1 ########################################################################
2 # Implement fast SHA-512 with AVX2 instructions. (x86_64)
4 # Copyright (C) 2013 Intel Corporation.
7 # James Guilford <james.guilford@intel.com>
8 # Kirk Yap <kirk.s.yap@intel.com>
9 # David Cote <david.m.cote@intel.com>
10 # Tim Chen <tim.c.chen@linux.intel.com>
12 # This software is available to you under a choice of one of two
13 # licenses. You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
18 # Redistribution and use in source and binary forms, with or
19 # without modification, are permitted provided that the following
22 # - Redistributions of source code must retain the above
23 # copyright notice, this list of conditions and the following
26 # - Redistributions in binary form must reproduce the above
27 # copyright notice, this list of conditions and the following
28 # disclaimer in the documentation and/or other materials
29 # provided with the distribution.
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
40 ########################################################################
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
48 ########################################################################
49 # This code schedules 1 blocks at a time, with 4 lanes per block
50 ########################################################################
53 #include <linux/linkage.h>
70 BYTE_FLIP_MASK = %ymm9
72 # 1st arg is %rdi, which is saved to the stack and accessed later via %r12
85 TBL = %rdi # clobbers CTX1
95 T1 = %r12 # clobbers CTX2
100 # Local variables (stack frame)
110 frame_SRND = frame_XFER + XFER_SIZE
111 frame_INP = frame_SRND + SRND_SIZE
112 frame_INPEND = frame_INP + INP_SIZE
113 frame_CTX = frame_INPEND + INPEND_SIZE
114 frame_RSPSAVE = frame_CTX + CTX_SIZE
115 frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
116 frame_size = frame_GPRSAVE + GPRSAVE_SIZE
118 ## assume buffers not aligned
119 #define VMOVDQ vmovdqu
122 # Add reg to mem using reg-mem add and store
129 # COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
130 # Load ymm with mem and byte swap each dword
131 .macro COPY_YMM_AND_BSWAP p1 p2 p3
133 vpshufb \p3, \p1, \p1
136 # Rotate values of symbols Y0...Y3
147 # Rotate symbols a..h right
160 # macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
161 # YDST = {YSRC1, YSRC2} >> RVAL*8
162 .macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
163 vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI}
164 vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8
167 .macro FOUR_ROUNDS_AND_SCHED
168 ################################### RND N + 0 #########################################
171 MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7]
172 # Calculate w[t-16] + w[t-7]
173 vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16]
175 MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15]
179 # Calculate w[t-15] ror 1
180 vpsrlq $1, YTMP1, YTMP2
181 vpsllq $(64-1), YTMP1, YTMP3
182 vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1
183 # Calculate w[t-15] shr 7
184 vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7
186 mov a, y3 # y3 = a # MAJA
187 rorx $41, e, y0 # y0 = e >> 41 # S1A
188 rorx $18, e, y1 # y1 = e >> 18 # S1B
189 add frame_XFER(%rsp),h # h = k + w + h # --
190 or c, y3 # y3 = a|c # MAJA
191 mov f, y2 # y2 = f # CH
192 rorx $34, a, T1 # T1 = a >> 34 # S0B
194 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
195 xor g, y2 # y2 = f^g # CH
196 rorx $14, e, y1 # y1 = (e >> 14) # S1
198 and e, y2 # y2 = (f^g)&e # CH
199 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
200 rorx $39, a, y1 # y1 = a >> 39 # S0A
201 add h, d # d = k + w + h + d # --
203 and b, y3 # y3 = (a|c)&b # MAJA
204 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
205 rorx $28, a, T1 # T1 = (a >> 28) # S0
207 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
208 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
209 mov a, T1 # T1 = a # MAJB
210 and c, T1 # T1 = a&c # MAJB
212 add y0, y2 # y2 = S1 + CH # --
213 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
214 add y1, h # h = k + w + h + S0 # --
216 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
218 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
219 add y3, h # h = t1 + S0 + MAJ # --
223 ################################### RND N + 1 #########################################
225 # Calculate w[t-15] ror 8
226 vpsrlq $8, YTMP1, YTMP2
227 vpsllq $(64-8), YTMP1, YTMP1
228 vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8
229 # XOR the three components
230 vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
231 vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0
234 # Add three components, w[t-16], w[t-7] and sigma0
235 vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0
236 # Move to appropriate lanes for calculating w[16] and w[17]
237 vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA}
238 # Move to appropriate lanes for calculating w[18] and w[19]
239 vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
241 # Calculate w[16] and w[17] in both 128 bit lanes
243 # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
244 vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA}
245 vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA}
