GNU Linux-libre 4.14.254-gnu1
[releases.git] / arch / sparc / mm / srmmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/bootmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/msi.h>
41 #include <asm/smp.h>
42 #include <asm/io.h>
43
44 /* Now the cpu specific definitions. */
45 #include <asm/turbosparc.h>
46 #include <asm/tsunami.h>
47 #include <asm/viking.h>
48 #include <asm/swift.h>
49 #include <asm/leon.h>
50 #include <asm/mxcc.h>
51 #include <asm/ross.h>
52
53 #include "mm_32.h"
54
55 enum mbus_module srmmu_modtype;
56 static unsigned int hwbug_bitmask;
57 int vac_cache_size;
58 EXPORT_SYMBOL(vac_cache_size);
59 int vac_line_size;
60
61 extern struct resource sparc_iomap;
62
63 extern unsigned long last_valid_pfn;
64
65 static pgd_t *srmmu_swapper_pg_dir;
66
67 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
68 EXPORT_SYMBOL(sparc32_cachetlb_ops);
69
70 #ifdef CONFIG_SMP
71 const struct sparc32_cachetlb_ops *local_ops;
72
73 #define FLUSH_BEGIN(mm)
74 #define FLUSH_END
75 #else
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77 #define FLUSH_END       }
78 #endif
79
80 int flush_page_for_dma_global = 1;
81
82 char *srmmu_name;
83
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
86
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90 static int is_hypersparc;
91
92 static int srmmu_cache_pagetables;
93
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size;
96 static unsigned long srmmu_nocache_end;
97
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104 void *srmmu_nocache_pool;
105 static struct bit_map srmmu_nocache_map;
106
107 static inline int srmmu_pmd_none(pmd_t pmd)
108 { return !(pmd_val(pmd) & 0xFFFFFFF); }
109
110 /* XXX should we hyper_flush_whole_icache here - Anton */
111 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
112 {
113         pte_t pte;
114
115         pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
116         set_pte((pte_t *)ctxp, pte);
117 }
118
119 void pmd_set(pmd_t *pmdp, pte_t *ptep)
120 {
121         unsigned long ptp;      /* Physical address, shifted right by 4 */
122         int i;
123
124         ptp = __nocache_pa(ptep) >> 4;
125         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
126                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
127                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
128         }
129 }
130
131 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
132 {
133         unsigned long ptp;      /* Physical address, shifted right by 4 */
134         int i;
135
136         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
137         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
138                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
139                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
140         }
141 }
142
143 /* Find an entry in the third-level page table.. */
144 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
145 {
146         void *pte;
147
148         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
149         return (pte_t *) pte +
150             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
151 }
152
153 /*
154  * size: bytes to allocate in the nocache area.
155  * align: bytes, number to align at.
156  * Returns the virtual address of the allocated area.
157  */
158 static void *__srmmu_get_nocache(int size, int align)
159 {
160         int offset;
161         unsigned long addr;
162
163         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
164                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
165                        size);
166                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
167         }
168         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
169                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
170                        size);
171                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
172         }
173         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
174
175         offset = bit_map_string_get(&srmmu_nocache_map,
176                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
177                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
178         if (offset == -1) {
179                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
180                        size, (int) srmmu_nocache_size,
181                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
182                 return NULL;
183         }
184
185         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
186         return (void *)addr;
187 }
188
189 void *srmmu_get_nocache(int size, int align)
190 {
191         void *tmp;
192
193         tmp = __srmmu_get_nocache(size, align);
194
195         if (tmp)
196                 memset(tmp, 0, size);
197
198         return tmp;
199 }
200
201 void srmmu_free_nocache(void *addr, int size)
202 {
203         unsigned long vaddr;
204         int offset;
205
206         vaddr = (unsigned long)addr;
207         if (vaddr < SRMMU_NOCACHE_VADDR) {
208                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
209                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
210                 BUG();
211         }
212         if (vaddr + size > srmmu_nocache_end) {
213                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
214                     vaddr, srmmu_nocache_end);
215                 BUG();
216         }
217         if (!is_power_of_2(size)) {
218                 printk("Size 0x%x is not a power of 2\n", size);
219                 BUG();
220         }
221         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
222                 printk("Size 0x%x is too small\n", size);
223                 BUG();
224         }
225         if (vaddr & (size - 1)) {
226                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
227                 BUG();
228         }
229
230         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
231         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
232
233         bit_map_clear(&srmmu_nocache_map, offset, size);
234 }
235
236 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
237                                                  unsigned long end);
238
239 /* Return how much physical memory we have.  */
240 static unsigned long __init probe_memory(void)
241 {
242         unsigned long total = 0;
243         int i;
244
245         for (i = 0; sp_banks[i].num_bytes; i++)
246                 total += sp_banks[i].num_bytes;
247
248         return total;
249 }
250
251 /*
252  * Reserve nocache dynamically proportionally to the amount of
253  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
254  */
255 static void __init srmmu_nocache_calcsize(void)
256 {
257         unsigned long sysmemavail = probe_memory() / 1024;
258         int srmmu_nocache_npages;
259
260         srmmu_nocache_npages =
261                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
262
263  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
264         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
265         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
266                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
267
268         /* anything above 1280 blows up */
269         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
270                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
271
272         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
273         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
274 }
275
276 static void __init srmmu_nocache_init(void)
277 {
278         void *srmmu_nocache_bitmap;
279         unsigned int bitmap_bits;
280         pgd_t *pgd;
281         pmd_t *pmd;
282         pte_t *pte;
283         unsigned long paddr, vaddr;
284         unsigned long pteval;
285
286         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
287
288         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
289                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
290         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
291
292         srmmu_nocache_bitmap =
293                 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
294                                 SMP_CACHE_BYTES, 0UL);
295         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
296
297         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
298         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
299         init_mm.pgd = srmmu_swapper_pg_dir;
300
301         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
302
303         paddr = __pa((unsigned long)srmmu_nocache_pool);
304         vaddr = SRMMU_NOCACHE_VADDR;
305
306         while (vaddr < srmmu_nocache_end) {
307                 pgd = pgd_offset_k(vaddr);
308                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
309                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310
311                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312
313                 if (srmmu_cache_pagetables)
314                         pteval |= SRMMU_CACHE;
315
316                 set_pte(__nocache_fix(pte), __pte(pteval));
317
318                 vaddr += PAGE_SIZE;
319                 paddr += PAGE_SIZE;
320         }
321
322         flush_cache_all();
323         flush_tlb_all();
324 }
325
326 pgd_t *get_pgd_fast(void)
327 {
328         pgd_t *pgd = NULL;
329
330         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331         if (pgd) {
332                 pgd_t *init = pgd_offset_k(0);
333                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336         }
337
338         return pgd;
339 }
340
341 /*
342  * Hardware needs alignment to 256 only, but we align to whole page size
343  * to reduce fragmentation problems due to the buddy principle.
