GNU Linux-libre 6.1.24-gnu
[releases.git] / arch / x86 / crypto / sha512-ssse3-asm.S
1 ########################################################################
2 # Implement fast SHA-512 with SSSE3 instructions. (x86_64)
3 #
4 # Copyright (C) 2013 Intel Corporation.
5 #
6 # Authors:
7 #     James Guilford <james.guilford@intel.com>
8 #     Kirk Yap <kirk.s.yap@intel.com>
9 #     David Cote <david.m.cote@intel.com>
10 #     Tim Chen <tim.c.chen@linux.intel.com>
11 #
12 # This software is available to you under a choice of one of two
13 # licenses.  You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
17 #
18 #     Redistribution and use in source and binary forms, with or
19 #     without modification, are permitted provided that the following
20 #     conditions are met:
21 #
22 #      - Redistributions of source code must retain the above
23 #        copyright notice, this list of conditions and the following
24 #        disclaimer.
25 #
26 #      - Redistributions in binary form must reproduce the above
27 #        copyright notice, this list of conditions and the following
28 #        disclaimer in the documentation and/or other materials
29 #        provided with the distribution.
30 #
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 # SOFTWARE.
39 #
40 ########################################################################
41 #
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
44 #
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
47 #
48 ########################################################################
49
50 #include <linux/linkage.h>
51 #include <linux/cfi_types.h>
52
53 .text
54
55 # Virtual Registers
56 # ARG1
57 digest =        %rdi
58 # ARG2
59 msg =           %rsi
60 # ARG3
61 msglen =        %rdx
62 T1 =            %rcx
63 T2 =            %r8
64 a_64 =          %r9
65 b_64 =          %r10
66 c_64 =          %r11
67 d_64 =          %r12
68 e_64 =          %r13
69 f_64 =          %r14
70 g_64 =          %r15
71 h_64 =          %rbx
72 tmp0 =          %rax
73
74 # Local variables (stack frame)
75
76 W_SIZE = 80*8
77 WK_SIZE = 2*8
78
79 frame_W = 0
80 frame_WK = frame_W + W_SIZE
81 frame_size = frame_WK + WK_SIZE
82
83 # Useful QWORD "arrays" for simpler memory references
84 # MSG, DIGEST, K_t, W_t are arrays
85 # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
86
87 # Input message (arg1)
88 #define MSG(i)    8*i(msg)
89
90 # Output Digest (arg2)
91 #define DIGEST(i) 8*i(digest)
92
93 # SHA Constants (static mem)
94 #define K_t(i)    8*i+K512(%rip)
95
96 # Message Schedule (stack frame)
97 #define W_t(i)    8*i+frame_W(%rsp)
98
99 # W[t]+K[t] (stack frame)
100 #define WK_2(i)   8*((i%2))+frame_WK(%rsp)
101
102 .macro RotateState
103         # Rotate symbols a..h right
104         TMP   = h_64
105         h_64  = g_64
106         g_64  = f_64
107         f_64  = e_64
108         e_64  = d_64
109         d_64  = c_64
110         c_64  = b_64
111         b_64  = a_64
112         a_64  = TMP
113 .endm
114
115 .macro SHA512_Round rnd
116
117         # Compute Round %%t
118         mov     f_64, T1          # T1 = f
119         mov     e_64, tmp0        # tmp = e
120         xor     g_64, T1          # T1 = f ^ g
121         ror     $23, tmp0 # 41    # tmp = e ror 23
122         and     e_64, T1          # T1 = (f ^ g) & e
123         xor     e_64, tmp0        # tmp = (e ror 23) ^ e
124         xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
125         idx = \rnd
126         add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
127         ror     $4, tmp0  # 18    # tmp = ((e ror 23) ^ e) ror 4
128         xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
129         mov     a_64, T2          # T2 = a
130         add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
131         ror     $14, tmp0 # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
132         add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
133         mov     a_64, tmp0        # tmp = a
134         xor     c_64, T2          # T2 = a ^ c
135         and     c_64, tmp0        # tmp = a & c
136         and     b_64, T2          # T2 = (a ^ c) & b
137         xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
138         mov     a_64, tmp0        # tmp = a
139         ror     $5, tmp0 # 39     # tmp = a ror 5
140         xor     a_64, tmp0        # tmp = (a ror 5) ^ a
141         add     T1, d_64          # e(next_state) = d + T1
142         ror     $6, tmp0 # 34     # tmp = ((a ror 5) ^ a) ror 6
143         xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
144         lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
145         ror     $28, tmp0 # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
146         add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
147         RotateState
148 .endm
149
150 .macro SHA512_2Sched_2Round_sse rnd
151
152         # Compute rounds t-2 and t-1
153         # Compute message schedule QWORDS t and t+1
154
155         #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
156         # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
157         # scheduler.
