  * using extra reg may conflict without the kernel being
2328  * able to catch this when the last event gets added to
2329  * the group.
2330  */
2331 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2332 {
2333         intel_cpuc_finish(cpuc);
2334         kfree(cpuc);
2335 }
2336
2337 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2338 {
2339         struct cpu_hw_events *cpuc;
2340         int cpu;
2341
2342         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2343         if (!cpuc)
2344                 return ERR_PTR(-ENOMEM);
2345         cpuc->is_fake = 1;
2346
2347         if (is_hybrid()) {
2348                 struct x86_hybrid_pmu *h_pmu;
2349
2350                 h_pmu = hybrid_pmu(event_pmu);
2351                 if (cpumask_empty(&h_pmu->supported_cpus))
2352                         goto error;
2353                 cpu = cpumask_first(&h_pmu->supported_cpus);
2354         } else
2355                 cpu = raw_smp_processor_id();
2356         cpuc->pmu = event_pmu;
2357
2358         if (intel_cpuc_prepare(cpuc, cpu))
2359                 goto error;
2360
2361         return cpuc;
2362 error:
2363         free_fake_cpuc(cpuc);
2364         return ERR_PTR(-ENOMEM);
2365 }
2366
2367 /*
2368  * validate that we can schedule this event
2369  */
2370 static int validate_event(struct perf_event *event)
2371 {
2372         struct cpu_hw_events *fake_cpuc;
2373         struct event_constraint *c;
2374         int ret = 0;
2375
2376         fake_cpuc = allocate_fake_cpuc(event->pmu);
2377         if (IS_ERR(fake_cpuc))
2378                 return PTR_ERR(fake_cpuc);
2379
2380         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2381
2382         if (!c || !c->weight)
2383                 ret = -EINVAL;
2384
2385         if (x86_pmu.put_event_constraints)
2386                 x86_pmu.put_event_constraints(fake_cpuc, event);
2387
2388         free_fake_cpuc(fake_cpuc);
2389
2390         return ret;
2391 }
2392
2393 /*
2394  * validate a single event group
2395  *
2396  * validation include:
2397  *      - check events are compatible which each other
2398  *      - events do not compete for the same counter
2399  *      - number of events <= number of counters
2400  *
2401  * validation ensures the group can be loaded onto the
2402  * PMU if it was the only group available.
2403  */
2404 static int validate_group(struct perf_event *event)
2405 {
2406         struct perf_event *leader = event->group_leader;
2407         struct cpu_hw_events *fake_cpuc;
2408         int ret = -EINVAL, n;
2409
2410         /*
2411          * Reject events from different hybrid PMUs.
2412          */
2413         if (is_hybrid()) {
2414                 struct perf_event *sibling;
2415                 struct pmu *pmu = NULL;
2416
2417                 if (is_x86_event(leader))
2418                         pmu = leader->pmu;
2419
2420                 for_each_sibling_event(sibling, leader) {
2421                         if (!is_x86_event(sibling))
2422                                 continue;
2423                         if (!pmu)
2424                                 pmu = sibling->pmu;
2425                         else if (pmu != sibling->pmu)
2426                                 return ret;
2427                 }
2428         }
2429
2430         fake_cpuc = allocate_fake_cpuc(event->pmu);
2431         if (IS_ERR(fake_cpuc))
2432                 return PTR_ERR(fake_cpuc);
2433         /*
2434          * the event is not yet connected with its
2435          * siblings therefore we must first collect
2436          * existing siblings, then add the new event
2437          * before we can simulate the scheduling
2438          */
2439         n = collect_events(fake_cpuc, leader, true);
2440         if (n < 0)
2441                 goto out;
2442
2443         fake_cpuc->n_events = n;
2444         n = collect_events(fake_cpuc, event, false);
2445         if (n < 0)
2446                 goto out;
2447
2448         fake_cpuc->n_events = 0;
2449         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2450
2451 out:
2452         free_fake_cpuc(fake_cpuc);
2453         return ret;
2454 }
2455
2456 static int x86_pmu_event_init(struct perf_event *event)
2457 {
2458         struct x86_hybrid_pmu *pmu = NULL;
2459         int err;
2460
2461         if ((event->attr.type != event->pmu->type) &&
2462             (event->attr.type != PERF_TYPE_HARDWARE) &&
2463             (event->attr.type != PERF_TYPE_HW_CACHE))
2464                 return -ENOENT;
2465
2466         if (is_hybrid() && (event->cpu != -1)) {
2467                 pmu = hybrid_pmu(event->pmu);