344  * XXX Provide actual fragmentation statistics in /proc.
345  *
346  * Alignments up to the page size are the same for physical and virtual
347  * addresses of the nocache area.
348  */
349 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
350 {
351         unsigned long pte;
352         struct page *page;
353
354         if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
355                 return NULL;
356         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
357         if (!pgtable_page_ctor(page)) {
358                 __free_page(page);
359                 return NULL;
360         }
361         return page;
362 }
363
364 void pte_free(struct mm_struct *mm, pgtable_t pte)
365 {
366         unsigned long p;
367
368         pgtable_page_dtor(pte);
369         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
370         if (p == 0)
371                 BUG();
372         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
373
374         /* free non cached virtual address*/
375         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
376 }
377
378 /* context handling - a dynamically sized pool is used */
379 #define NO_CONTEXT      -1
380
381 struct ctx_list {
382         struct ctx_list *next;
383         struct ctx_list *prev;
384         unsigned int ctx_number;
385         struct mm_struct *ctx_mm;
386 };
387
388 static struct ctx_list *ctx_list_pool;
389 static struct ctx_list ctx_free;
390 static struct ctx_list ctx_used;
391
392 /* At boot time we determine the number of contexts */
393 static int num_contexts;
394
395 static inline void remove_from_ctx_list(struct ctx_list *entry)
396 {
397         entry->next->prev = entry->prev;
398         entry->prev->next = entry->next;
399 }
400
401 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
402 {
403         entry->next = head;
404         (entry->prev = head->prev)->next = entry;
405         head->prev = entry;
406 }
407 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
408 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
409
410
411 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
412 {
413         struct ctx_list *ctxp;
414
415         ctxp = ctx_free.next;
416         if (ctxp != &ctx_free) {
417                 remove_from_ctx_list(ctxp);
418                 add_to_used_ctxlist(ctxp);
419                 mm->context = ctxp->ctx_number;
420                 ctxp->ctx_mm = mm;
421                 return;
422         }
423         ctxp = ctx_used.next;
424         if (ctxp->ctx_mm == old_mm)
425                 ctxp = ctxp->next;
426         if (ctxp == &ctx_used)
427                 panic("out of mmu contexts");
428         flush_cache_mm(ctxp->ctx_mm);
429         flush_tlb_mm(ctxp->ctx_mm);
430         remove_from_ctx_list(ctxp);
431         add_to_used_ctxlist(ctxp);
432         ctxp->ctx_mm->context = NO_CONTEXT;
433         ctxp->ctx_mm = mm;
434         mm->context = ctxp->ctx_number;
435 }
436
437 static inline void free_context(int context)
438 {
439         struct ctx_list *ctx_old;
440
441         ctx_old = ctx_list_pool + context;
442         remove_from_ctx_list(ctx_old);
443         add_to_free_ctxlist(ctx_old);
444 }
445
446 static void __init sparc_context_init(int numctx)
447 {
448         int ctx;
449         unsigned long size;
450
451         size = numctx * sizeof(struct ctx_list);
452         ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
453
454         for (ctx = 0; ctx < numctx; ctx++) {
455                 struct ctx_list *clist;
456
457                 clist = (ctx_list_pool + ctx);
458                 clist->ctx_number = ctx;
459                 clist->ctx_mm = NULL;
460         }
461         ctx_free.next = ctx_free.prev = &ctx_free;
462         ctx_used.next = ctx_used.prev = &ctx_used;
463         for (ctx = 0; ctx < numctx; ctx++)
464                 add_to_free_ctxlist(ctx_list_pool + ctx);
465 }
466
467 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
468                struct task_struct *tsk)
469 {
470         unsigned long flags;
471
472         if (mm->context == NO_CONTEXT) {
473                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
474                 alloc_context(old_mm, mm);
475                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
476                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
477         }
478
479         if (sparc_cpu_model == sparc_leon)
480                 leon_switch_mm();
481
482         if (is_hypersparc)
483                 hyper_flush_whole_icache();
484
485         srmmu_set_context(mm->context);
486 }
487
488 /* Low level IO area allocation on the SRMMU. */
489 static inline void srmmu_mapioaddr(unsigned long physaddr,
490                                    unsigned long virt_addr, int bus_type)
491 {
492         pgd_t *pgdp;
493         pmd_t *pmdp;
494         pte_t *ptep;
495         unsigned long tmp;
496
497         physaddr &= PAGE_MASK;
498         pgdp = pgd_offset_k(virt_addr);
499         pmdp = pmd_offset(pgdp, virt_addr);
500         ptep = pte_offset_kernel(pmdp, virt_addr);
501         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
502
503         /* I need to test whether this is consistent over all
504          * sun4m's.  The bus_type represents the upper 4 bits of
505          * 36-bit physical address on the I/O space lines...
506          */
507         tmp |= (bus_type << 28);
508         tmp |= SRMMU_PRIV;
509         __flush_page_to_ram(virt_addr);
510         set_pte(ptep, __pte(tmp));
511 }
512
513 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
514                       unsigned long xva, unsigned int len)
515 {
516         while (len != 0) {
517                 len -= PAGE_SIZE;
518                 srmmu_mapioaddr(xpa, xva, bus);
519                 xva += PAGE_SIZE;
520                 xpa += PAGE_SIZE;
521         }
522         flush_tlb_all();
523 }
524
525 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
526 {
527         pgd_t *pgdp;
528         pmd_t *pmdp;
529         pte_t *ptep;
530
531         pgdp = pgd_offset_k(virt_addr);
532         pmdp = pmd_offset(pgdp, virt_addr);
533         ptep = pte_offset_kernel(pmdp, virt_addr);
534
535         /* No need to flush uncacheable page. */
536         __pte_clear(ptep);
537 }
538
539 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
540 {
541         while (len != 0) {
542                 len -= PAGE_SIZE;
543                 srmmu_unmapioaddr(virt_addr);
544                 virt_addr += PAGE_SIZE;
545         }
546         flush_tlb_all();
547 }
548
549 /* tsunami.S */
550 extern void tsunami_flush_cache_all(void);
551 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
552 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
554 extern void tsunami_flush_page_to_ram(unsigned long page);
555 extern void tsunami_flush_page_for_dma(unsigned long page);
556 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
557 extern void tsunami_flush_tlb_all(void);
558 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
559 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
560 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
561 extern void tsunami_setup_blockops(void);
562
563 /* swift.S */
564 extern void swift_flush_cache_all(void);
565 extern void swift_flush_cache_mm(struct mm_struct *mm);
566 extern void swift_flush_cache_range(struct vm_area_struct *vma,
567                                     unsigned long start, unsigned long end);
568 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
569 extern void swift_flush_page_to_ram(unsigned long page);
570 extern void swift_flush_page_for_dma(unsigned long page);
571 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
572 extern void swift_flush_tlb_all(void);
573 extern void swift_flush_tlb_mm(struct mm_struct *mm);
574 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
575                                   unsigned long start, unsigned long end);
576 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
577
578 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
579 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
580 {
581         int cctx, ctx1;
582
583         page &= PAGE_MASK;
584         if ((ctx1 = vma->vm_mm->context) != -1) {
585                 cctx = srmmu_get_context();
586 /* Is context # ever different from current context? P3 */
587                 if (cctx != ctx1) {
588                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
589                         srmmu_set_context(ctx1);
590                         swift_flush_page(page);
591                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
593                         srmmu_set_context(cctx);
594                 } else {
595                          /* Rm. prot. bits from virt. c. */
596                         /* swift_flush_cache_all(); */
597                         /* swift_flush_cache_page(vma, page); */
598                         swift_flush_page(page);
599
600                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
601                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
602                         /* same as above: srmmu_flush_tlb_page() */
603                 }
604         }
605 }
606 #endif
607
608 /*
609  * The following are all MBUS based SRMMU modules, and therefore could
610  * be found in a multiprocessor configuration.  On the whole, these
611  * chips seems to be much more touchy about DVMA and page tables
612  * with respect to cache coherency.
