GNU Linux-libre 4.14.332-gnu1
[releases.git] / arch / tile / kernel / kgdb.c
1 /*
2  * Copyright 2013 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * TILE-Gx KGDB support.
15  */
16
17 #include <linux/ptrace.h>
18 #include <linux/kgdb.h>
19 #include <linux/kdebug.h>
20 #include <linux/uaccess.h>
21 #include <linux/module.h>
22 #include <linux/sched/task_stack.h>
23
24 #include <asm/cacheflush.h>
25
26 static tile_bundle_bits singlestep_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;
27 static unsigned long stepped_addr;
28 static tile_bundle_bits stepped_instr;
29
30 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
31         { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0])},
32         { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1])},
33         { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2])},
34         { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3])},
35         { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4])},
36         { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5])},
37         { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6])},
38         { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7])},
39         { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8])},
40         { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9])},
41         { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10])},
42         { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11])},
43         { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12])},
44         { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13])},
45         { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14])},
46         { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15])},
47         { "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16])},
48         { "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17])},
49         { "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18])},
50         { "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19])},
51         { "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20])},
52         { "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21])},
53         { "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22])},
54         { "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23])},
55         { "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24])},
56         { "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25])},
57         { "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26])},
58         { "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27])},
59         { "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28])},
60         { "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29])},
61         { "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30])},
62         { "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31])},
63         { "r32", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[32])},
64         { "r33", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[33])},
65         { "r34", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[34])},
66         { "r35", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[35])},
67         { "r36", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[36])},
68         { "r37", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[37])},
69         { "r38", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[38])},
70         { "r39", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[39])},
71         { "r40", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[40])},
72         { "r41", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[41])},
73         { "r42", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[42])},
74         { "r43", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[43])},
75         { "r44", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[44])},
76         { "r45", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[45])},
77         { "r46", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[46])},
78         { "r47", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[47])},
79         { "r48", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[48])},
80         { "r49", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[49])},
81         { "r50", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[50])},
82         { "r51", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[51])},
83         { "r52", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[52])},
84         { "tp", GDB_SIZEOF_REG, offsetof(struct pt_regs, tp)},
85         { "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, sp)},
86         { "lr", GDB_SIZEOF_REG, offsetof(struct pt_regs, lr)},
87         { "sn", GDB_SIZEOF_REG, -1},
88         { "idn0", GDB_SIZEOF_REG, -1},
89         { "idn1", GDB_SIZEOF_REG, -1},
90         { "udn0", GDB_SIZEOF_REG, -1},
91         { "udn1", GDB_SIZEOF_REG, -1},
92         { "udn2", GDB_SIZEOF_REG, -1},
93         { "udn3", GDB_SIZEOF_REG, -1},
94         { "zero", GDB_SIZEOF_REG, -1},
95         { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc)},
96         { "faultnum", GDB_SIZEOF_REG, offsetof(struct pt_regs, faultnum)},
97 };
98
99 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
100 {
101         if (regno >= DBG_MAX_REG_NUM || regno < 0)
102                 return NULL;
103
104         if (dbg_reg_def[regno].offset != -1)
105                 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
106                        dbg_reg_def[regno].size);
107         else
108                 memset(mem, 0, dbg_reg_def[regno].size);
109         return dbg_reg_def[regno].name;
110 }
111
112 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
113 {
114         if (regno >= DBG_MAX_REG_NUM || regno < 0)
115                 return -EINVAL;
116
117         if (dbg_reg_def[regno].offset != -1)
118                 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
119                        dbg_reg_def[regno].size);
120         return 0;
121 }
122
123 /*
124  * Similar to pt_regs_to_gdb_regs() except that process is sleeping and so
125  * we may not be able to get all the info.
126  */
127 void
128 sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task)
129 {
130         struct pt_regs *thread_regs;
131         const int NGPRS = TREG_LAST_GPR + 1;
132
133         if (task == NULL)
134                 return;
135
136         thread_regs = task_pt_regs(task);
137         memcpy(gdb_regs, thread_regs, NGPRS * sizeof(unsigned long));
138         memset(&gdb_regs[NGPRS], 0,
139                (TILEGX_PC_REGNUM - NGPRS) * sizeof(unsigned long));
140         gdb_regs[TILEGX_PC_REGNUM] = thread_regs->pc;
141         gdb_regs[TILEGX_FAULTNUM_REGNUM] = thread_regs->faultnum;
142 }
143
144 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
145 {
146         regs->pc = pc;
147 }
148
149 static void kgdb_call_nmi_hook(void *ignored)
150 {
151         kgdb_nmicallback(raw_smp_processor_id(), NULL);
152 }
153
154 void kgdb_roundup_cpus(unsigned long flags)
155 {
156         local_irq_enable();
157         smp_call_function(kgdb_call_nmi_hook, NULL, 0);
158         local_irq_disable();
159 }
160
161 /*
162  * Convert a kernel address to the writable kernel text mapping.
