GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / um / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright 2003 PathScale, Inc.
7  */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/pgtable.h>
29 #include <asm/mmu_context.h>
30 #include <linux/uaccess.h>
31 #include <as-layout.h>
32 #include <kern_util.h>
33 #include <os.h>
34 #include <skas.h>
35 #include <timer-internal.h>
36
37 /*
38  * This is a per-cpu array.  A processor only modifies its entry and it only
39  * cares about its entry, so it's OK if another processor is modifying its
40  * entry.
41  */
42 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
43
44 static inline int external_pid(void)
45 {
46         /* FIXME: Need to look up userspace_pid by cpu */
47         return userspace_pid[0];
48 }
49
50 int pid_to_processor_id(int pid)
51 {
52         int i;
53
54         for (i = 0; i < ncpus; i++) {
55                 if (cpu_tasks[i].pid == pid)
56                         return i;
57         }
58         return -1;
59 }
60
61 void free_stack(unsigned long stack, int order)
62 {
63         free_pages(stack, order);
64 }
65
66 unsigned long alloc_stack(int order, int atomic)
67 {
68         unsigned long page;
69         gfp_t flags = GFP_KERNEL;
70
71         if (atomic)
72                 flags = GFP_ATOMIC;
73         page = __get_free_pages(flags, order);
74
75         return page;
76 }
77
78 static inline void set_current(struct task_struct *task)
79 {
80         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
81                 { external_pid(), task });
82 }
83
84 extern void arch_switch_to(struct task_struct *to);
85
86 void *__switch_to(struct task_struct *from, struct task_struct *to)
87 {
88         to->thread.prev_sched = from;
89         set_current(to);
90
91         switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
92         arch_switch_to(current);
93
94         return current->thread.prev_sched;
95 }
96
97 void interrupt_end(void)
98 {
99         struct pt_regs *regs = &current->thread.regs;
100
101         if (need_resched())
102                 schedule();
103         if (test_thread_flag(TIF_SIGPENDING))
104                 do_signal(regs);
105         if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
106                 tracehook_notify_resume(regs);
107 }
108
109 int get_current_pid(void)
110 {
111         return task_pid_nr(current);
112 }
113
114 /*
115  * This is called magically, by its address being stuffed in a jmp_buf
116  * and being longjmp-d to.
117  */
118 void new_thread_handler(void)
119 {
120         int (*fn)(void *), n;
121         void *arg;
122
123         if (current->thread.prev_sched != NULL)
124                 schedule_tail(current->thread.prev_sched);
125         current->thread.prev_sched = NULL;
126
127         fn = current->thread.request.u.thread.proc;
128         arg = current->thread.request.u.thread.arg;
129
130         /*
131          * callback returns only if the kernel thread execs a process
132          */
133         n = fn(arg);
134         userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
135 }
136
137 /* Called magically, see new_thread_handler above */
138 void fork_handler(void)
139 {
140         force_flush_all();
141
142         schedule_tail(current->thread.prev_sched);
143
144         /*
145          * XXX: if interrupt_end() calls schedule, this call to
146          * arch_switch_to isn't needed. We could want to apply this to
147          * improve performance. -bb
148          */
149         arch_switch_to(current);
150
151         current->thread.prev_sched = NULL;
152
153         userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
154 }
155
156 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
157                 unsigned long arg, struct task_struct * p, unsigned long tls)
158 {
159         void (*handler)(void);
160         int kthread = current->flags & PF_KTHREAD;
161         int ret = 0;
162
163         p->thread = (struct thread_struct) INIT_THREAD;
164
165         if (!kthread) {
166                 memcpy(&p->thread.regs.regs, current_pt_regs(),
167                        sizeof(p->thread.regs.regs));
168                 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169                 if (sp != 0)
170                         REGS_SP(p->thread.regs.regs.gp) = sp;
171
172                 handler = fork_handler;
173
174                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
175         } else {
176                 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177                 p->thread.request.u.thread.proc = (int (*)(void *))sp;
178                 p->thread.request.u.thread.arg = (void *)arg;
179                 handler = new_thread_handler;
180         }
181
182         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183
184         if (!kthread) {
185                 clear_flushed_tls(p);
186
187                 /*
188                  * Set a new TLS for the child thread?