613  */
614
615 /* viking.S */
616 extern void viking_flush_cache_all(void);
617 extern void viking_flush_cache_mm(struct mm_struct *mm);
618 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
619                                      unsigned long end);
620 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
621 extern void viking_flush_page_to_ram(unsigned long page);
622 extern void viking_flush_page_for_dma(unsigned long page);
623 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
624 extern void viking_flush_page(unsigned long page);
625 extern void viking_mxcc_flush_page(unsigned long page);
626 extern void viking_flush_tlb_all(void);
627 extern void viking_flush_tlb_mm(struct mm_struct *mm);
628 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
629                                    unsigned long end);
630 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
631                                   unsigned long page);
632 extern void sun4dsmp_flush_tlb_all(void);
633 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
634 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
635                                    unsigned long end);
636 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
637                                   unsigned long page);
638
639 /* hypersparc.S */
640 extern void hypersparc_flush_cache_all(void);
641 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
642 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
644 extern void hypersparc_flush_page_to_ram(unsigned long page);
645 extern void hypersparc_flush_page_for_dma(unsigned long page);
646 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
647 extern void hypersparc_flush_tlb_all(void);
648 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
649 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
650 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
651 extern void hypersparc_setup_blockops(void);
652
653 /*
654  * NOTE: All of this startup code assumes the low 16mb (approx.) of
655  *       kernel mappings are done with one single contiguous chunk of
656  *       ram.  On small ram machines (classics mainly) we only get
657  *       around 8mb mapped for us.
658  */
659
660 static void __init early_pgtable_allocfail(char *type)
661 {
662         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
663         prom_halt();
664 }
665
666 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
667                                                         unsigned long end)
668 {
669         pgd_t *pgdp;
670         pmd_t *pmdp;
671         pte_t *ptep;
672
673         while (start < end) {
674                 pgdp = pgd_offset_k(start);
675                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
676                         pmdp = __srmmu_get_nocache(
677                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
678                         if (pmdp == NULL)
679                                 early_pgtable_allocfail("pmd");
680                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
681                         pgd_set(__nocache_fix(pgdp), pmdp);
682                 }
683                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
684                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
685                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
686                         if (ptep == NULL)
687                                 early_pgtable_allocfail("pte");
688                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
689                         pmd_set(__nocache_fix(pmdp), ptep);
690                 }
691                 if (start > (0xffffffffUL - PMD_SIZE))
692                         break;
693                 start = (start + PMD_SIZE) & PMD_MASK;
694         }
695 }
696
697 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
698                                                   unsigned long end)
699 {
700         pgd_t *pgdp;
701         pmd_t *pmdp;
702         pte_t *ptep;
703
704         while (start < end) {
705                 pgdp = pgd_offset_k(start);
706                 if (pgd_none(*pgdp)) {
707                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
708                         if (pmdp == NULL)
709                                 early_pgtable_allocfail("pmd");
710                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
711                         pgd_set(pgdp, pmdp);
712                 }
713                 pmdp = pmd_offset(pgdp, start);
714                 if (srmmu_pmd_none(*pmdp)) {
715                         ptep = __srmmu_get_nocache(PTE_SIZE,
716                                                              PTE_SIZE);
717                         if (ptep == NULL)
718                                 early_pgtable_allocfail("pte");
719                         memset(ptep, 0, PTE_SIZE);
720                         pmd_set(pmdp, ptep);
721                 }
722                 if (start > (0xffffffffUL - PMD_SIZE))
723                         break;
724                 start = (start + PMD_SIZE) & PMD_MASK;
725         }
726 }
727
728 /* These flush types are not available on all chips... */
729 static inline unsigned long srmmu_probe(unsigned long vaddr)
730 {
731         unsigned long retval;
732
733         if (sparc_cpu_model != sparc_leon) {
734
735                 vaddr &= PAGE_MASK;
736                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
737                                      "=r" (retval) :
738                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
739         } else {
740                 retval = leon_swprobe(vaddr, NULL);
741         }
742         return retval;
743 }
744
745 /*
746  * This is much cleaner than poking around physical address space
747  * looking at the prom's page table directly which is what most
748  * other OS's do.  Yuck... this is much better.
749  */
750 static void __init srmmu_inherit_prom_mappings(unsigned long start,
751                                                unsigned long end)
752 {
753         unsigned long probed;
754         unsigned long addr;
755         pgd_t *pgdp;
756         pmd_t *pmdp;
757         pte_t *ptep;
758         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
759
760         while (start <= end) {
761                 if (start == 0)
762                         break; /* probably wrap around */
763                 if (start == 0xfef00000)
764                         start = KADB_DEBUGGER_BEGVM;
765                 probed = srmmu_probe(start);
766                 if (!probed) {
767                         /* continue probing until we find an entry */
768                         start += PAGE_SIZE;
769                         continue;
770                 }
771
772                 /* A red snapper, see what it really is. */
773                 what = 0;
774                 addr = start - PAGE_SIZE;
775
776                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
777                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
778                                 what = 1;
779                 }
780
781                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
782                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
783                                 what = 2;
784                 }
785
786                 pgdp = pgd_offset_k(start);
787                 if (what == 2) {
788                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
789                         start += SRMMU_PGDIR_SIZE;
790                         continue;
791                 }
792                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
793                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
794                                                    SRMMU_PMD_TABLE_SIZE);
795                         if (pmdp == NULL)
796                                 early_pgtable_allocfail("pmd");
797                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
798                         pgd_set(__nocache_fix(pgdp), pmdp);
799                 }
800                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
801                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
802                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
803                         if (ptep == NULL)
804                                 early_pgtable_allocfail("pte");
805                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
806                         pmd_set(__nocache_fix(pmdp), ptep);
807                 }
808                 if (what == 1) {
809                         /* We bend the rule where all 16 PTPs in a pmd_t point
810                          * inside the same PTE page, and we leak a perfectly
811                          * good hardware PTE piece. Alternatives seem worse.