158         #   The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
159         # They are then added to their respective SHA512 constants at
160         # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
161         #   For brievity, the comments following vectored instructions only refer to
162         # the first of a pair of QWORDS.
163         # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
164         #   The computation of the message schedule and the rounds are tightly
165         # stitched to take advantage of instruction-level parallelism.
166         # For clarity, integer instructions (for the rounds calculation) are indented
167         # by one tab. Vectored instructions (for the message scheduler) are indented
168         # by two tabs.
169
170         mov     f_64, T1
171         idx = \rnd -2
172         movdqa  W_t(idx), %xmm2             # XMM2 = W[t-2]
173         xor     g_64, T1
174         and     e_64, T1
175         movdqa  %xmm2, %xmm0                # XMM0 = W[t-2]
176         xor     g_64, T1
177         idx = \rnd
178         add     WK_2(idx), T1
179         idx = \rnd - 15
180         movdqu  W_t(idx), %xmm5             # XMM5 = W[t-15]
181         mov     e_64, tmp0
182         ror     $23, tmp0 # 41
183         movdqa  %xmm5, %xmm3                # XMM3 = W[t-15]
184         xor     e_64, tmp0
185         ror     $4, tmp0 # 18
186         psrlq   $61-19, %xmm0               # XMM0 = W[t-2] >> 42
187         xor     e_64, tmp0
188         ror     $14, tmp0 # 14
189         psrlq   $(8-7), %xmm3               # XMM3 = W[t-15] >> 1
190         add     tmp0, T1
191         add     h_64, T1
192         pxor    %xmm2, %xmm0                # XMM0 = (W[t-2] >> 42) ^ W[t-2]
193         mov     a_64, T2
194         xor     c_64, T2
195         pxor    %xmm5, %xmm3                # XMM3 = (W[t-15] >> 1) ^ W[t-15]
196         and     b_64, T2
197         mov     a_64, tmp0
198         psrlq   $(19-6), %xmm0              # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
199         and     c_64, tmp0
200         xor     tmp0, T2
201         psrlq   $(7-1), %xmm3               # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
202         mov     a_64, tmp0
203         ror     $5, tmp0 # 39
204         pxor    %xmm2, %xmm0                # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
205         xor     a_64, tmp0
206         ror     $6, tmp0 # 34
207         pxor    %xmm5, %xmm3                # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
208         xor     a_64, tmp0
209         ror     $28, tmp0 # 28
210         psrlq   $6, %xmm0                   # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
211         add     tmp0, T2
212         add     T1, d_64
213         psrlq   $1, %xmm3                   # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
214         lea     (T1, T2), h_64
215         RotateState
216         movdqa  %xmm2, %xmm1                # XMM1 = W[t-2]
217         mov     f_64, T1
218         xor     g_64, T1
219         movdqa  %xmm5, %xmm4                # XMM4 = W[t-15]
220         and     e_64, T1
221         xor     g_64, T1
222         psllq   $(64-19)-(64-61) , %xmm1    # XMM1 = W[t-2] << 42
223         idx = \rnd + 1
224         add     WK_2(idx), T1
225         mov     e_64, tmp0
226         psllq   $(64-1)-(64-8), %xmm4       # XMM4 = W[t-15] << 7
227         ror     $23, tmp0 # 41
228         xor     e_64, tmp0
229         pxor    %xmm2, %xmm1                # XMM1 = (W[t-2] << 42)^W[t-2]
230         ror     $4, tmp0 # 18
231         xor     e_64, tmp0
232         pxor    %xmm5, %xmm4                # XMM4 = (W[t-15]<<7)^W[t-15]
233         ror     $14, tmp0 # 14
234         add     tmp0, T1
235         psllq   $(64-61), %xmm1             # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
236         add     h_64, T1
237         mov     a_64, T2
238         psllq   $(64-8), %xmm4              # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
239         xor     c_64, T2
240         and     b_64, T2