248 mov a, y3 # y3 = a # MAJA
249 rorx $41, e, y0 # y0 = e >> 41 # S1A
250 rorx $18, e, y1 # y1 = e >> 18 # S1B
251 add 1*8+frame_XFER(%rsp), h # h = k + w + h # --
252 or c, y3 # y3 = a|c # MAJA
255 mov f, y2 # y2 = f # CH
256 rorx $34, a, T1 # T1 = a >> 34 # S0B
257 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
258 xor g, y2 # y2 = f^g # CH
261 rorx $14, e, y1 # y1 = (e >> 14) # S1
262 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
263 rorx $39, a, y1 # y1 = a >> 39 # S0A
264 and e, y2 # y2 = (f^g)&e # CH
265 add h, d # d = k + w + h + d # --
267 and b, y3 # y3 = (a|c)&b # MAJA
268 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
270 rorx $28, a, T1 # T1 = (a >> 28) # S0
271 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
273 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
274 mov a, T1 # T1 = a # MAJB
275 and c, T1 # T1 = a&c # MAJB
276 add y0, y2 # y2 = S1 + CH # --
278 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
279 add y1, h # h = k + w + h + S0 # --
281 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
282 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
283 add y3, h # h = t1 + S0 + MAJ # --
288 ################################### RND N + 2 #########################################
290 vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA}
291 vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA}
292 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA}
293 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
294 vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA}
295 vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA}
296 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA}
297 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
298 # (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
300 # Add sigma1 to the other compunents to get w[16] and w[17]
301 vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]}
303 # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
304 vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--}
306 mov a, y3 # y3 = a # MAJA
307 rorx $41, e, y0 # y0 = e >> 41 # S1A
308 add 2*8+frame_XFER(%rsp), h # h = k + w + h # --
310 rorx $18, e, y1 # y1 = e >> 18 # S1B
311 or c, y3 # y3 = a|c # MAJA
312 mov f, y2 # y2 = f # CH
313 xor g, y2 # y2 = f^g # CH
315 rorx $34, a, T1 # T1 = a >> 34 # S0B
316 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
317 and e, y2 # y2 = (f^g)&e # CH
319 rorx $14, e, y1 # y1 = (e >> 14) # S1
320 add h, d # d = k + w + h + d # --
321 and b, y3 # y3 = (a|c)&b # MAJA
323 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
324 rorx $39, a, y1 # y1 = a >> 39 # S0A
325 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
327 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
328 rorx $28, a, T1 # T1 = (a >> 28) # S0
330 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
331 mov a, T1 # T1 = a # MAJB
332 and c, T1 # T1 = a&c # MAJB
333 add y0, y2 # y2 = S1 + CH # --
335 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
336 add y1, h # h = k + w + h + S0 # --
337 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
338 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
340 add y3, h # h = t1 + S0 + MAJ # --
344 ################################### RND N + 3 #########################################
346 vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--}
347 vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--}
348 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--}
349 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
350 vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--}
351 vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--}
352 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--}
353 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
354 # (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
356 # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
357 # to newly calculated sigma1 to get w[18] and w[19]
358 vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --}
360 # Form w[19, w[18], w17], w[16]
361 vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]}
363 mov a, y3 # y3 = a # MAJA
364 rorx $41, e, y0 # y0 = e >> 41 # S1A
365 rorx $18, e, y1 # y1 = e >> 18 # S1B
366 add 3*8+frame_XFER(%rsp), h # h = k + w + h # --
367 or c, y3 # y3 = a|c # MAJA
370 mov f, y2 # y2 = f # CH
371 rorx $34, a, T1 # T1 = a >> 34 # S0B
372 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
373 xor g, y2 # y2 = f^g # CH
376 rorx $14, e, y1 # y1 = (e >> 14) # S1
377 and e, y2 # y2 = (f^g)&e # CH
378 add h, d # d = k + w + h + d # --
379 and b, y3 # y3 = (a|c)&b # MAJA
381 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
382 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
384 rorx $39, a, y1 # y1 = a >> 39 # S0A
385 add y0, y2 # y2 = S1 + CH # --
387 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
388 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
390 rorx $28, a, T1 # T1 = (a >> 28) # S0
392 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
393 mov a, T1 # T1 = a # MAJB
394 and c, T1 # T1 = a&c # MAJB
395 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
397 add y1, h # h = k + w + h + S0 # --
398 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
399 add y3, h # h = t1 + S0 + MAJ # --