812                          */
813                         unsigned int x; /* Index of HW PMD in soft cluster */
814                         unsigned long *val;
815                         x = (start >> PMD_SHIFT) & 15;
816                         val = &pmdp->pmdv[x];
817                         *(unsigned long *)__nocache_fix(val) = probed;
818                         start += SRMMU_REAL_PMD_SIZE;
819                         continue;
820                 }
821                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
822                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
823                 start += PAGE_SIZE;
824         }
825 }
826
827 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
828
829 /* Create a third-level SRMMU 16MB page mapping. */
830 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
831 {
832         pgd_t *pgdp = pgd_offset_k(vaddr);
833         unsigned long big_pte;
834
835         big_pte = KERNEL_PTE(phys_base >> 4);
836         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
837 }
838
839 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
840 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
841 {
842         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
843         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
844         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
845         /* Map "low" memory only */
846         const unsigned long min_vaddr = PAGE_OFFSET;
847         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
848
849         if (vstart < min_vaddr || vstart >= max_vaddr)
850                 return vstart;
851
852         if (vend > max_vaddr || vend < min_vaddr)
853                 vend = max_vaddr;
854
855         while (vstart < vend) {
856                 do_large_mapping(vstart, pstart);
857                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
858         }
859         return vstart;
860 }
861
862 static void __init map_kernel(void)
863 {
864         int i;
865
866         if (phys_base > 0) {
867                 do_large_mapping(PAGE_OFFSET, phys_base);
868         }
869
870         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
871                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
872         }
873 }
874
875 void (*poke_srmmu)(void) = NULL;
876
877 void __init srmmu_paging_init(void)
878 {
879         int i;
880         phandle cpunode;
881         char node_str[128];
882         pgd_t *pgd;
883         pmd_t *pmd;
884         pte_t *pte;
885         unsigned long pages_avail;
886
887         init_mm.context = (unsigned long) NO_CONTEXT;
888         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
889
890         if (sparc_cpu_model == sun4d)
891                 num_contexts = 65536; /* We know it is Viking */
892         else {
893                 /* Find the number of contexts on the srmmu. */
894                 cpunode = prom_getchild(prom_root_node);
895                 num_contexts = 0;
896                 while (cpunode != 0) {
897                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
898                         if (!strcmp(node_str, "cpu")) {
899                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
900                                 break;
901                         }
902                         cpunode = prom_getsibling(cpunode);
903                 }
904         }
905
906         if (!num_contexts) {
907                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
908                 prom_halt();
909         }
910
911         pages_avail = 0;
912         last_valid_pfn = bootmem_init(&pages_avail);
913
914         srmmu_nocache_calcsize();
915         srmmu_nocache_init();
916         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
917         map_kernel();
918
919         /* ctx table has to be physically aligned to its size */
920         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
921         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
922
923         for (i = 0; i < num_contexts; i++)
924                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
925
926         flush_cache_all();
927         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
928 #ifdef CONFIG_SMP
929         /* Stop from hanging here... */
930         local_ops->tlb_all();
931 #else
932         flush_tlb_all();
933 #endif
934         poke_srmmu();
935
936         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
937         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
938
939         srmmu_allocate_ptable_skeleton(
940                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
941         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
942
943         pgd = pgd_offset_k(PKMAP_BASE);
944         pmd = pmd_offset(pgd, PKMAP_BASE);
945         pte = pte_offset_kernel(pmd, PKMAP_BASE);
946         pkmap_page_table = pte;
947
948         flush_cache_all();
949         flush_tlb_all();
950
951         sparc_context_init(num_contexts);
952
953         kmap_init();
954
955         {
956                 unsigned long zones_size[MAX_NR_ZONES];
957                 unsigned long zholes_size[MAX_NR_ZONES];
958                 unsigned long npages;
959                 int znum;
960
961                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
962                         zones_size[znum] = zholes_size[znum] = 0;
963
964                 npages = max_low_pfn - pfn_base;
965
966                 zones_size[ZONE_DMA] = npages;
967                 zholes_size[ZONE_DMA] = npages - pages_avail;
968
969                 npages = highend_pfn - max_low_pfn;
970                 zones_size[ZONE_HIGHMEM] = npages;
971                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
972
973                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
974         }
975 }
976
977 void mmu_info(struct seq_file *m)
978 {
979         seq_printf(m,
980                    "MMU type\t: %s\n"
981                    "contexts\t: %d\n"
982                    "nocache total\t: %ld\n"
983                    "nocache used\t: %d\n",
984                    srmmu_name,
985                    num_contexts,
986                    srmmu_nocache_size,
987                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
988 }
989
990 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
991 {
992         mm->context = NO_CONTEXT;
993         return 0;
994 }
995
996 void destroy_context(struct mm_struct *mm)
997 {
998         unsigned long flags;
999
1000         if (mm->context != NO_CONTEXT) {
1001                 flush_cache_mm(mm);
1002                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1003                 flush_tlb_mm(mm);
1004                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1005                 free_context(mm->context);
1006                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1007                 mm->context = NO_CONTEXT;
1008         }
1009 }
1010
1011 /* Init various srmmu chip types. */
1012 static void __init srmmu_is_bad(void)
1013 {
1014         prom_printf("Could not determine SRMMU chip type.\n");
1015         prom_halt();
1016 }
1017
1018 static void __init init_vac_layout(void)
1019 {
1020         phandle nd;
1021         int cache_lines;
1022         char node_str[128];
1023 #ifdef CONFIG_SMP
1024         int cpu = 0;
1025         unsigned long max_size = 0;
1026         unsigned long min_line_size = 0x10000000;
1027 #endif
1028
1029         nd = prom_getchild(prom_root_node);
1030         while ((nd = prom_getsibling(nd)) != 0) {
1031                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1032                 if (!strcmp(node_str, "cpu")) {
1033                         vac_line_size = prom_getint(nd, "cache-line-size");
1034                         if (vac_line_size == -1) {
1035                                 prom_printf("can't determine cache-line-size, halting.\n");
1036                                 prom_halt();
1037                         }
1038                         cache_lines = prom_getint(nd, "cache-nlines");
1039                         if (cache_lines == -1) {
1040                                 prom_printf("can't determine cache-nlines, halting.\n");
1041                                 prom_halt();
1042                         }
1043
1044                         vac_cache_size = cache_lines * vac_line_size;
1045 #ifdef CONFIG_SMP
1046                         if (vac_cache_size > max_size)
1047                                 max_size = vac_cache_size;
1048                         if (vac_line_size < min_line_size)
1049                                 min_line_size = vac_line_size;
1050                         //FIXME: cpus not contiguous!!