163  */
164 static unsigned long writable_address(unsigned long addr)
165 {
166         unsigned long ret = 0;
167
168         if (core_kernel_text(addr))
169                 ret = ktext_writable_addr(addr);
170         else if (is_module_text_address(addr))
171                 ret = addr;
172         else
173                 pr_err("Unknown virtual address 0x%lx\n", addr);
174
175         return ret;
176 }
177
178 /*
179  * Calculate the new address for after a step.
180  */
181 static unsigned long get_step_address(struct pt_regs *regs)
182 {
183         int src_reg;
184         int jump_off;
185         int br_off;
186         unsigned long addr;
187         unsigned int opcode;
188         tile_bundle_bits bundle;
189
190         /* Move to the next instruction by default. */
191         addr = regs->pc + TILEGX_BUNDLE_SIZE_IN_BYTES;
192         bundle = *(unsigned long *)instruction_pointer(regs);
193
194         /* 0: X mode, Otherwise: Y mode. */
195         if (bundle & TILEGX_BUNDLE_MODE_MASK) {
196                 if (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1 &&
197                     get_RRROpcodeExtension_Y1(bundle) ==
198                     UNARY_RRR_1_OPCODE_Y1) {
199                         opcode = get_UnaryOpcodeExtension_Y1(bundle);
200
201                         switch (opcode) {
202                         case JALR_UNARY_OPCODE_Y1:
203                         case JALRP_UNARY_OPCODE_Y1:
204                         case JR_UNARY_OPCODE_Y1:
205                         case JRP_UNARY_OPCODE_Y1:
206                                 src_reg = get_SrcA_Y1(bundle);
207                                 dbg_get_reg(src_reg, &addr, regs);
208                                 break;
209                         }
210                 }
211         } else if (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1) {
212                 if (get_RRROpcodeExtension_X1(bundle) ==
213                     UNARY_RRR_0_OPCODE_X1) {
214                         opcode = get_UnaryOpcodeExtension_X1(bundle);
215
216                         switch (opcode) {
217                         case JALR_UNARY_OPCODE_X1:
218                         case JALRP_UNARY_OPCODE_X1:
219                         case JR_UNARY_OPCODE_X1:
220                         case JRP_UNARY_OPCODE_X1:
221                                 src_reg = get_SrcA_X1(bundle);
222                                 dbg_get_reg(src_reg, &addr, regs);
223                                 break;
224                         }
225                 }
226         } else if (get_Opcode_X1(bundle) == JUMP_OPCODE_X1) {
227                 opcode = get_JumpOpcodeExtension_X1(bundle);
228
229                 switch (opcode) {
230                 case JAL_JUMP_OPCODE_X1:
231                 case J_JUMP_OPCODE_X1:
232                         jump_off = sign_extend(get_JumpOff_X1(bundle), 27);
233                         addr = regs->pc +
234                                 (jump_off << TILEGX_LOG2_BUNDLE_SIZE_IN_BYTES);
235                         break;
236                 }
237         } else if (get_Opcode_X1(bundle) == BRANCH_OPCODE_X1) {
238                 br_off = 0;
239                 opcode = get_BrType_X1(bundle);
240
241                 switch (opcode) {
242                 case BEQZT_BRANCH_OPCODE_X1:
243                 case BEQZ_BRANCH_OPCODE_X1:
244                         if (get_SrcA_X1(bundle) == 0)
245                                 br_off = get_BrOff_X1(bundle);
246                         break;
247                 case BGEZT_BRANCH_OPCODE_X1:
248                 case BGEZ_BRANCH_OPCODE_X1:
249                         if (get_SrcA_X1(bundle) >= 0)
250                                 br_off = get_BrOff_X1(bundle);
251                         break;
252                 case BGTZT_BRANCH_OPCODE_X1:
253                 case BGTZ_BRANCH_OPCODE_X1:
254                         if (get_SrcA_X1(bundle) > 0)
255                                 br_off = get_BrOff_X1(bundle);
256                         break;
257                 case BLBCT_BRANCH_OPCODE_X1:
258                 case BLBC_BRANCH_OPCODE_X1:
259                         if (!(get_SrcA_X1(bundle) & 1))
260                                 br_off = get_BrOff_X1(bundle);
