GNU Linux-libre 4.19.295-gnu1
[releases.git] / arch / sparc / kernel / time_32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* linux/arch/sparc/kernel/time.c
3  *
4  * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
5  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
6  *
7  * Chris Davis (cdavis@cois.on.ca) 03/27/1998
8  * Added support for the intersil on the sun4/4200
9  *
10  * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
11  * Support for MicroSPARC-IIep, PCI CPU.
12  *
13  * This file handles the Sparc specific time handling details.
14  *
15  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
16  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
17  */
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/time.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38
39 #include <asm/mc146818rtc.h>
40 #include <asm/oplib.h>
41 #include <asm/timex.h>
42 #include <asm/timer.h>
43 #include <asm/irq.h>
44 #include <asm/io.h>
45 #include <asm/idprom.h>
46 #include <asm/page.h>
47 #include <asm/pcic.h>
48 #include <asm/irq_regs.h>
49 #include <asm/setup.h>
50
51 #include "kernel.h"
52 #include "irq.h"
53
54 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
55 static __volatile__ u64 timer_cs_internal_counter = 0;
56 static char timer_cs_enabled = 0;
57
58 static struct clock_event_device timer_ce;
59 static char timer_ce_enabled = 0;
60
61 #ifdef CONFIG_SMP
62 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
63 #endif
64
65 DEFINE_SPINLOCK(rtc_lock);
66 EXPORT_SYMBOL(rtc_lock);
67
68 unsigned long profile_pc(struct pt_regs *regs)
69 {
70         extern char __copy_user_begin[], __copy_user_end[];
71         extern char __bzero_begin[], __bzero_end[];
72
73         unsigned long pc = regs->pc;
74
75         if (in_lock_functions(pc) ||
76             (pc >= (unsigned long) __copy_user_begin &&
77              pc < (unsigned long) __copy_user_end) ||
78             (pc >= (unsigned long) __bzero_begin &&
79              pc < (unsigned long) __bzero_end))
80                 pc = regs->u_regs[UREG_RETPC];
81         return pc;
82 }
83
84 EXPORT_SYMBOL(profile_pc);
85
86 volatile u32 __iomem *master_l10_counter;
87
88 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
89 {
90         if (timer_cs_enabled) {
91                 write_seqlock(&timer_cs_lock);
92                 timer_cs_internal_counter++;
93                 sparc_config.clear_clock_irq();
94                 write_sequnlock(&timer_cs_lock);
95         } else {
96                 sparc_config.clear_clock_irq();
97         }
98
99         if (timer_ce_enabled)
100                 timer_ce.event_handler(&timer_ce);
101
102         return IRQ_HANDLED;
103 }
104
105 static int timer_ce_shutdown(struct clock_event_device *evt)
106 {
107         timer_ce_enabled = 0;
108         smp_mb();
109         return 0;
110 }
111
112 static int timer_ce_set_periodic(struct clock_event_device *evt)
113 {
114         timer_ce_enabled = 1;
115         smp_mb();
116         return 0;
117 }
118
119 static __init void setup_timer_ce(void)
120 {
121         struct clock_event_device *ce = &timer_ce;
122
123         BUG_ON(smp_processor_id() != boot_cpu_id);
124
125         ce->name     = "timer_ce";
126         ce->rating   = 100;
127         ce->features = CLOCK_EVT_FEAT_PERIODIC;
128         ce->set_state_shutdown = timer_ce_shutdown;
129         ce->set_state_periodic = timer_ce_set_periodic;
130         ce->tick_resume = timer_ce_set_periodic;
131         ce->cpumask  = cpu_possible_mask;
132         ce->shift    = 32;
133         ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
134                               ce->shift);
135         clockevents_register_device(ce);
136 }
137
138 static unsigned int sbus_cycles_offset(void)
139 {
140         u32 val, offset;
141
142         val = sbus_readl(master_l10_counter);
143         offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
144
145         /* Limit hit? */
146         if (val & TIMER_LIMIT_BIT)
147                 offset += sparc_config.cs_period;
148
149         return offset;
150 }
151
152 static u64 timer_cs_read(struct clocksource *cs)
153 {
154         unsigned int seq, offset;
155         u64 cycles;
156
157         do {
158                 seq = read_seqbegin(&timer_cs_lock);
159
160                 cycles = timer_cs_internal_counter;
161                 offset = sparc_config.get_cycles_offset();
162         } while (read_seqretry(&timer_cs_lock, seq));
163
164         /* Count absolute cycles */
165         cycles *= sparc_config.cs_period;
166         cycles += offset;
167
168         return cycles;
169 }
170
171 static struct clocksource timer_cs = {
172         .name   = "timer_cs",
173         .rating = 100,
174         .read   = timer_cs_read,
175         .mask   = CLOCKSOURCE_MASK(64),
176         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
177 };
178
179 static __init int setup_timer_cs(void)
180 {
181         timer_cs_enabled = 1;
182         return clocksource_register_hz(&timer_cs, sparc_config.clock_rate);
183 }
184
185 #ifdef CONFIG_SMP
186 static int percpu_ce_shutdown(struct clock_event_device *evt)
187 {
188         int cpu = cpumask_first(evt->cpumask);
189
190         sparc_config.load_profile_irq(cpu, 0);
191         return 0;
192 }
193
194 static int percpu_ce_set_periodic(struct clock_event_device *evt)
195 {
196         int cpu = cpumask_first(evt->cpumask);