1051                         cpu++;
1052                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1053                                 break;
1054 #else
1055                         break;
1056 #endif
1057                 }
1058         }
1059         if (nd == 0) {
1060                 prom_printf("No CPU nodes found, halting.\n");
1061                 prom_halt();
1062         }
1063 #ifdef CONFIG_SMP
1064         vac_cache_size = max_size;
1065         vac_line_size = min_line_size;
1066 #endif
1067         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1068                (int)vac_cache_size, (int)vac_line_size);
1069 }
1070
1071 static void poke_hypersparc(void)
1072 {
1073         volatile unsigned long clear;
1074         unsigned long mreg = srmmu_get_mmureg();
1075
1076         hyper_flush_unconditional_combined();
1077
1078         mreg &= ~(HYPERSPARC_CWENABLE);
1079         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1080         mreg |= (HYPERSPARC_CMODE);
1081
1082         srmmu_set_mmureg(mreg);
1083
1084 #if 0 /* XXX I think this is bad news... -DaveM */
1085         hyper_clear_all_tags();
1086 #endif
1087
1088         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1089         hyper_flush_whole_icache();
1090         clear = srmmu_get_faddr();
1091         clear = srmmu_get_fstatus();
1092 }
1093
1094 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1095         .cache_all      = hypersparc_flush_cache_all,
1096         .cache_mm       = hypersparc_flush_cache_mm,
1097         .cache_page     = hypersparc_flush_cache_page,
1098         .cache_range    = hypersparc_flush_cache_range,
1099         .tlb_all        = hypersparc_flush_tlb_all,
1100         .tlb_mm         = hypersparc_flush_tlb_mm,
1101         .tlb_page       = hypersparc_flush_tlb_page,
1102         .tlb_range      = hypersparc_flush_tlb_range,
1103         .page_to_ram    = hypersparc_flush_page_to_ram,
1104         .sig_insns      = hypersparc_flush_sig_insns,
1105         .page_for_dma   = hypersparc_flush_page_for_dma,
1106 };
1107
1108 static void __init init_hypersparc(void)
1109 {
1110         srmmu_name = "ROSS HyperSparc";
1111         srmmu_modtype = HyperSparc;
1112
1113         init_vac_layout();
1114
1115         is_hypersparc = 1;
1116         sparc32_cachetlb_ops = &hypersparc_ops;
1117
1118         poke_srmmu = poke_hypersparc;
1119
1120         hypersparc_setup_blockops();
1121 }
1122
1123 static void poke_swift(void)
1124 {
1125         unsigned long mreg;
1126
1127         /* Clear any crap from the cache or else... */
1128         swift_flush_cache_all();
1129
1130         /* Enable I & D caches */
1131         mreg = srmmu_get_mmureg();
1132         mreg |= (SWIFT_IE | SWIFT_DE);
1133         /*
1134          * The Swift branch folding logic is completely broken.  At
1135          * trap time, if things are just right, if can mistakenly
1136          * think that a trap is coming from kernel mode when in fact
1137          * it is coming from user mode (it mis-executes the branch in
1138          * the trap code).  So you see things like crashme completely
1139          * hosing your machine which is completely unacceptable.  Turn
1140          * this shit off... nice job Fujitsu.
1141          */
1142         mreg &= ~(SWIFT_BF);
1143         srmmu_set_mmureg(mreg);
1144 }
1145
1146 static const struct sparc32_cachetlb_ops swift_ops = {
1147         .cache_all      = swift_flush_cache_all,
1148         .cache_mm       = swift_flush_cache_mm,
1149         .cache_page     = swift_flush_cache_page,
1150         .cache_range    = swift_flush_cache_range,
1151         .tlb_all        = swift_flush_tlb_all,
1152         .tlb_mm         = swift_flush_tlb_mm,
1153         .tlb_page       = swift_flush_tlb_page,
1154         .tlb_range      = swift_flush_tlb_range,
1155         .page_to_ram    = swift_flush_page_to_ram,
1156         .sig_insns      = swift_flush_sig_insns,
1157         .page_for_dma   = swift_flush_page_for_dma,
1158 };
1159
1160 #define SWIFT_MASKID_ADDR  0x10003018
1161 static void __init init_swift(void)
1162 {
1163         unsigned long swift_rev;
1164
1165         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1166                              "srl %0, 0x18, %0\n\t" :
1167                              "=r" (swift_rev) :
1168                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1169         srmmu_name = "Fujitsu Swift";
1170         switch (swift_rev) {
1171         case 0x11:
1172         case 0x20:
1173         case 0x23:
1174         case 0x30:
1175                 srmmu_modtype = Swift_lots_o_bugs;
1176                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1177                 /*
1178                  * Gee george, I wonder why Sun is so hush hush about
1179                  * this hardware bug... really braindamage stuff going
1180                  * on here.  However I think we can find a way to avoid
1181                  * all of the workaround overhead under Linux.  Basically,
1182                  * any page fault can cause kernel pages to become user
1183                  * accessible (the mmu gets confused and clears some of
1184                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1185                  * horrible eh?  But wait, after extensive testing it appears
1186                  * that if you use pgd_t level large kernel pte's (like the
1187                  * 4MB pages on the Pentium) the bug does not get tripped
1188                  * at all.  This avoids almost all of the major overhead.
1189                  * Welcome to a world where your vendor tells you to,
1190                  * "apply this kernel patch" instead of "sorry for the
1191                  * broken hardware, send it back and we'll give you
1192                  * properly functioning parts"
1193                  */
1194                 break;
1195         case 0x25:
1196         case 0x31:
1197                 srmmu_modtype = Swift_bad_c;
1198                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1199                 /*
1200                  * You see Sun allude to this hardware bug but never
1201                  * admit things directly, they'll say things like,
1202                  * "the Swift chip cache problems" or similar.
1203                  */
1204                 break;
1205         default:
1206                 srmmu_modtype = Swift_ok;
1207                 break;
1208         }
1209
1210         sparc32_cachetlb_ops = &swift_ops;
1211         flush_page_for_dma_global = 0;
1212
1213         /*
1214          * Are you now convinced that the Swift is one of the
1215          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1216          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1217          * you examined the microcode of the Swift you'd find
1218          * XXX's all over the place.
