GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / um / kernel / irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - Cambridge Greys Ltd
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
7  *      Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8  */
9
10 #include <linux/cpumask.h>
11 #include <linux/hardirq.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 #include <as-layout.h>
19 #include <kern_util.h>
20 #include <os.h>
21 #include <irq_user.h>
22 #include <irq_kern.h>
23 #include <linux/time-internal.h>
24
25
26 extern void free_irqs(void);
27
28 /* When epoll triggers we do not know why it did so
29  * we can also have different IRQs for read and write.
30  * This is why we keep a small irq_reg array for each fd -
31  * one entry per IRQ type
32  */
33 struct irq_reg {
34         void *id;
35         int irq;
36         /* it's cheaper to store this than to query it */
37         int events;
38         bool active;
39         bool pending;
40         bool wakeup;
41 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
42         bool pending_on_resume;
43         void (*timetravel_handler)(int, int, void *,
44                                    struct time_travel_event *);
45         struct time_travel_event event;
46 #endif
47 };
48
49 struct irq_entry {
50         struct list_head list;
51         int fd;
52         struct irq_reg reg[NUM_IRQ_TYPES];
53         bool suspended;
54         bool sigio_workaround;
55 };
56
57 static DEFINE_SPINLOCK(irq_lock);
58 static LIST_HEAD(active_fds);
59 static DECLARE_BITMAP(irqs_allocated, UM_LAST_SIGNAL_IRQ);
60 static bool irqs_suspended;
61
62 static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs)
63 {
64 /*
65  * irq->active guards against reentry
66  * irq->pending accumulates pending requests
67  * if pending is raised the irq_handler is re-run
68  * until pending is cleared
69  */
70         if (irq->active) {
71                 irq->active = false;
72
73                 do {
74                         irq->pending = false;
75                         do_IRQ(irq->irq, regs);
76                 } while (irq->pending);
77
78                 irq->active = true;
79         } else {
80                 irq->pending = true;
81         }
82 }
83
84 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
85 static void irq_event_handler(struct time_travel_event *ev)
86 {
87         struct irq_reg *reg = container_of(ev, struct irq_reg, event);
88
89         /* do nothing if suspended - just to cause a wakeup */
90         if (irqs_suspended)
91                 return;
92
93         generic_handle_irq(reg->irq);
94 }
95
96 static bool irq_do_timetravel_handler(struct irq_entry *entry,
97                                       enum um_irq_type t)
98 {
99         struct irq_reg *reg = &entry->reg[t];
100
101         if (!reg->timetravel_handler)
102                 return false;
103
104         /*
105          * Handle all messages - we might get multiple even while
106          * interrupts are already suspended, due to suspend order
107          * etc. Note that time_travel_add_irq_event() will not add
108          * an event twice, if it's pending already "first wins".
109          */
110         reg->timetravel_handler(reg->irq, entry->fd, reg->id, &reg->event);
111
112         if (!reg->event.pending)
113                 return false;
114
115         if (irqs_suspended)
116                 reg->pending_on_resume = true;
117         return true;
118 }
119 #else
120 static bool irq_do_timetravel_handler(struct irq_entry *entry,
121                                       enum um_irq_type t)
122 {
123         return false;
124 }
125 #endif
126
127 static void sigio_reg_handler(int idx, struct irq_entry *entry, enum um_irq_type t,
128                               struct uml_pt_regs *regs,
129                               bool timetravel_handlers_only)
130 {
131         struct irq_reg *reg = &entry->reg[t];
132
133         if (!reg->events)
134                 return;
135
136         if (os_epoll_triggered(idx, reg->events) <= 0)
137                 return;
138
139         if (irq_do_timetravel_handler(entry, t))
140                 return;
141
142         /*
143          * If we're called to only run time-travel handlers then don't
144          * actually proceed but mark sigio as pending (if applicable).
145          * For suspend/resume, timetravel_handlers_only may be true
146          * despite time-travel not being configured and used.