261                         break;
262                 case BLBST_BRANCH_OPCODE_X1:
263                 case BLBS_BRANCH_OPCODE_X1:
264                         if (get_SrcA_X1(bundle) & 1)
265                                 br_off = get_BrOff_X1(bundle);
266                         break;
267                 case BLEZT_BRANCH_OPCODE_X1:
268                 case BLEZ_BRANCH_OPCODE_X1:
269                         if (get_SrcA_X1(bundle) <= 0)
270                                 br_off = get_BrOff_X1(bundle);
271                         break;
272                 case BLTZT_BRANCH_OPCODE_X1:
273                 case BLTZ_BRANCH_OPCODE_X1:
274                         if (get_SrcA_X1(bundle) < 0)
275                                 br_off = get_BrOff_X1(bundle);
276                         break;
277                 case BNEZT_BRANCH_OPCODE_X1:
278                 case BNEZ_BRANCH_OPCODE_X1:
279                         if (get_SrcA_X1(bundle) != 0)
280                                 br_off = get_BrOff_X1(bundle);
281                         break;
282                 }
283
284                 if (br_off != 0) {
285                         br_off = sign_extend(br_off, 17);
286                         addr = regs->pc +
287                                 (br_off << TILEGX_LOG2_BUNDLE_SIZE_IN_BYTES);
288                 }
289         }
290
291         return addr;
292 }
293
294 /*
295  * Replace the next instruction after the current instruction with a
296  * breakpoint instruction.
297  */
298 static void do_single_step(struct pt_regs *regs)
299 {
300         unsigned long addr_wr;
301
302         /* Determine where the target instruction will send us to. */
303         stepped_addr = get_step_address(regs);
304         probe_kernel_read((char *)&stepped_instr, (char *)stepped_addr,
305                           BREAK_INSTR_SIZE);
306
307         addr_wr = writable_address(stepped_addr);
308         probe_kernel_write((char *)addr_wr, (char *)&singlestep_insn,
309                            BREAK_INSTR_SIZE);
310         smp_wmb();
311         flush_icache_range(stepped_addr, stepped_addr + BREAK_INSTR_SIZE);
312 }
313
314 static void undo_single_step(struct pt_regs *regs)
315 {
316         unsigned long addr_wr;
317
318         if (stepped_instr == 0)
319                 return;
320
321         addr_wr = writable_address(stepped_addr);
322         probe_kernel_write((char *)addr_wr, (char *)&stepped_instr,
323                            BREAK_INSTR_SIZE);
324         stepped_instr = 0;
325         smp_wmb();
326         flush_icache_range(stepped_addr, stepped_addr + BREAK_INSTR_SIZE);
327 }
328
329 /*
330  * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
331  * then try to fall into the debugger.
332  */
333 static int
334 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
335 {
336         int ret;
337         unsigned long flags;
338         struct die_args *args = (struct die_args *)ptr;
339         struct pt_regs *regs = args->regs;
340
341 #ifdef CONFIG_KPROBES
342         /*
343          * Return immediately if the kprobes fault notifier has set
344          * DIE_PAGE_FAULT.
345          */
346         if (cmd == DIE_PAGE_FAULT)
347                 return NOTIFY_DONE;
348 #endif /* CONFIG_KPROBES */
349
350         switch (cmd) {
351         case DIE_BREAK:
352         case DIE_COMPILED_BPT:
353                 break;
354         case DIE_SSTEPBP:
355                 local_irq_save(flags);
356                 kgdb_handle_exception(0, SIGTRAP, 0, regs);
357                 local_irq_restore(flags);
358                 return NOTIFY_STOP;
359         default:
360                 /* Userspace events, ignore. */
361                 if (user_mode(regs))
362                         return NOTIFY_DONE;
363         }
364
365         local_irq_save(flags);
366         ret = kgdb_handle_exception(args->trapnr, args->signr, args->err, regs);
367         local_irq_restore(flags);
368         if (ret)
369                 return NOTIFY_DONE;
370
371         return NOTIFY_STOP;
372 }
373
374 static struct notifier_block kgdb_notifier = {
375         .notifier_call = kgdb_notify,
376 };
377
378 /*
379  * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
380  * @vector: The error vector of the exception that happened.