1219          */
1220         poke_srmmu = poke_swift;
1221 }
1222
1223 static void turbosparc_flush_cache_all(void)
1224 {
1225         flush_user_windows();
1226         turbosparc_idflash_clear();
1227 }
1228
1229 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1230 {
1231         FLUSH_BEGIN(mm)
1232         flush_user_windows();
1233         turbosparc_idflash_clear();
1234         FLUSH_END
1235 }
1236
1237 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1238 {
1239         FLUSH_BEGIN(vma->vm_mm)
1240         flush_user_windows();
1241         turbosparc_idflash_clear();
1242         FLUSH_END
1243 }
1244
1245 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1246 {
1247         FLUSH_BEGIN(vma->vm_mm)
1248         flush_user_windows();
1249         if (vma->vm_flags & VM_EXEC)
1250                 turbosparc_flush_icache();
1251         turbosparc_flush_dcache();
1252         FLUSH_END
1253 }
1254
1255 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1256 static void turbosparc_flush_page_to_ram(unsigned long page)
1257 {
1258 #ifdef TURBOSPARC_WRITEBACK
1259         volatile unsigned long clear;
1260
1261         if (srmmu_probe(page))
1262                 turbosparc_flush_page_cache(page);
1263         clear = srmmu_get_fstatus();
1264 #endif
1265 }
1266
1267 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1268 {
1269 }
1270
1271 static void turbosparc_flush_page_for_dma(unsigned long page)
1272 {
1273         turbosparc_flush_dcache();
1274 }
1275
1276 static void turbosparc_flush_tlb_all(void)
1277 {
1278         srmmu_flush_whole_tlb();
1279 }
1280
1281 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1282 {
1283         FLUSH_BEGIN(mm)
1284         srmmu_flush_whole_tlb();
1285         FLUSH_END
1286 }
1287
1288 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1289 {
1290         FLUSH_BEGIN(vma->vm_mm)
1291         srmmu_flush_whole_tlb();
1292         FLUSH_END
1293 }
1294
1295 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1296 {
1297         FLUSH_BEGIN(vma->vm_mm)
1298         srmmu_flush_whole_tlb();
1299         FLUSH_END
1300 }
1301
1302
1303 static void poke_turbosparc(void)
1304 {
1305         unsigned long mreg = srmmu_get_mmureg();
1306         unsigned long ccreg;
1307
1308         /* Clear any crap from the cache or else... */
1309         turbosparc_flush_cache_all();
1310         /* Temporarily disable I & D caches */
1311         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1312         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1313         srmmu_set_mmureg(mreg);
1314
1315         ccreg = turbosparc_get_ccreg();
1316
1317 #ifdef TURBOSPARC_WRITEBACK
1318         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1319         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1320                         /* Write-back D-cache, emulate VLSI
1321                          * abortion number three, not number one */
1322 #else
1323         /* For now let's play safe, optimize later */
1324         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1325                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1326         ccreg &= ~(TURBOSPARC_uS2);
1327                         /* Emulate VLSI abortion number three, not number one */
1328 #endif
1329
1330         switch (ccreg & 7) {
1331         case 0: /* No SE cache */
1332         case 7: /* Test mode */
1333                 break;
1334         default:
1335                 ccreg |= (TURBOSPARC_SCENABLE);
1336         }
1337         turbosparc_set_ccreg(ccreg);
1338
1339         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1340         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1341         srmmu_set_mmureg(mreg);
1342 }
1343
1344 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1345         .cache_all      = turbosparc_flush_cache_all,
1346         .cache_mm       = turbosparc_flush_cache_mm,
1347         .cache_page     = turbosparc_flush_cache_page,
1348         .cache_range    = turbosparc_flush_cache_range,
1349         .tlb_all        = turbosparc_flush_tlb_all,
1350         .tlb_mm         = turbosparc_flush_tlb_mm,
1351         .tlb_page       = turbosparc_flush_tlb_page,
1352         .tlb_range      = turbosparc_flush_tlb_range,
1353         .page_to_ram    = turbosparc_flush_page_to_ram,
1354         .sig_insns      = turbosparc_flush_sig_insns,
1355         .page_for_dma   = turbosparc_flush_page_for_dma,
1356 };
1357
1358 static void __init init_turbosparc(void)
1359 {
1360         srmmu_name = "Fujitsu TurboSparc";
1361         srmmu_modtype = TurboSparc;
1362         sparc32_cachetlb_ops = &turbosparc_ops;
1363         poke_srmmu = poke_turbosparc;
1364 }
1365
1366 static void poke_tsunami(void)
1367 {
1368         unsigned long mreg = srmmu_get_mmureg();
1369
1370         tsunami_flush_icache();
1371         tsunami_flush_dcache();
1372         mreg &= ~TSUNAMI_ITD;
1373         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1374         srmmu_set_mmureg(mreg);
1375 }
1376
1377 static const struct sparc32_cachetlb_ops tsunami_ops = {
1378         .cache_all      = tsunami_flush_cache_all,
1379         .cache_mm       = tsunami_flush_cache_mm,
1380         .cache_page     = tsunami_flush_cache_page,
1381         .cache_range    = tsunami_flush_cache_range,
1382         .tlb_all        = tsunami_flush_tlb_all,
1383         .tlb_mm         = tsunami_flush_tlb_mm,
1384         .tlb_page       = tsunami_flush_tlb_page,
1385         .tlb_range      = tsunami_flush_tlb_range,
1386         .page_to_ram    = tsunami_flush_page_to_ram,
1387         .sig_insns      = tsunami_flush_sig_insns,
1388         .page_for_dma   = tsunami_flush_page_for_dma,
1389 };
1390
1391 static void __init init_tsunami(void)
1392 {
1393         /*
1394          * Tsunami's pretty sane, Sun and TI actually got it
1395          * somewhat right this time.  Fujitsu should have
1396          * taken some lessons from them.
1397          */
1398
1399         srmmu_name = "TI Tsunami";
1400         srmmu_modtype = Tsunami;
1401         sparc32_cachetlb_ops = &tsunami_ops;
1402         poke_srmmu = poke_tsunami;
1403
1404         tsunami_setup_blockops();
1405 }
1406
1407 static void poke_viking(void)
1408 {
1409         unsigned long mreg = srmmu_get_mmureg();
1410         static int smp_catch;
1411
1412         if (viking_mxcc_present) {
1413                 unsigned long mxcc_control = mxcc_get_creg();
1414
1415                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1416                 mxcc_control &= ~(MXCC_CTL_RRC);
1417                 mxcc_set_creg(mxcc_control);
1418
1419                 /*
1420                  * We don't need memory parity checks.