189                  */
190                 if (clone_flags & CLONE_SETTLS)
191                         ret = arch_set_tls(p, tls);
192         }
193
194         return ret;
195 }
196
197 void initial_thread_cb(void (*proc)(void *), void *arg)
198 {
199         int save_kmalloc_ok = kmalloc_ok;
200
201         kmalloc_ok = 0;
202         initial_thread_cb_skas(proc, arg);
203         kmalloc_ok = save_kmalloc_ok;
204 }
205
206 static void time_travel_sleep(unsigned long long duration)
207 {
208         unsigned long long next = time_travel_time + duration;
209
210         if (time_travel_mode != TT_MODE_INFCPU)
211                 os_timer_disable();
212
213         while (time_travel_timer_mode == TT_TMR_PERIODIC &&
214                time_travel_timer_expiry < time_travel_time)
215                 time_travel_set_timer_expiry(time_travel_timer_expiry +
216                                              time_travel_timer_interval);
217
218         if (time_travel_timer_mode != TT_TMR_DISABLED &&
219             time_travel_timer_expiry < next) {
220                 if (time_travel_timer_mode == TT_TMR_ONESHOT)
221                         time_travel_set_timer_mode(TT_TMR_DISABLED);
222                 /*
223                  * In basic mode, time_travel_time will be adjusted in
224                  * the timer IRQ handler so it works even when the signal
225                  * comes from the OS timer, see there.
226                  */
227                 if (time_travel_mode != TT_MODE_BASIC)
228                         time_travel_set_time(time_travel_timer_expiry);
229
230                 deliver_alarm();
231         } else {
232                 time_travel_set_time(next);
233         }
234
235         if (time_travel_mode != TT_MODE_INFCPU) {
236                 if (time_travel_timer_mode == TT_TMR_PERIODIC)
237                         os_timer_set_interval(time_travel_timer_interval);
238                 else if (time_travel_timer_mode == TT_TMR_ONESHOT)
239                         os_timer_one_shot(time_travel_timer_expiry - next);
240         }
241 }
242
243 static void um_idle_sleep(void)
244 {
245         unsigned long long duration = UM_NSEC_PER_SEC;
246
247         if (time_travel_mode != TT_MODE_OFF) {
248                 time_travel_sleep(duration);
249         } else {
250                 os_idle_sleep(duration);
251         }
252 }
253
254 void arch_cpu_idle(void)
255 {
256         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
257         um_idle_sleep();
258         local_irq_enable();
259 }
260
261 int __uml_cant_sleep(void) {
262         return in_atomic() || irqs_disabled() || in_interrupt();
263         /* Is in_interrupt() really needed? */
264 }
265
266 int user_context(unsigned long sp)
267 {
268         unsigned long stack;
269
270         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
271         return stack != (unsigned long) current_thread_info();
272 }
273
274 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
275
276 void do_uml_exitcalls(void)
277 {
278         exitcall_t *call;
279
280         call = &__uml_exitcall_end;
281         while (--call >= &__uml_exitcall_begin)
282                 (*call)();
283 }
284
285 char *uml_strdup(const char *string)
286 {
287         return kstrdup(string, GFP_KERNEL);
288 }
289 EXPORT_SYMBOL(uml_strdup);
290
291 int copy_to_user_proc(void __user *to, void *from, int size)
292 {
293         return copy_to_user(to, from, size);
294 }
295
296 int copy_from_user_proc(void *to, void __user *from, int size)
297 {
298         return copy_from_user(to, from, size);
299 }
300
301 int clear_user_proc(void __user *buf, int size)
302 {
303         return clear_user(buf, size);
304 }
305
306 int cpu(void)
307 {
308         return current_thread_info()->cpu;
309 }
310
311 static atomic_t using_sysemu = ATOMIC_INIT(0);
312 int sysemu_supported;
313
314 void set_using_sysemu(int value)
315 {
316         if (value > sysemu_supported)