147          */
148         if (timetravel_handlers_only) {
149 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
150                 mark_sigio_pending();
151 #endif
152                 return;
153         }
154
155         irq_io_loop(reg, regs);
156 }
157
158 static void _sigio_handler(struct uml_pt_regs *regs,
159                            bool timetravel_handlers_only)
160 {
161         struct irq_entry *irq_entry;
162         int n, i;
163
164         if (timetravel_handlers_only && !um_irq_timetravel_handler_used())
165                 return;
166
167         while (1) {
168                 /* This is now lockless - epoll keeps back-referencesto the irqs
169                  * which have trigger it so there is no need to walk the irq
170                  * list and lock it every time. We avoid locking by turning off
171                  * IO for a specific fd by executing os_del_epoll_fd(fd) before
172                  * we do any changes to the actual data structures
173                  */
174                 n = os_waiting_for_events_epoll();
175
176                 if (n <= 0) {
177                         if (n == -EINTR)
178                                 continue;
179                         else
180                                 break;
181                 }
182
183                 for (i = 0; i < n ; i++) {
184                         enum um_irq_type t;
185
186                         irq_entry = os_epoll_get_data_pointer(i);
187
188                         for (t = 0; t < NUM_IRQ_TYPES; t++)
189                                 sigio_reg_handler(i, irq_entry, t, regs,
190                                                   timetravel_handlers_only);
191                 }
192         }
193
194         if (!timetravel_handlers_only)
195                 free_irqs();
196 }
197
198 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
199 {
200         _sigio_handler(regs, irqs_suspended);
201 }
202
203 static struct irq_entry *get_irq_entry_by_fd(int fd)
204 {
205         struct irq_entry *walk;
206
207         lockdep_assert_held(&irq_lock);
208
209         list_for_each_entry(walk, &active_fds, list) {
210                 if (walk->fd == fd)
211                         return walk;
212         }
213
214         return NULL;
215 }
216
217 static void free_irq_entry(struct irq_entry *to_free, bool remove)
218 {
219         if (!to_free)
220                 return;
221
222         if (remove)
223                 os_del_epoll_fd(to_free->fd);
224         list_del(&to_free->list);
225         kfree(to_free);
226 }
227
228 static bool update_irq_entry(struct irq_entry *entry)
229 {
230         enum um_irq_type i;
231         int events = 0;
232
233         for (i = 0; i < NUM_IRQ_TYPES; i++)
234                 events |= entry->reg[i].events;
235
236         if (events) {
237                 /* will modify (instead of add) if needed */
238                 os_add_epoll_fd(events, entry->fd, entry);
239                 return true;
240         }
241
242         os_del_epoll_fd(entry->fd);
243         return false;
244 }
245
246 static void update_or_free_irq_entry(struct irq_entry *entry)
247 {
248         if (!update_irq_entry(entry))
249                 free_irq_entry(entry, false);
250 }
251
252 static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id,
253                        void (*timetravel_handler)(int, int, void *,
254                                                   struct time_travel_event *))
255 {
256         struct irq_entry *irq_entry;
257         int err, events = os_event_mask(type);
258         unsigned long flags;
259
260         err = os_set_fd_async(fd);
261         if (err < 0)
262                 goto out;
263
264         spin_lock_irqsave(&irq_lock, flags);
265         irq_entry = get_irq_entry_by_fd(fd);
266         if (irq_entry) {
267                 /* cannot register the same FD twice with the same type */
268                 if (WARN_ON(irq_entry->reg[type].events)) {
269                         err = -EALREADY;
270                         goto out_unlock;
271                 }
272
273                 /* temporarily disable to avoid IRQ-side locking */
274                 os_del_epoll_fd(fd);
275         } else {
276                 irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC);
277                 if (!irq_entry) {
278                         err = -ENOMEM;
279                         goto out_unlock;
280                 }
281                 irq_entry->fd = fd;
282                 list_add_tail(&irq_entry->list, &active_fds);
283                 maybe_sigio_broken(fd);
284         }
285
286         irq_entry->reg[type].id = dev_id;
287         irq_entry->reg[type].irq = irq;
288         irq_entry->reg[type].active = true;
289         irq_entry->reg[type].events = events;
290
291 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
292         if (um_irq_timetravel_handler_used()) {
293                 irq_entry->reg[type].timetravel_handler = timetravel_handler;
294                 irq_entry->reg[type].event.fn = irq_event_handler;
295         }
296 #endif
297
298         WARN_ON(!update_irq_entry(irq_entry));
299         spin_unlock_irqrestore(&irq_lock, flags);
300
301         return 0;
302 out_unlock:
303         spin_unlock_irqrestore(&irq_lock, flags);
304 out:
305         return err;
306 }
307
308 /*
309  * Remove the entry or entries for a specific FD, if you
310  * don't want to remove all the possible entries then use
311  * um_free_irq() or deactivate_fd() instead.