381  * @signo: The signal number of the exception that happened.
382  * @err_code: The error code of the exception that happened.
383  * @remcom_in_buffer: The buffer of the packet we have read.
384  * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
385  * @regs: The &struct pt_regs of the current process.
386  *
387  * This function MUST handle the 'c' and 's' command packets,
388  * as well packets to set / remove a hardware breakpoint, if used.
389  * If there are additional packets which the hardware needs to handle,
390  * they are handled here. The code should return -1 if it wants to
391  * process more packets, and a %0 or %1 if it wants to exit from the
392  * kgdb callback.
393  */
394 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
395                                char *remcom_in_buffer, char *remcom_out_buffer,
396                                struct pt_regs *regs)
397 {
398         char *ptr;
399         unsigned long address;
400
401         /* Undo any stepping we may have done. */
402         undo_single_step(regs);
403
404         switch (remcom_in_buffer[0]) {
405         case 'c':
406         case 's':
407         case 'D':
408         case 'k':
409                 /*
410                  * Try to read optional parameter, pc unchanged if no parm.
411                  * If this was a compiled-in breakpoint, we need to move
412                  * to the next instruction or we will just breakpoint
413                  * over and over again.
414                  */
415                 ptr = &remcom_in_buffer[1];
416                 if (kgdb_hex2long(&ptr, &address))
417                         regs->pc = address;
418                 else if (*(unsigned long *)regs->pc == compiled_bpt)
419                         regs->pc += BREAK_INSTR_SIZE;
420
421                 if (remcom_in_buffer[0] == 's') {
422                         do_single_step(regs);
423                         kgdb_single_step = 1;
424                         atomic_set(&kgdb_cpu_doing_single_step,
425                                    raw_smp_processor_id());
426                 } else
427                         atomic_set(&kgdb_cpu_doing_single_step, -1);
428
429                 return 0;
430         }
431
432         return -1; /* this means that we do not want to exit from the handler */
433 }
434
435 struct kgdb_arch arch_kgdb_ops;
436
437 /*
438  * kgdb_arch_init - Perform any architecture specific initialization.
439  *
440  * This function will handle the initialization of any architecture
441  * specific callbacks.
442  */
443 int kgdb_arch_init(void)
444 {
445         tile_bundle_bits bundle = TILEGX_BPT_BUNDLE;
446
447         memcpy(arch_kgdb_ops.gdb_bpt_instr, &bundle, BREAK_INSTR_SIZE);
448         return register_die_notifier(&kgdb_notifier);
449 }
450
451 /*
452  * kgdb_arch_exit - Perform any architecture specific uninitialization.
453  *
454  * This function will handle the uninitialization of any architecture
455  * specific callbacks, for dynamic registration and unregistration.
456  */
457 void kgdb_arch_exit(void)
458 {
459         unregister_die_notifier(&kgdb_notifier);
460 }
461
462 int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
463 {
464         int err;
465         unsigned long addr_wr = writable_address(bpt->bpt_addr);
466
467         if (addr_wr == 0)
468                 return -1;
469
470         err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
471                                 BREAK_INSTR_SIZE);
472         if (err)
473                 return err;
474
475         err = probe_kernel_write((char *)addr_wr, arch_kgdb_ops.gdb_bpt_instr,
476                                  BREAK_INSTR_SIZE);
477         smp_wmb();
478         flush_icache_range((unsigned long)bpt->bpt_addr,
479                            (unsigned long)bpt->bpt_addr + BREAK_INSTR_SIZE);
480         return err;
481 }
482
483 int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
484 {
485         int err;
486         unsigned long addr_wr = writable_address(bpt->bpt_addr);
487
488         if (addr_wr == 0)
489                 return -1;
490
491         err = probe_kernel_write((char *)addr_wr, (char *)bpt->saved_instr,
492                                  BREAK_INSTR_SIZE);
493         smp_wmb();
494         flush_icache_range((unsigned long)bpt->bpt_addr,
495                            (unsigned long)bpt->bpt_addr + BREAK_INSTR_SIZE);
496         return err;
497 }