317                 return;
318         atomic_set(&using_sysemu, value);
319 }
320
321 int get_using_sysemu(void)
322 {
323         return atomic_read(&using_sysemu);
324 }
325
326 static int sysemu_proc_show(struct seq_file *m, void *v)
327 {
328         seq_printf(m, "%d\n", get_using_sysemu());
329         return 0;
330 }
331
332 static int sysemu_proc_open(struct inode *inode, struct file *file)
333 {
334         return single_open(file, sysemu_proc_show, NULL);
335 }
336
337 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
338                                  size_t count, loff_t *pos)
339 {
340         char tmp[2];
341
342         if (copy_from_user(tmp, buf, 1))
343                 return -EFAULT;
344
345         if (tmp[0] >= '0' && tmp[0] <= '2')
346                 set_using_sysemu(tmp[0] - '0');
347         /* We use the first char, but pretend to write everything */
348         return count;
349 }
350
351 static const struct file_operations sysemu_proc_fops = {
352         .owner          = THIS_MODULE,
353         .open           = sysemu_proc_open,
354         .read           = seq_read,
355         .llseek         = seq_lseek,
356         .release        = single_release,
357         .write          = sysemu_proc_write,
358 };
359
360 int __init make_proc_sysemu(void)
361 {
362         struct proc_dir_entry *ent;
363         if (!sysemu_supported)
364                 return 0;
365
366         ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
367
368         if (ent == NULL)
369         {
370                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
371                 return 0;
372         }
373
374         return 0;
375 }
376
377 late_initcall(make_proc_sysemu);
378
379 int singlestepping(void * t)
380 {
381         struct task_struct *task = t ? t : current;
382
383         if (!test_thread_flag(TIF_SINGLESTEP))
384                 return 0;
385
386         if (task->thread.singlestep_syscall)
387                 return 1;
388
389         return 2;
390 }
391
392 /*
393  * Only x86 and x86_64 have an arch_align_stack().
394  * All other arches have "#define arch_align_stack(x) (x)"
395  * in their asm/exec.h
396  * As this is included in UML from asm-um/system-generic.h,
397  * we can use it to behave as the subarch does.
398  */
399 #ifndef arch_align_stack
400 unsigned long arch_align_stack(unsigned long sp)
401 {
402         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
403                 sp -= get_random_int() % 8192;
404         return sp & ~0xf;
405 }
406 #endif
407
408 unsigned long get_wchan(struct task_struct *p)
409 {
410         unsigned long stack_page, sp, ip;
411         bool seen_sched = 0;
412
413         if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
414                 return 0;
415
416         stack_page = (unsigned long) task_stack_page(p);
417         /* Bail if the process has no kernel stack for some reason */
418         if (stack_page == 0)
419                 return 0;
420
421         sp = p->thread.switch_buf->JB_SP;
422         /*
423          * Bail if the stack pointer is below the bottom of the kernel
424          * stack for some reason
425          */
426         if (sp < stack_page)
427                 return 0;
428
429         while (sp < stack_page + THREAD_SIZE) {
430                 ip = *((unsigned long *) sp);
431                 if (in_sched_functions(ip))
432                         /* Ignore everything until we're above the scheduler */
433                         seen_sched = 1;
434                 else if (kernel_text_address(ip) && seen_sched)
435                         return ip;
436
437                 sp += sizeof(unsigned long);
438         }
439
440         return 0;
441 }
442
443 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
444 {
445         int cpu = current_thread_info()->cpu;
446
447         return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
448 }
449