408 ################################### RND N + 0 #########################################
410 mov f, y2 # y2 = f # CH
411 rorx $41, e, y0 # y0 = e >> 41 # S1A
412 rorx $18, e, y1 # y1 = e >> 18 # S1B
413 xor g, y2 # y2 = f^g # CH
415 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
416 rorx $14, e, y1 # y1 = (e >> 14) # S1
417 and e, y2 # y2 = (f^g)&e # CH
419 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
420 rorx $34, a, T1 # T1 = a >> 34 # S0B
421 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
422 rorx $39, a, y1 # y1 = a >> 39 # S0A
423 mov a, y3 # y3 = a # MAJA
425 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
426 rorx $28, a, T1 # T1 = (a >> 28) # S0
427 add frame_XFER(%rsp), h # h = k + w + h # --
428 or c, y3 # y3 = a|c # MAJA
430 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
431 mov a, T1 # T1 = a # MAJB
432 and b, y3 # y3 = (a|c)&b # MAJA
433 and c, T1 # T1 = a&c # MAJB
434 add y0, y2 # y2 = S1 + CH # --
436 add h, d # d = k + w + h + d # --
437 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
438 add y1, h # h = k + w + h + S0 # --
440 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
444 ################################### RND N + 1 #########################################
446 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
447 mov f, y2 # y2 = f # CH
448 rorx $41, e, y0 # y0 = e >> 41 # S1A
449 rorx $18, e, y1 # y1 = e >> 18 # S1B
450 xor g, y2 # y2 = f^g # CH
452 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
453 rorx $14, e, y1 # y1 = (e >> 14) # S1
454 and e, y2 # y2 = (f^g)&e # CH
455 add y3, old_h # h = t1 + S0 + MAJ # --
457 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
458 rorx $34, a, T1 # T1 = a >> 34 # S0B
459 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
460 rorx $39, a, y1 # y1 = a >> 39 # S0A
461 mov a, y3 # y3 = a # MAJA
463 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
464 rorx $28, a, T1 # T1 = (a >> 28) # S0
465 add 8*1+frame_XFER(%rsp), h # h = k + w + h # --
466 or c, y3 # y3 = a|c # MAJA
468 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
469 mov a, T1 # T1 = a # MAJB
470 and b, y3 # y3 = (a|c)&b # MAJA
471 and c, T1 # T1 = a&c # MAJB
472 add y0, y2 # y2 = S1 + CH # --
474 add h, d # d = k + w + h + d # --
475 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
476 add y1, h # h = k + w + h + S0 # --
478 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
482 ################################### RND N + 2 #########################################
484 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
485 mov f, y2 # y2 = f # CH
486 rorx $41, e, y0 # y0 = e >> 41 # S1A
487 rorx $18, e, y1 # y1 = e >> 18 # S1B
488 xor g, y2 # y2 = f^g # CH
490 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
491 rorx $14, e, y1 # y1 = (e >> 14) # S1
492 and e, y2 # y2 = (f^g)&e # CH
493 add y3, old_h # h = t1 + S0 + MAJ # --
495 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
496 rorx $34, a, T1 # T1 = a >> 34 # S0B
497 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
498 rorx $39, a, y1 # y1 = a >> 39 # S0A
499 mov a, y3 # y3 = a # MAJA
501 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
502 rorx $28, a, T1 # T1 = (a >> 28) # S0
503 add 8*2+frame_XFER(%rsp), h # h = k + w + h # --
504 or c, y3 # y3 = a|c # MAJA
506 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
507 mov a, T1 # T1 = a # MAJB
508 and b, y3 # y3 = (a|c)&b # MAJA
509 and c, T1 # T1 = a&c # MAJB
510 add y0, y2 # y2 = S1 + CH # --
512 add h, d # d = k + w + h + d # --
513 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
514 add y1, h # h = k + w + h + S0 # --
516 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
520 ################################### RND N + 3 #########################################
522 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
523 mov f, y2 # y2 = f # CH
524 rorx $41, e, y0 # y0 = e >> 41 # S1A
525 rorx $18, e, y1 # y1 = e >> 18 # S1B
526 xor g, y2 # y2 = f^g # CH
528 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
529 rorx $14, e, y1 # y1 = (e >> 14) # S1
530 and e, y2 # y2 = (f^g)&e # CH
531 add y3, old_h # h = t1 + S0 + MAJ # --
533 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
534 rorx $34, a, T1 # T1 = a >> 34 # S0B
535 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
536 rorx $39, a, y1 # y1 = a >> 39 # S0A
537 mov a, y3 # y3 = a # MAJA
539 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
540 rorx $28, a, T1 # T1 = (a >> 28) # S0
541 add 8*3+frame_XFER(%rsp), h # h = k + w + h # --
542 or c, y3 # y3 = a|c # MAJA
544 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
545 mov a, T1 # T1 = a # MAJB
546 and b, y3 # y3 = (a|c)&b # MAJA
547 and c, T1 # T1 = a&c # MAJB
548 add y0, y2 # y2 = S1 + CH # --
551 add h, d # d = k + w + h + d # --
552 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
553 add y1, h # h = k + w + h + S0 # --
555 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
557 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
559 add y3, h # h = t1 + S0 + MAJ # --
565 ########################################################################
566 # void sha512_transform_rorx(void* D, const void* M, uint64_t L)#
567 # Purpose: Updates the SHA512 digest stored at D with the message stored in M.