2468                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2469                         return -ENOENT;
2470         }
2471
2472         err = __x86_pmu_event_init(event);
2473         if (!err) {
2474                 if (event->group_leader != event)
2475                         err = validate_group(event);
2476                 else
2477                         err = validate_event(event);
2478         }
2479         if (err) {
2480                 if (event->destroy)
2481                         event->destroy(event);
2482                 event->destroy = NULL;
2483         }
2484
2485         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2486             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2487                 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2488
2489         return err;
2490 }
2491
2492 void perf_clear_dirty_counters(void)
2493 {
2494         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2495         int i;
2496
2497          /* Don't need to clear the assigned counter. */
2498         for (i = 0; i < cpuc->n_events; i++)
2499                 __clear_bit(cpuc->assign[i], cpuc->dirty);
2500
2501         if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2502                 return;
2503
2504         for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2505                 if (i >= INTEL_PMC_IDX_FIXED) {
2506                         /* Metrics and fake events don't have corresponding HW counters. */
2507                         if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2508                                 continue;
2509
2510                         wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2511                 } else {
2512                         wrmsrl(x86_pmu_event_addr(i), 0);
2513                 }
2514         }
2515
2516         bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2517 }
2518
2519 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2520 {
2521         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2522                 return;
2523
2524         /*
2525          * This function relies on not being called concurrently in two
2526          * tasks in the same mm.  Otherwise one task could observe
2527          * perf_rdpmc_allowed > 1 and return all the way back to
2528          * userspace with CR4.PCE clear while another task is still
2529          * doing on_each_cpu_mask() to propagate CR4.PCE.
2530          *
2531          * For now, this can't happen because all callers hold mmap_lock
2532          * for write.  If this changes, we'll need a different solution.
2533          */
2534         mmap_assert_write_locked(mm);
2535
2536         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2537                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2538 }
2539
2540 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2541 {
2542         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2543                 return;
2544
2545         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2546                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2547 }
2548
2549 static int x86_pmu_event_idx(struct perf_event *event)
2550 {
2551         struct hw_perf_event *hwc = &event->hw;
2552
2553         if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2554                 return 0;
2555
2556         if (is_metric_idx(hwc->idx))
2557                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2558         else
2559                 return hwc->event_base_rdpmc + 1;
2560 }
2561
2562 static ssize_t get_attr_rdpmc(struct device *cdev,
2563                               struct device_attribute *attr,
2564                               char *buf)
2565 {
2566         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2567 }
2568
2569 static ssize_t set_attr_rdpmc(struct device *cdev,
2570                               struct device_attribute *attr,
2571                               const char *buf, size_t count)
2572 {
2573         unsigned long val;
2574         ssize_t ret;
2575
2576         ret = kstrtoul(buf, 0, &val);
2577         if (ret)
2578                 return ret;
2579
2580         if (val > 2)
2581                 return -EINVAL;
2582
2583         if (x86_pmu.attr_rdpmc_broken)
2584                 return -ENOTSUPP;
2585
2586         if (val != x86_pmu.attr_rdpmc) {
2587                 /*
2588                  * Changing into or out of never available or always available,
2589                  * aka perf-event-bypassing mode. This path is extremely slow,
2590                  * but only root can trigger it, so it's okay.