312  */
313 void free_irq_by_fd(int fd)
314 {
315         struct irq_entry *to_free;
316         unsigned long flags;
317
318         spin_lock_irqsave(&irq_lock, flags);
319         to_free = get_irq_entry_by_fd(fd);
320         free_irq_entry(to_free, true);
321         spin_unlock_irqrestore(&irq_lock, flags);
322 }
323 EXPORT_SYMBOL(free_irq_by_fd);
324
325 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
326 {
327         struct irq_entry *entry;
328         unsigned long flags;
329
330         spin_lock_irqsave(&irq_lock, flags);
331         list_for_each_entry(entry, &active_fds, list) {
332                 enum um_irq_type i;
333
334                 for (i = 0; i < NUM_IRQ_TYPES; i++) {
335                         struct irq_reg *reg = &entry->reg[i];
336
337                         if (!reg->events)
338                                 continue;
339                         if (reg->irq != irq)
340                                 continue;
341                         if (reg->id != dev)
342                                 continue;
343
344                         os_del_epoll_fd(entry->fd);
345                         reg->events = 0;
346                         update_or_free_irq_entry(entry);
347                         goto out;
348                 }
349         }
350 out:
351         spin_unlock_irqrestore(&irq_lock, flags);
352 }
353
354 void deactivate_fd(int fd, int irqnum)
355 {
356         struct irq_entry *entry;
357         unsigned long flags;
358         enum um_irq_type i;
359
360         os_del_epoll_fd(fd);
361
362         spin_lock_irqsave(&irq_lock, flags);
363         entry = get_irq_entry_by_fd(fd);
364         if (!entry)
365                 goto out;
366
367         for (i = 0; i < NUM_IRQ_TYPES; i++) {
368                 if (!entry->reg[i].events)
369                         continue;
370                 if (entry->reg[i].irq == irqnum)
371                         entry->reg[i].events = 0;
372         }
373
374         update_or_free_irq_entry(entry);
375 out:
376         spin_unlock_irqrestore(&irq_lock, flags);
377
378         ignore_sigio_fd(fd);
379 }
380 EXPORT_SYMBOL(deactivate_fd);
381
382 /*
383  * Called just before shutdown in order to provide a clean exec
384  * environment in case the system is rebooting.  No locking because
385  * that would cause a pointless shutdown hang if something hadn't
386  * released the lock.
387  */
388 int deactivate_all_fds(void)
389 {
390         struct irq_entry *entry;
391
392         /* Stop IO. The IRQ loop has no lock so this is our
393          * only way of making sure we are safe to dispose
394          * of all IRQ handlers
395          */
396         os_set_ioignore();
397
398         /* we can no longer call kfree() here so just deactivate */
399         list_for_each_entry(entry, &active_fds, list)
400                 os_del_epoll_fd(entry->fd);
401         os_close_epoll_fd();
402         return 0;
403 }
404
405 /*
406  * do_IRQ handles all normal device IRQs (the special
407  * SMP cross-CPU interrupts have their own specific
408  * handlers).
409  */
410 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
411 {
412         struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
413         irq_enter();
414         generic_handle_irq(irq);
415         irq_exit();
416         set_irq_regs(old_regs);
417         return 1;
418 }
419
420 void um_free_irq(int irq, void *dev)
421 {
422         if (WARN(irq < 0 || irq > UM_LAST_SIGNAL_IRQ,
423                  "freeing invalid irq %d", irq))
424                 return;
425
426         free_irq_by_irq_and_dev(irq, dev);
427         free_irq(irq, dev);
428         clear_bit(irq, irqs_allocated);
429 }
430 EXPORT_SYMBOL(um_free_irq);
431
432 static int
433 _um_request_irq(int irq, int fd, enum um_irq_type type,
434                 irq_handler_t handler, unsigned long irqflags,
435                 const char *devname, void *dev_id,
436                 void (*timetravel_handler)(int, int, void *,
437                                            struct time_travel_event *))
438 {
439         int err;
440
441         if (irq == UM_IRQ_ALLOC) {
442                 int i;
443
444                 for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) {
445                         if (!test_and_set_bit(i, irqs_allocated)) {
446                                 irq = i;
447                                 break;
448                         }
449                 }
450         }
451
452         if (irq < 0)
453                 return -ENOSPC;
454
455         if (fd != -1) {
456                 err = activate_fd(irq, fd, type, dev_id, timetravel_handler);
457                 if (err)
458                         goto error;
459         }
460
461         err = request_irq(irq, handler, irqflags, devname, dev_id);
462         if (err < 0)
463                 goto error;
464
465         return irq;
466 error:
467         clear_bit(irq, irqs_allocated);
468         return err;
469 }
470
471 int um_request_irq(int irq, int fd, enum um_irq_type type,
472                    irq_handler_t handler, unsigned long irqflags,
473                    const char *devname, void *dev_id)
474 {
475         return _um_request_irq(irq, fd, type, handler, irqflags,
476                                devname, dev_id, NULL);
477 }
478 EXPORT_SYMBOL(um_request_irq);
479
480 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
481 int um_request_irq_tt(int irq, int fd, enum um_irq_type type,
482                       irq_handler_t handler, unsigned long irqflags,
483                       const char *devname, void *dev_id,
484                       void (*timetravel_handler)(int, int, void *,
485                                                  struct time_travel_event *))
486 {
487         return _um_request_irq(irq, fd, type, handler, irqflags,
488                                devname, dev_id, timetravel_handler);
489 }
490 EXPORT_SYMBOL(um_request_irq_tt);
491
492 void sigio_run_timetravel_handlers(void)
493 {
494         _sigio_handler(NULL, true);
495 }
496 #endif
497
498 #ifdef CONFIG_PM_SLEEP
499 void um_irqs_suspend(void)
500 {
501         struct irq_entry *entry;
502         unsigned long flags;
503
504         irqs_suspended = true;
505
506         spin_lock_irqsave(&irq_lock, flags);
507         list_for_each_entry(entry, &active_fds, list) {
508                 enum um_irq_type t;
509                 bool clear = true;
510
511                 for (t = 0; t < NUM_IRQ_TYPES; t++) {
512                         if (!entry->reg[t].events)
513                                 continue;
514
515                         /*
516                          * For the SIGIO_WRITE_IRQ, which is used to handle the
517                          * SIGIO workaround thread, we need special handling:
518                          * enable wake for it itself, but below we tell it about
519                          * any FDs that should be suspended.
520                          */
521                         if (entry->reg[t].wakeup ||
522                             entry->reg[t].irq == SIGIO_WRITE_IRQ
523 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
524                             || entry->reg[t].timetravel_handler
525 #endif
526                             ) {
527                                 clear = false;
528                                 break;
529                         }
530                 }
531
532                 if (clear) {
533                         entry->suspended = true;
534                         os_clear_fd_async(entry->fd);
535                         entry->sigio_workaround =
536                                 !__ignore_sigio_fd(entry->fd);
537                 }
538         }
539         spin_unlock_irqrestore(&irq_lock, flags);
540 }
541
542 void um_irqs_resume(void)
543 {
544         struct irq_entry *entry;
545         unsigned long flags;
546
547
548         local_irq_save(flags);
549 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
550         /*
551          * We don't need to lock anything here since we're in resume
552          * and nothing else is running, but have disabled IRQs so we
553          * don't try anything else with the interrupt list from there.
554          */
555         list_for_each_entry(entry, &active_fds, list) {
556                 enum um_irq_type t;
557
558                 for (t = 0; t < NUM_IRQ_TYPES; t++) {
559                         struct irq_reg *reg = &entry->reg[t];
560
561                         if (reg->pending_on_resume) {
562                                 irq_enter();
563                                 generic_handle_irq(reg->irq);
564                                 irq_exit();
565                                 reg->pending_on_resume = false;
566                         }
567                 }
568         }
569 #endif
570
571         spin_lock(&irq_lock);
572         list_for_each_entry(entry, &active_fds, list) {
573                 if (entry->suspended) {
574                         int err = os_set_fd_async(entry->fd);
575
576                         WARN(err < 0, "os_set_fd_async returned %d\n", err);
577                         entry->suspended = false;
578
579                         if (entry->sigio_workaround) {
580                                 err = __add_sigio_fd(entry->fd);
581                                 WARN(err < 0, "add_sigio_returned %d\n", err);
582                         }
583                 }
584         }
585         spin_unlock_irqrestore(&irq_lock, flags);
586
587         irqs_suspended = false;
588         send_sigio_to_self();
589 }
590
591 static int normal_irq_set_wake(struct irq_data *d, unsigned int on)
592 {
593         struct irq_entry *entry;
594         unsigned long flags;
595
596         spin_lock_irqsave(&irq_lock, flags);
597         list_for_each_entry(entry, &active_fds, list) {
598                 enum um_irq_type t;
599
600                 for (t = 0; t < NUM_IRQ_TYPES; t++) {
601                         if (!entry->reg[t].events)
602                                 continue;
603
604                         if (entry->reg[t].irq != d->irq)
605                                 continue;
606                         entry->reg[t].wakeup = on;
607                         goto unlock;
608                 }
609         }
610 unlock:
611         spin_unlock_irqrestore(&irq_lock, flags);
612         return 0;
613 }
614 #else
615 #define normal_irq_set_wake NULL
616 #endif
617
618 /*
619  * irq_chip must define at least enable/disable and ack when
620  * the edge handler is used.
621  */
622 static void dummy(struct irq_data *d)
623 {
624 }
625
626 /* This is used for everything other than the timer. */
627 static struct irq_chip normal_irq_type = {
628         .name = "SIGIO",
629         .irq_disable = dummy,
630         .irq_enable = dummy,
631         .irq_ack = dummy,
632         .irq_mask = dummy,
633         .irq_unmask = dummy,
634         .irq_set_wake = normal_irq_set_wake,
635 };
636
637 static struct irq_chip alarm_irq_type = {
638         .name = "SIGALRM",
639         .irq_disable = dummy,
640         .irq_enable = dummy,
641         .irq_ack = dummy,
642         .irq_mask = dummy,
643         .irq_unmask = dummy,
644 };
645
646 void __init init_IRQ(void)
647 {
648         int i;
649
650         irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq);
651
652         for (i = 1; i < UM_LAST_SIGNAL_IRQ; i++)
653                 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
654         /* Initialize EPOLL Loop */
655         os_setup_epoll();
656 }
657
658 /*
659  * IRQ stack entry and exit:
660  *
661  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
662  * and switch over to the IRQ stack after some preparation.  We use
663  * sigaltstack to receive signals on a separate stack from the start.
664  * These two functions make sure the rest of the kernel won't be too
665  * upset by being on a different stack.  The IRQ stack has a
666  * thread_info structure at the bottom so that current et al continue
667  * to work.
668  *
669  * to_irq_stack copies the current task's thread_info to the IRQ stack
670  * thread_info and sets the tasks's stack to point to the IRQ stack.
671  *
672  * from_irq_stack copies the thread_info struct back (flags may have
673  * been modified) and resets the task's stack pointer.
674  *
675  * Tricky bits -
676  *
677  * What happens when two signals race each other?  UML doesn't block
678  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
679  * could arrive while a previous one is still setting up the
680  * thread_info.
681  *
682  * There are three cases -
683  *     The first interrupt on the stack - sets up the thread_info and
684  * handles the interrupt
685  *     A nested interrupt interrupting the copying of the thread_info -
686  * can't handle the interrupt, as the stack is in an unknown state
687  *     A nested interrupt not interrupting the copying of the
688  * thread_info - doesn't do any setup, just handles the interrupt
689  *
690  * The first job is to figure out whether we interrupted stack setup.
691  * This is done by xchging the signal mask with thread_info->pending.
692  * If the value that comes back is zero, then there is no setup in
693  * progress, and the interrupt can be handled.  If the value is
694  * non-zero, then there is stack setup in progress.  In order to have
695  * the interrupt handled, we leave our signal in the mask, and it will
696  * be handled by the upper handler after it has set up the stack.
697  *
698  * Next is to figure out whether we are the outer handler or a nested
699  * one.  As part of setting up the stack, thread_info->real_thread is
700  * set to non-NULL (and is reset to NULL on exit).  This is the
701  * nesting indicator.  If it is non-NULL, then the stack is already
702  * set up and the handler can run.
703  */
704
705 static unsigned long pending_mask;
706
707 unsigned long to_irq_stack(unsigned long *mask_out)
708 {
709         struct thread_info *ti;
710         unsigned long mask, old;
711         int nested;
712
713         mask = xchg(&pending_mask, *mask_out);
714         if (mask != 0) {
715                 /*
716                  * If any interrupts come in at this point, we want to
717                  * make sure that their bits aren't lost by our
718                  * putting our bit in.  So, this loop accumulates bits
719                  * until xchg returns the same value that we put in.
720                  * When that happens, there were no new interrupts,
721                  * and pending_mask contains a bit for each interrupt
722                  * that came in.
723                  */
724                 old = *mask_out;
725                 do {
726                         old |= mask;
727                         mask = xchg(&pending_mask, old);
728                 } while (mask != old);
729                 return 1;
730         }
731
732         ti = current_thread_info();
733         nested = (ti->real_thread != NULL);
734         if (!nested) {
735                 struct task_struct *task;
736                 struct thread_info *tti;
737
738                 task = cpu_tasks[ti->cpu].task;
739                 tti = task_thread_info(task);
740
741                 *ti = *tti;
742                 ti->real_thread = tti;
743                 task->stack = ti;
744         }
745
746         mask = xchg(&pending_mask, 0);
747         *mask_out |= mask | nested;
748         return 0;
749 }
750
751 unsigned long from_irq_stack(int nested)
752 {
753         struct thread_info *ti, *to;
754         unsigned long mask;
755
756         ti = current_thread_info();
757
758         pending_mask = 1;
759
760         to = ti->real_thread;
761         current->stack = to;
762         ti->real_thread = NULL;
763         *to = *ti;
764
765         mask = xchg(&pending_mask, 0);
766         return mask & ~1;
767 }
768