241         pxor    %xmm1, %xmm0                # XMM0 = s1(W[t-2])
242         mov     a_64, tmp0
243         and     c_64, tmp0
244         idx = \rnd - 7
245         movdqu  W_t(idx), %xmm1             # XMM1 = W[t-7]
246         xor     tmp0, T2
247         pxor    %xmm4, %xmm3                # XMM3 = s0(W[t-15])
248         mov     a_64, tmp0
249         paddq   %xmm3, %xmm0                # XMM0 = s1(W[t-2]) + s0(W[t-15])
250         ror     $5, tmp0 # 39
251         idx =\rnd-16
252         paddq   W_t(idx), %xmm0             # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
253         xor     a_64, tmp0
254         paddq   %xmm1, %xmm0                # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
255         ror     $6, tmp0 # 34
256         movdqa  %xmm0, W_t(\rnd)            # Store scheduled qwords
257         xor     a_64, tmp0
258         paddq   K_t(\rnd), %xmm0            # Compute W[t]+K[t]
259         ror     $28, tmp0 # 28
260         idx = \rnd
261         movdqa  %xmm0, WK_2(idx)            # Store W[t]+K[t] for next rounds
262         add     tmp0, T2
263         add     T1, d_64
264         lea     (T1, T2), h_64
265         RotateState
266 .endm
267
268 ########################################################################
269 ## void sha512_transform_ssse3(struct sha512_state *state, const u8 *data,
270 ##                             int blocks);
271 # (struct sha512_state is assumed to begin with u64 state[8])
272 # Purpose: Updates the SHA512 digest stored at "state" with the message
273 # stored in "data".
274 # The size of the message pointed to by "data" must be an integer multiple
275 # of SHA512 message blocks.
276 # "blocks" is the message length in SHA512 blocks.
277 ########################################################################
278 SYM_TYPED_FUNC_START(sha512_transform_ssse3)
279
280         test msglen, msglen
281         je nowork
282
283         # Save GPRs
284         push    %rbx
285         push    %r12
286         push    %r13
287         push    %r14
288         push    %r15
289
290         # Allocate Stack Space
291         push    %rbp
292         mov     %rsp, %rbp
293         sub     $frame_size, %rsp
294         and     $~(0x20 - 1), %rsp
295
296 updateblock:
297
298 # Load state variables
299         mov     DIGEST(0), a_64
300         mov     DIGEST(1), b_64
301         mov     DIGEST(2), c_64
302         mov     DIGEST(3), d_64
303         mov     DIGEST(4), e_64
304         mov     DIGEST(5), f_64
305         mov     DIGEST(6), g_64
306         mov     DIGEST(7), h_64
307
308         t = 0
309         .rept 80/2 + 1
310         # (80 rounds) / (2 rounds/iteration) + (1 iteration)
311         # +1 iteration because the scheduler leads hashing by 1 iteration
312                 .if t < 2
313                         # BSWAP 2 QWORDS
314                         movdqa  XMM_QWORD_BSWAP(%rip), %xmm1
315                         movdqu  MSG(t), %xmm0
316                         pshufb  %xmm1, %xmm0    # BSWAP
317                         movdqa  %xmm0, W_t(t)   # Store Scheduled Pair
318                         paddq   K_t(t), %xmm0   # Compute W[t]+K[t]
319                         movdqa  %xmm0, WK_2(t)  # Store into WK for rounds
320                 .elseif t < 16
321                         # BSWAP 2 QWORDS# Compute 2 Rounds
322                         movdqu  MSG(t), %xmm0
323                         pshufb  %xmm1, %xmm0    # BSWAP
324                         SHA512_Round t-2        # Round t-2
325                         movdqa  %xmm0, W_t(t)   # Store Scheduled Pair
326                         paddq   K_t(t), %xmm0   # Compute W[t]+K[t]
327                         SHA512_Round t-1        # Round t-1
328                         movdqa  %xmm0, WK_2(t)  # Store W[t]+K[t] into WK
329                 .elseif t < 79
330                         # Schedule 2 QWORDS# Compute 2 Rounds
331                         SHA512_2Sched_2Round_sse t
332                 .else
333                         # Compute 2 Rounds
334                         SHA512_Round t-2
335                         SHA512_Round t-1
336                 .endif
337                 t = t+2
338         .endr
339
340         # Update digest
341         add     a_64, DIGEST(0)
342         add     b_64, DIGEST(1)
343         add     c_64, DIGEST(2)
344         add     d_64, DIGEST(3)
345         add     e_64, DIGEST(4)
346         add     f_64, DIGEST(5)
347         add     g_64, DIGEST(6)
348         add     h_64, DIGEST(7)
349
350         # Advance to next message block
351         add     $16*8, msg
352         dec     msglen
353         jnz     updateblock
354
355         # Restore Stack Pointer
356         mov     %rbp, %rsp
357         pop     %rbp
358
359         # Restore GPRs
360         pop     %r15
361         pop     %r14
362         pop     %r13
363         pop     %r12
364         pop     %rbx
365
366 nowork:
367         RET
368 SYM_FUNC_END(sha512_transform_ssse3)
369
370 ########################################################################
371 ### Binary Data
372
373 .section        .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
374 .align 16
375 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
376 XMM_QWORD_BSWAP:
377         .octa 0x08090a0b0c0d0e0f0001020304050607
378
379 # Mergeable 640-byte rodata section. This allows linker to merge the table
380 # with other, exactly the same 640-byte fragment of another rodata section
381 # (if such section exists).
382 .section        .rodata.cst640.K512, "aM", @progbits, 640
383 .align 64
384 # K[t] used in SHA512 hashing
385 K512:
386         .quad 0x428a2f98d728ae22,0x7137449123ef65cd
387         .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
388         .quad 0x3956c25bf348b538,0x59f111f1b605d019
389         .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
390         .quad 0xd807aa98a3030242,0x12835b0145706fbe
391         .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
392         .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
393         .quad 0x9bdc06a725c71235,0xc19bf174cf692694
394         .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
395         .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
396         .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
397         .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
398         .quad 0x983e5152ee66dfab,0xa831c66d2db43210
399         .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
400         .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
401         .quad 0x06ca6351e003826f,0x142929670a0e6e70
402         .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
403         .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
404         .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
405         .quad 0x81c2c92e47edaee6,0x92722c851482353b
406         .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
407         .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
408         .quad 0xd192e819d6ef5218,0xd69906245565a910
409         .quad 0xf40e35855771202a,0x106aa07032bbd1b8
410         .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
411         .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
412         .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
413         .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
414         .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
415         .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
416         .quad 0x90befffa23631e28,0xa4506cebde82bde9
417         .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
418         .quad 0xca273eceea26619c,0xd186b8c721c0c207
419         .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
420         .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
421         .quad 0x113f9804bef90dae,0x1b710b35131c471b
422         .quad 0x28db77f523047d84,0x32caab7b40c72493
423         .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
424         .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
425         .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817