197
198         sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ);
199         return 0;
200 }
201
202 static int percpu_ce_set_next_event(unsigned long delta,
203                                     struct clock_event_device *evt)
204 {
205         int cpu = cpumask_first(evt->cpumask);
206         unsigned int next = (unsigned int)delta;
207
208         sparc_config.load_profile_irq(cpu, next);
209         return 0;
210 }
211
212 void register_percpu_ce(int cpu)
213 {
214         struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
215         unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
216
217         if (sparc_config.features & FEAT_L14_ONESHOT)
218                 features |= CLOCK_EVT_FEAT_ONESHOT;
219
220         ce->name           = "percpu_ce";
221         ce->rating         = 200;
222         ce->features       = features;
223         ce->set_state_shutdown = percpu_ce_shutdown;
224         ce->set_state_periodic = percpu_ce_set_periodic;
225         ce->set_state_oneshot = percpu_ce_shutdown;
226         ce->set_next_event = percpu_ce_set_next_event;
227         ce->cpumask        = cpumask_of(cpu);
228         ce->shift          = 32;
229         ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
230                                     ce->shift);
231         ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
232         ce->max_delta_ticks = (unsigned long)sparc_config.clock_rate;
233         ce->min_delta_ns   = clockevent_delta2ns(100, ce);
234         ce->min_delta_ticks = 100;
235
236         clockevents_register_device(ce);
237 }
238 #endif
239
240 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
241 {
242         struct platform_device *pdev = to_platform_device(dev);
243         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
244
245         return readb(pdata->ioaddr + ofs);
246 }
247
248 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
249 {
250         struct platform_device *pdev = to_platform_device(dev);
251         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
252
253         writeb(val, pdata->ioaddr + ofs);
254 }
255
256 static struct m48t59_plat_data m48t59_data = {
257         .read_byte = mostek_read_byte,
258         .write_byte = mostek_write_byte,
259 };
260
261 /* resource is set at runtime */
262 static struct platform_device m48t59_rtc = {
263         .name           = "rtc-m48t59",
264         .id             = 0,
265         .num_resources  = 1,
266         .dev    = {
267                 .platform_data = &m48t59_data,
268         },
269 };
270
271 static int clock_probe(struct platform_device *op)
272 {
273         struct device_node *dp = op->dev.of_node;
274         const char *model = of_get_property(dp, "model", NULL);
275
276         if (!model)
277                 return -ENODEV;
278
279         /* Only the primary RTC has an address property */
280         if (!of_find_property(dp, "address", NULL))
281                 return -ENODEV;
282
283         m48t59_rtc.resource = &op->resource[0];
284         if (!strcmp(model, "mk48t02")) {
285                 /* Map the clock register io area read-only */
286                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
287                                                 2048, "rtc-m48t59");
288                 m48t59_data.type = M48T59RTC_TYPE_M48T02;
289         } else if (!strcmp(model, "mk48t08")) {
290                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
291                                                 8192, "rtc-m48t59");
292                 m48t59_data.type = M48T59RTC_TYPE_M48T08;
293         } else
294                 return -ENODEV;
295
296         if (platform_device_register(&m48t59_rtc) < 0)
297                 printk(KERN_ERR "Registering RTC device failed\n");
298
299         return 0;
300 }
301
302 static const struct of_device_id clock_match[] = {
303         {
304                 .name = "eeprom",
305         },
306         {},
307 };
308
309 static struct platform_driver clock_driver = {
310         .probe          = clock_probe,
311         .driver = {
312                 .name = "rtc",
313                 .of_match_table = clock_match,
314         },
315 };
316
317
318 /* Probe for the mostek real time clock chip. */
319 static int __init clock_init(void)
320 {
321         return platform_driver_register(&clock_driver);
322 }
323 /* Must be after subsys_initcall() so that busses are probed.  Must
324  * be before device_initcall() because things like the RTC driver
325  * need to see the clock registers.
326  */
327 fs_initcall(clock_init);
328
329 static void __init sparc32_late_time_init(void)
330 {
331         if (sparc_config.features & FEAT_L10_CLOCKEVENT)
332                 setup_timer_ce();
333         if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
334                 setup_timer_cs();
335 #ifdef CONFIG_SMP
336         register_percpu_ce(smp_processor_id());
337 #endif
338 }
339
340 static void __init sbus_time_init(void)
341 {
342         sparc_config.get_cycles_offset = sbus_cycles_offset;
343         sparc_config.init_timers();
344 }
345
346 void __init time_init(void)
347 {
348         sparc_config.features = 0;
349         late_time_init = sparc32_late_time_init;
350
351         if (pcic_present())
352                 pci_time_init();
353         else
354                 sbus_time_init();
355 }
356