1421                  * XXX This is a mess, have to dig out later. ecd.
1422                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1423                  */
1424
1425                 /* We do cache ptables on MXCC. */
1426                 mreg |= VIKING_TCENABLE;
1427         } else {
1428                 unsigned long bpreg;
1429
1430                 mreg &= ~(VIKING_TCENABLE);
1431                 if (smp_catch++) {
1432                         /* Must disable mixed-cmd mode here for other cpu's. */
1433                         bpreg = viking_get_bpreg();
1434                         bpreg &= ~(VIKING_ACTION_MIX);
1435                         viking_set_bpreg(bpreg);
1436
1437                         /* Just in case PROM does something funny. */
1438                         msi_set_sync();
1439                 }
1440         }
1441
1442         mreg |= VIKING_SPENABLE;
1443         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1444         mreg |= VIKING_SBENABLE;
1445         mreg &= ~(VIKING_ACENABLE);
1446         srmmu_set_mmureg(mreg);
1447 }
1448
1449 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1450         .cache_all      = viking_flush_cache_all,
1451         .cache_mm       = viking_flush_cache_mm,
1452         .cache_page     = viking_flush_cache_page,
1453         .cache_range    = viking_flush_cache_range,
1454         .tlb_all        = viking_flush_tlb_all,
1455         .tlb_mm         = viking_flush_tlb_mm,
1456         .tlb_page       = viking_flush_tlb_page,
1457         .tlb_range      = viking_flush_tlb_range,
1458         .page_to_ram    = viking_flush_page_to_ram,
1459         .sig_insns      = viking_flush_sig_insns,
1460         .page_for_dma   = viking_flush_page_for_dma,
1461 };
1462
1463 #ifdef CONFIG_SMP
1464 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1465  * perform the local TLB flush and all the other cpus will see it.
1466  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1467  * that requires that we add some synchronization to these flushes.
1468  *
1469  * The bug is that the fifo which keeps track of all the pending TLB
1470  * broadcasts in the system is an entry or two too small, so if we
1471  * have too many going at once we'll overflow that fifo and lose a TLB
1472  * flush resulting in corruption.
1473  *
1474  * Our workaround is to take a global spinlock around the TLB flushes,
1475  * which guarentees we won't ever have too many pending.  It's a big
1476  * hammer, but a semaphore like system to make sure we only have N TLB
1477  * flushes going at once will require SMP locking anyways so there's
1478  * no real value in trying any harder than this.
1479  */
1480 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1481         .cache_all      = viking_flush_cache_all,
1482         .cache_mm       = viking_flush_cache_mm,
1483         .cache_page     = viking_flush_cache_page,
1484         .cache_range    = viking_flush_cache_range,
1485         .tlb_all        = sun4dsmp_flush_tlb_all,
1486         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1487         .tlb_page       = sun4dsmp_flush_tlb_page,
1488         .tlb_range      = sun4dsmp_flush_tlb_range,
1489         .page_to_ram    = viking_flush_page_to_ram,
1490         .sig_insns      = viking_flush_sig_insns,
1491         .page_for_dma   = viking_flush_page_for_dma,
1492 };
1493 #endif
1494
1495 static void __init init_viking(void)
1496 {
1497         unsigned long mreg = srmmu_get_mmureg();
1498
1499         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1500         if (mreg & VIKING_MMODE) {
1501                 srmmu_name = "TI Viking";
1502                 viking_mxcc_present = 0;
1503                 msi_set_sync();
1504
1505                 /*
1506                  * We need this to make sure old viking takes no hits
1507                  * on it's cache for dma snoops to workaround the
1508                  * "load from non-cacheable memory" interrupt bug.
1509                  * This is only necessary because of the new way in
1510                  * which we use the IOMMU.
1511                  */
1512                 viking_ops.page_for_dma = viking_flush_page;
1513 #ifdef CONFIG_SMP
1514                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1515 #endif
1516                 flush_page_for_dma_global = 0;
1517         } else {
1518                 srmmu_name = "TI Viking/MXCC";
1519                 viking_mxcc_present = 1;
1520                 srmmu_cache_pagetables = 1;
1521         }
1522
1523         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1524                 &viking_ops;
1525 #ifdef CONFIG_SMP
1526         if (sparc_cpu_model == sun4d)
1527                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1528                         &viking_sun4d_smp_ops;
1529 #endif
1530
1531         poke_srmmu = poke_viking;
1532 }
1533
1534 /* Probe for the srmmu chip version. */
1535 static void __init get_srmmu_type(void)
1536 {
1537         unsigned long mreg, psr;
1538         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1539
1540         srmmu_modtype = SRMMU_INVAL_MOD;
1541         hwbug_bitmask = 0;
1542
1543         mreg = srmmu_get_mmureg(); psr = get_psr();
1544         mod_typ = (mreg & 0xf0000000) >> 28;
1545         mod_rev = (mreg & 0x0f000000) >> 24;
1546         psr_typ = (psr >> 28) & 0xf;
1547         psr_vers = (psr >> 24) & 0xf;
1548
1549         /* First, check for sparc-leon. */
1550         if (sparc_cpu_model == sparc_leon) {
1551                 init_leon();
1552                 return;
1553         }
1554
1555         /* Second, check for HyperSparc or Cypress. */
1556         if (mod_typ == 1) {
1557                 switch (mod_rev) {
1558                 case 7:
1559                         /* UP or MP Hypersparc */
1560                         init_hypersparc();
1561                         break;
1562                 case 0:
1563                 case 2:
1564                 case 10:
1565                 case 11:
1566                 case 12:
1567                 case 13:
1568                 case 14:
1569                 case 15:
1570                 default:
1571                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1572                         prom_halt();
1573                         break;
1574                 }
1575                 return;
1576         }
1577
1578         /* Now Fujitsu TurboSparc. It might happen that it is
1579          * in Swift emulation mode, so we will check later...
1580          */
1581         if (psr_typ == 0 && psr_vers == 5) {
1582                 init_turbosparc();
1583                 return;
1584         }
1585
1586         /* Next check for Fujitsu Swift. */
1587         if (psr_typ == 0 && psr_vers == 4) {
1588                 phandle cpunode;
1589                 char node_str[128];
1590
1591                 /* Look if it is not a TurboSparc emulating Swift... */
1592                 cpunode = prom_getchild(prom_root_node);
1593                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1594                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1595                         if (!strcmp(node_str, "cpu")) {
1596                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1597                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1598                                         init_turbosparc();
1599                                         return;
1600                                 }
1601                                 break;
1602                         }
1603                 }
1604
1605                 init_swift();
1606                 return;
1607         }
1608
1609         /* Now the Viking family of srmmu. */
1610         if (psr_typ == 4 &&
1611            ((psr_vers == 0) ||
1612             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1613                 init_viking();
1614                 return;
1615         }
1616
1617         /* Finally the Tsunami. */
1618         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1619                 init_tsunami();
1620                 return;
1621         }
1622
1623         /* Oh well */
1624         srmmu_is_bad();
1625 }
1626
1627 #ifdef CONFIG_SMP
1628 /* Local cross-calls. */
1629 static void smp_flush_page_for_dma(unsigned long page)
1630 {
1631         xc1((smpfunc_t) local_ops->page_for_dma, page);
1632         local_ops->page_for_dma(page);
1633 }
1634
1635 static void smp_flush_cache_all(void)
1636 {
1637         xc0((smpfunc_t) local_ops->cache_all);
1638         local_ops->cache_all();
1639 }
1640
1641 static void smp_flush_tlb_all(void)
1642 {
1643         xc0((smpfunc_t) local_ops->tlb_all);
1644         local_ops->tlb_all();
1645 }
1646
1647 static void smp_flush_cache_mm(struct mm_struct *mm)
1648 {
1649         if (mm->context != NO_CONTEXT) {
1650                 cpumask_t cpu_mask;
1651                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1652                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1653                 if (!cpumask_empty(&cpu_mask))
1654                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1655                 local_ops->cache_mm(mm);
1656         }
1657 }
1658
1659 static void smp_flush_tlb_mm(struct mm_struct *mm)
1660 {
1661         if (mm->context != NO_CONTEXT) {
1662                 cpumask_t cpu_mask;
1663                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1664                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1665                 if (!cpumask_empty(&cpu_mask)) {
1666                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1667                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668                                 cpumask_copy(mm_cpumask(mm),
1669                                              cpumask_of(smp_processor_id()));
1670                 }
1671                 local_ops->tlb_mm(mm);
1672         }
1673 }
1674
1675 static void smp_flush_cache_range(struct vm_area_struct *vma,
1676                                   unsigned long start,
1677                                   unsigned long end)
1678 {
1679         struct mm_struct *mm = vma->vm_mm;
1680
1681         if (mm->context != NO_CONTEXT) {
1682                 cpumask_t cpu_mask;
1683                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1684                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1685                 if (!cpumask_empty(&cpu_mask))
1686                         xc3((smpfunc_t) local_ops->cache_range,
1687                             (unsigned long) vma, start, end);
1688                 local_ops->cache_range(vma, start, end);
1689         }
1690 }
1691
1692 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1693                                 unsigned long start,
1694                                 unsigned long end)
1695 {
1696         struct mm_struct *mm = vma->vm_mm;
1697
1698         if (mm->context != NO_CONTEXT) {
1699                 cpumask_t cpu_mask;
1700                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702                 if (!cpumask_empty(&cpu_mask))
1703                         xc3((smpfunc_t) local_ops->tlb_range,
1704                             (unsigned long) vma, start, end);
1705                 local_ops->tlb_range(vma, start, end);
1706         }
1707 }
1708
1709 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1710 {
1711         struct mm_struct *mm = vma->vm_mm;
1712
1713         if (mm->context != NO_CONTEXT) {
1714                 cpumask_t cpu_mask;
1715                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717                 if (!cpumask_empty(&cpu_mask))
1718                         xc2((smpfunc_t) local_ops->cache_page,
1719                             (unsigned long) vma, page);
1720                 local_ops->cache_page(vma, page);
1721         }
1722 }
1723
1724 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1725 {
1726         struct mm_struct *mm = vma->vm_mm;
1727
1728         if (mm->context != NO_CONTEXT) {
1729                 cpumask_t cpu_mask;
1730                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1731                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1732                 if (!cpumask_empty(&cpu_mask))
1733                         xc2((smpfunc_t) local_ops->tlb_page,
1734                             (unsigned long) vma, page);
1735                 local_ops->tlb_page(vma, page);
1736         }
1737 }
1738
1739 static void smp_flush_page_to_ram(unsigned long page)
1740 {
1741         /* Current theory is that those who call this are the one's
1742          * who have just dirtied their cache with the pages contents
1743          * in kernel space, therefore we only run this on local cpu.
1744          *
1745          * XXX This experiment failed, research further... -DaveM
1746          */
1747 #if 1
1748         xc1((smpfunc_t) local_ops->page_to_ram, page);
1749 #endif
1750         local_ops->page_to_ram(page);
1751 }
1752
1753 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1754 {
1755         cpumask_t cpu_mask;
1756         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758         if (!cpumask_empty(&cpu_mask))
1759                 xc2((smpfunc_t) local_ops->sig_insns,
1760                     (unsigned long) mm, insn_addr);
1761         local_ops->sig_insns(mm, insn_addr);
1762 }
1763
1764 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1765         .cache_all      = smp_flush_cache_all,
1766         .cache_mm       = smp_flush_cache_mm,
1767         .cache_page     = smp_flush_cache_page,
1768         .cache_range    = smp_flush_cache_range,
1769         .tlb_all        = smp_flush_tlb_all,
1770         .tlb_mm         = smp_flush_tlb_mm,
1771         .tlb_page       = smp_flush_tlb_page,
1772         .tlb_range      = smp_flush_tlb_range,
1773         .page_to_ram    = smp_flush_page_to_ram,
1774         .sig_insns      = smp_flush_sig_insns,
1775         .page_for_dma   = smp_flush_page_for_dma,
1776 };
1777 #endif
1778
1779 /* Load up routines and constants for sun4m and sun4d mmu */
1780 void __init load_mmu(void)
1781 {
1782         /* Functions */
1783         get_srmmu_type();
1784
1785 #ifdef CONFIG_SMP
1786         /* El switcheroo... */
1787         local_ops = sparc32_cachetlb_ops;
1788
1789         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1790                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1791                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1792                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1793                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1794         }
1795
1796         if (poke_srmmu == poke_viking) {
1797                 /* Avoid unnecessary cross calls. */
1798                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1799                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1800                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1801                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1802
1803                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1804                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1805                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1806         }
1807
1808         /* It really is const after this point. */
1809         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1810                 &smp_cachetlb_ops;
1811 #endif
1812
1813         if (sparc_cpu_model == sun4d)
1814                 ld_mmu_iounit();
1815         else
1816                 ld_mmu_iommu();
1817 #ifdef CONFIG_SMP
1818         if (sparc_cpu_model == sun4d)
1819                 sun4d_init_smp();
1820         else if (sparc_cpu_model == sparc_leon)
1821                 leon_init_smp();
1822         else
1823                 sun4m_init_smp();
1824 #endif
1825 }