2591                  */
2592                 if (val == 0)
2593                         static_branch_inc(&rdpmc_never_available_key);
2594                 else if (x86_pmu.attr_rdpmc == 0)
2595                         static_branch_dec(&rdpmc_never_available_key);
2596
2597                 if (val == 2)
2598                         static_branch_inc(&rdpmc_always_available_key);
2599                 else if (x86_pmu.attr_rdpmc == 2)
2600                         static_branch_dec(&rdpmc_always_available_key);
2601
2602                 on_each_cpu(cr4_update_pce, NULL, 1);
2603                 x86_pmu.attr_rdpmc = val;
2604         }
2605
2606         return count;
2607 }
2608
2609 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2610
2611 static struct attribute *x86_pmu_attrs[] = {
2612         &dev_attr_rdpmc.attr,
2613         NULL,
2614 };
2615
2616 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2617         .attrs = x86_pmu_attrs,
2618 };
2619
2620 static ssize_t max_precise_show(struct device *cdev,
2621                                   struct device_attribute *attr,
2622                                   char *buf)
2623 {
2624         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2625 }
2626
2627 static DEVICE_ATTR_RO(max_precise);
2628
2629 static struct attribute *x86_pmu_caps_attrs[] = {
2630         &dev_attr_max_precise.attr,
2631         NULL
2632 };
2633
2634 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2635         .name = "caps",
2636         .attrs = x86_pmu_caps_attrs,
2637 };
2638
2639 static const struct attribute_group *x86_pmu_attr_groups[] = {
2640         &x86_pmu_attr_group,
2641         &x86_pmu_format_group,
2642         &x86_pmu_events_group,
2643         &x86_pmu_caps_group,
2644         NULL,
2645 };
2646
2647 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2648 {
2649         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2650 }
2651
2652 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2653                                   struct perf_event_context *next)
2654 {
2655         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2656 }
2657
2658 void perf_check_microcode(void)
2659 {
2660         if (x86_pmu.check_microcode)
2661                 x86_pmu.check_microcode();
2662 }
2663
2664 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2665 {
2666         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2667                 return -EINVAL;
2668
2669         if (value && x86_pmu.limit_period) {
2670                 if (x86_pmu.limit_period(event, value) > value)
2671                         return -EINVAL;
2672         }
2673
2674         return 0;
2675 }
2676
2677 static int x86_pmu_aux_output_match(struct perf_event *event)
2678 {
2679         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2680                 return 0;
2681
2682         if (x86_pmu.aux_output_match)
2683                 return x86_pmu.aux_output_match(event);
2684
2685         return 0;
2686 }
2687
2688 static int x86_pmu_filter_match(struct perf_event *event)
2689 {
2690         if (x86_pmu.filter_match)
2691                 return x86_pmu.filter_match(event);
2692
2693         return 1;
2694 }
2695
2696 static struct pmu pmu = {
2697         .pmu_enable             = x86_pmu_enable,
2698         .pmu_disable            = x86_pmu_disable,
2699
2700         .attr_groups            = x86_pmu_attr_groups,
2701
2702         .event_init             = x86_pmu_event_init,
2703
2704         .event_mapped           = x86_pmu_event_mapped,
2705         .event_unmapped         = x86_pmu_event_unmapped,
2706
2707         .add                    = x86_pmu_add,
2708         .del                    = x86_pmu_del,
2709         .start                  = x86_pmu_start,
2710         .stop                   = x86_pmu_stop,
2711         .read                   = x86_pmu_read,
2712
2713         .start_txn              = x86_pmu_start_txn,
2714         .cancel_txn             = x86_pmu_cancel_txn,
2715         .commit_txn             = x86_pmu_commit_txn,
2716
2717         .event_idx              = x86_pmu_event_idx,
2718         .sched_task             = x86_pmu_sched_task,
2719         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2720         .check_period           = x86_pmu_check_period,
2721
2722         .aux_output_match       = x86_pmu_aux_output_match,
2723
2724         .filter_match           = x86_pmu_filter_match,
2725 };
2726
2727 void arch_perf_update_userpage(struct perf_event *event,
2728                                struct perf_event_mmap_page *userpg, u64 now)
2729 {
2730         struct cyc2ns_data data;
2731         u64 offset;
2732
2733         userpg->cap_user_time = 0;
2734         userpg->cap_user_time_zero = 0;
2735         userpg->cap_user_rdpmc =
2736                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2737         userpg->pmc_width = x86_pmu.cntval_bits;
2738
2739         if (!using_native_sched_clock() || !sched_clock_stable())
2740                 return;
2741
2742         cyc2ns_read_begin(&data);
2743
2744         offset = data.cyc2ns_offset + __sched_clock_offset;
2745
2746         /*
2747          * Internal timekeeping for enabled/running/stopped times
2748          * is always in the local_clock domain.
2749          */
2750         userpg->cap_user_time = 1;
2751         userpg->time_mult = data.cyc2ns_mul;
2752         userpg->time_shift = data.cyc2ns_shift;
2753         userpg->time_offset = offset - now;
2754
2755         /*
2756          * cap_user_time_zero doesn't make sense when we're using a different
2757          * time base for the records.
2758          */
2759         if (!event->attr.use_clockid) {
2760                 userpg->cap_user_time_zero = 1;
2761                 userpg->time_zero = offset;
2762         }
2763
2764         cyc2ns_read_end();
2765 }
2766
2767 /*
2768  * Determine whether the regs were taken from an irq/exception handler rather
2769  * than from perf_arch_fetch_caller_regs().
2770  */
2771 static bool perf_hw_regs(struct pt_regs *regs)
2772 {
2773         return regs->flags & X86_EFLAGS_FIXED;
2774 }
2775
2776 void
2777 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2778 {
2779         struct unwind_state state;
2780         unsigned long addr;
2781
2782         if (perf_guest_state()) {
2783                 /* TODO: We don't support guest os callchain now */
2784                 return;
2785         }
2786
2787         if (perf_callchain_store(entry, regs->ip))
2788                 return;
2789
2790         if (perf_hw_regs(regs))
2791                 unwind_start(&state, current, regs, NULL);
2792         else
2793                 unwind_start(&state, current, NULL, (void *)regs->sp);
2794
2795         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2796                 addr = unwind_get_return_address(&state);
2797                 if (!addr || perf_callchain_store(entry, addr))
2798                         return;
2799         }
2800 }
2801
2802 static inline int
2803 valid_user_frame(const void __user *fp, unsigned long size)
2804 {
2805         return __access_ok(fp, size);
2806 }
2807
2808 static unsigned long get_segment_base(unsigned int segment)
2809 {
2810         struct desc_struct *desc;
2811         unsigned int idx = segment >> 3;
2812
2813         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2814 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2815                 struct ldt_struct *ldt;
2816
2817                 /* IRQs are off, so this synchronizes with smp_store_release */
2818                 ldt = READ_ONCE(current->active_mm->context.ldt);
2819                 if (!ldt || idx >= ldt->nr_entries)
2820                         return 0;
2821
2822                 desc = &ldt->entries[idx];
2823 #else
2824                 return 0;
2825 #endif
2826         } else {
2827                 if (idx >= GDT_ENTRIES)
2828                         return 0;
2829
2830                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2831         }
2832
2833         return get_desc_base(desc);
2834 }
2835
2836 #ifdef CONFIG_IA32_EMULATION
2837
2838 #include <linux/compat.h>
2839
2840 static inline int
2841 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2842 {
2843         /* 32-bit process in 64-bit kernel. */
2844         unsigned long ss_base, cs_base;
2845         struct stack_frame_ia32 frame;
2846         const struct stack_frame_ia32 __user *fp;
2847
2848         if (user_64bit_mode(regs))
2849                 return 0;
2850
2851         cs_base = get_segment_base(regs->cs);
2852         ss_base = get_segment_base(regs->ss);
2853
2854         fp = compat_ptr(ss_base + regs->bp);
2855         pagefault_disable();
2856         while (entry->nr < entry->max_stack) {
2857                 if (!valid_user_frame(fp, sizeof(frame)))
2858                         break;
2859
2860                 if (__get_user(frame.next_frame, &fp->next_frame))
2861                         break;
2862                 if (__get_user(frame.return_address, &fp->return_address))
2863                         break;
2864
2865                 perf_callchain_store(entry, cs_base + frame.return_address);
2866                 fp = compat_ptr(ss_base + frame.next_frame);
2867         }
2868         pagefault_enable();
2869         return 1;
2870 }
2871 #else
2872 static inline int
2873 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2874 {
2875     return 0;
2876 }
2877 #endif
2878
2879 void
2880 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2881 {
2882         struct stack_frame frame;
2883         const struct stack_frame __user *fp;
2884
2885         if (perf_guest_state()) {
2886                 /* TODO: We don't support guest os callchain now */
2887                 return;
2888         }
2889
2890         /*
2891          * We don't know what to do with VM86 stacks.. ignore them for now.
2892          */
2893         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2894                 return;
2895
2896         fp = (void __user *)regs->bp;
2897
2898         perf_callchain_store(entry, regs->ip);
2899
2900         if (!nmi_uaccess_okay())
2901                 return;
2902
2903         if (perf_callchain_user32(regs, entry))
2904                 return;
2905
2906         pagefault_disable();
2907         while (entry->nr < entry->max_stack) {
2908                 if (!valid_user_frame(fp, sizeof(frame)))
2909                         break;
2910
2911                 if (__get_user(frame.next_frame, &fp->next_frame))
2912                         break;
2913                 if (__get_user(frame.return_address, &fp->return_address))
2914                         break;
2915
2916                 perf_callchain_store(entry, frame.return_address);
2917                 fp = (void __user *)frame.next_frame;
2918         }
2919         pagefault_enable();
2920 }
2921
2922 /*
2923  * Deal with code segment offsets for the various execution modes:
2924  *
2925  *   VM86 - the good olde 16 bit days, where the linear address is
2926  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2927  *
2928  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2929  *          to figure out what the 32bit base address is.
2930  *
2931  *    X32 - has TIF_X32 set, but is running in x86_64
2932  *
2933  * X86_64 - CS,DS,SS,ES are all zero based.
2934  */
2935 static unsigned long code_segment_base(struct pt_regs *regs)
2936 {
2937         /*
2938          * For IA32 we look at the GDT/LDT segment base to convert the
2939          * effective IP to a linear address.
2940          */
2941
2942 #ifdef CONFIG_X86_32
2943         /*
2944          * If we are in VM86 mode, add the segment offset to convert to a
2945          * linear address.
2946          */
2947         if (regs->flags & X86_VM_MASK)
2948                 return 0x10 * regs->cs;
2949
2950         if (user_mode(regs) && regs->cs != __USER_CS)
2951                 return get_segment_base(regs->cs);
2952 #else
2953         if (user_mode(regs) && !user_64bit_mode(regs) &&
2954             regs->cs != __USER32_CS)
2955                 return get_segment_base(regs->cs);
2956 #endif
2957         return 0;
2958 }
2959
2960 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2961 {
2962         if (perf_guest_state())
2963                 return perf_guest_get_ip();
2964
2965         return regs->ip + code_segment_base(regs);
2966 }
2967
2968 unsigned long perf_misc_flags(struct pt_regs *regs)
2969 {
2970         unsigned int guest_state = perf_guest_state();
2971         int misc = 0;
2972
2973         if (guest_state) {
2974                 if (guest_state & PERF_GUEST_USER)
2975                         misc |= PERF_RECORD_MISC_GUEST_USER;
2976                 else
2977                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2978         } else {
2979                 if (user_mode(regs))
2980                         misc |= PERF_RECORD_MISC_USER;
2981                 else
2982                         misc |= PERF_RECORD_MISC_KERNEL;
2983         }
2984
2985         if (regs->flags & PERF_EFLAGS_EXACT)
2986                 misc |= PERF_RECORD_MISC_EXACT_IP;
2987
2988         return misc;
2989 }
2990
2991 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2992 {
2993         cap->version            = x86_pmu.version;
2994         /*
2995          * KVM doesn't support the hybrid PMU yet.
2996          * Return the common value in global x86_pmu,
2997          * which available for all cores.
2998          */
2999         cap->num_counters_gp    = x86_pmu.num_counters;
3000         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
3001         cap->bit_width_gp       = x86_pmu.cntval_bits;
3002         cap->bit_width_fixed    = x86_pmu.cntval_bits;
3003         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
3004         cap->events_mask_len    = x86_pmu.events_mask_len;
3005 }
3006 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);