568 # The size of the message pointed to by M must be an integer multiple of SHA512
570 # L is the message length in SHA512 blocks
571 ########################################################################
572 ENTRY(sha512_transform_rorx)
573 # Allocate Stack Space
575 sub $frame_size, %rsp
576 and $~(0x20 - 1), %rsp
577 mov %rax, frame_RSPSAVE(%rsp)
580 mov %rbx, 8*0+frame_GPRSAVE(%rsp)
581 mov %r12, 8*1+frame_GPRSAVE(%rsp)
582 mov %r13, 8*2+frame_GPRSAVE(%rsp)
583 mov %r14, 8*3+frame_GPRSAVE(%rsp)
584 mov %r15, 8*4+frame_GPRSAVE(%rsp)
586 shl $7, NUM_BLKS # convert to bytes
588 add INP, NUM_BLKS # pointer to end of data
589 mov NUM_BLKS, frame_INPEND(%rsp)
591 ## load initial digest
601 # save %rdi (CTX) before it gets clobbered
602 mov %rdi, frame_CTX(%rsp)
604 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
609 ## byte swap first 16 dwords
610 COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK
611 COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK
612 COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK
613 COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK
615 mov INP, frame_INP(%rsp)
617 ## schedule 64 input dwords, by doing 12 rounds of 4 each
618 movq $4, frame_SRND(%rsp)
622 vpaddq (TBL), Y_0, XFER
623 vmovdqa XFER, frame_XFER(%rsp)
624 FOUR_ROUNDS_AND_SCHED
626 vpaddq 1*32(TBL), Y_0, XFER
627 vmovdqa XFER, frame_XFER(%rsp)
628 FOUR_ROUNDS_AND_SCHED
630 vpaddq 2*32(TBL), Y_0, XFER
631 vmovdqa XFER, frame_XFER(%rsp)
632 FOUR_ROUNDS_AND_SCHED
634 vpaddq 3*32(TBL), Y_0, XFER
635 vmovdqa XFER, frame_XFER(%rsp)
637 FOUR_ROUNDS_AND_SCHED
639 subq $1, frame_SRND(%rsp)
642 movq $2, frame_SRND(%rsp)
644 vpaddq (TBL), Y_0, XFER
645 vmovdqa XFER, frame_XFER(%rsp)
647 vpaddq 1*32(TBL), Y_1, XFER
648 vmovdqa XFER, frame_XFER(%rsp)
655 subq $1, frame_SRND(%rsp)
658 mov frame_CTX(%rsp), CTX2
668 mov frame_INP(%rsp), INP
670 cmp frame_INPEND(%rsp), INP
676 mov 8*0+frame_GPRSAVE(%rsp), %rbx
677 mov 8*1+frame_GPRSAVE(%rsp), %r12
678 mov 8*2+frame_GPRSAVE(%rsp), %r13
679 mov 8*3+frame_GPRSAVE(%rsp), %r14
680 mov 8*4+frame_GPRSAVE(%rsp), %r15
682 # Restore Stack Pointer
683 mov frame_RSPSAVE(%rsp), %rsp
685 ENDPROC(sha512_transform_rorx)
687 ########################################################################
691 # Mergeable 640-byte rodata section. This allows linker to merge the table
692 # with other, exactly the same 640-byte fragment of another rodata section
693 # (if such section exists).
694 .section .rodata.cst640.K512, "aM", @progbits, 640
696 # K[t] used in SHA512 hashing
698 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
699 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
700 .quad 0x3956c25bf348b538,0x59f111f1b605d019
701 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
702 .quad 0xd807aa98a3030242,0x12835b0145706fbe
703 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
704 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
705 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
706 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
707 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
708 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
709 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
710 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
711 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
712 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
713 .quad 0x06ca6351e003826f,0x142929670a0e6e70
714 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
715 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
716 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
717 .quad 0x81c2c92e47edaee6,0x92722c851482353b
718 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
719 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
720 .quad 0xd192e819d6ef5218,0xd69906245565a910
721 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
722 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
723 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
724 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
725 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
726 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
727 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
728 .quad 0x90befffa23631e28,0xa4506cebde82bde9
729 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
730 .quad 0xca273eceea26619c,0xd186b8c721c0c207
731 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
732 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
733 .quad 0x113f9804bef90dae,0x1b710b35131c471b
734 .quad 0x28db77f523047d84,0x32caab7b40c72493
735 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
736 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
737 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
739 .section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
741 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
742 PSHUFFLE_BYTE_FLIP_MASK:
743 .octa 0x08090a0b0c0d0e0f0001020304050607
744 .octa 0x18191a1b1c1d1e1f1011121314151617
746 .section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
749 .octa 0x00000000000000000000000000000000
750 .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF