GNU Linux-libre 6.8.9-gnu
[releases.git] / arch / sparc / kernel / smp_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
3  *
4  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5  */
6
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
31
32 #include <asm/head.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
39 #include <asm/io.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
42
43 #include <asm/irq.h>
44 #include <asm/irq_regs.h>
45 #include <asm/page.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/pgalloc.h>
51 #include <asm/sections.h>
52 #include <asm/prom.h>
53 #include <asm/mdesc.h>
54 #include <asm/ldc.h>
55 #include <asm/hypervisor.h>
56 #include <asm/pcr.h>
57
58 #include "cpumap.h"
59 #include "kernel.h"
60
61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64
65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66         [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69         [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_SYMBOL(cpu_core_map);
73 EXPORT_SYMBOL(cpu_core_sib_map);
74 EXPORT_SYMBOL(cpu_core_sib_cache_map);
75
76 static cpumask_t smp_commenced_mask;
77
78 static DEFINE_PER_CPU(bool, poke);
79 static bool cpu_poke;
80
81 void smp_info(struct seq_file *m)
82 {
83         int i;
84         
85         seq_printf(m, "State:\n");
86         for_each_online_cpu(i)
87                 seq_printf(m, "CPU%d:\t\tonline\n", i);
88 }
89
90 void smp_bogo(struct seq_file *m)
91 {
92         int i;
93         
94         for_each_online_cpu(i)
95                 seq_printf(m,
96                            "Cpu%dClkTck\t: %016lx\n",
97                            i, cpu_data(i).clock_tick);
98 }
99
100 extern void setup_sparc64_timer(void);
101
102 static volatile unsigned long callin_flag = 0;
103
104 void smp_callin(void)
105 {
106         int cpuid = hard_smp_processor_id();
107
108         __local_per_cpu_offset = __per_cpu_offset(cpuid);
109
110         if (tlb_type == hypervisor)
111                 sun4v_ktsb_register();
112
113         __flush_tlb_all();
114
115         setup_sparc64_timer();
116
117         if (cheetah_pcache_forced_on)
118                 cheetah_enable_pcache();
119
120         callin_flag = 1;
121         __asm__ __volatile__("membar #Sync\n\t"
122                              "flush  %%g6" : : : "memory");
123
124         /* Clear this or we will die instantly when we
125          * schedule back to this idler...
126          */
127         current_thread_info()->new_child = 0;
128
129         /* Attach to the address space of init_task. */
130         mmgrab(&init_mm);
131         current->active_mm = &init_mm;
132
133         /* inform the notifiers about the new cpu */
134         notify_cpu_starting(cpuid);
135
136         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137                 rmb();
138
139         set_cpu_online(cpuid, true);
140
141         local_irq_enable();
142
143         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
144 }
145
146 void cpu_panic(void)
147 {
148         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149         panic("SMP bolixed\n");
150 }
151
152 /* This tick register synchronization scheme is taken entirely from
153  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154  *
155  * The only change I've made is to rework it so that the master
156  * initiates the synchonization instead of the slave. -DaveM
157  */
158
159 #define MASTER  0
160 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162 #define NUM_ROUNDS      64      /* magic value */
163 #define NUM_ITERS       5       /* likewise */
164
165 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166 static unsigned long go[SLAVE + 1];
167
168 #define DEBUG_TICK_SYNC 0
169
170 static inline long get_delta (long *rt, long *master)
171 {
172         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173         unsigned long tcenter, t0, t1, tm;
174         unsigned long i;
175
176         for (i = 0; i < NUM_ITERS; i++) {
177                 t0 = tick_ops->get_tick();
178                 go[MASTER] = 1;
179                 membar_safe("#StoreLoad");
180                 while (!(tm = go[SLAVE]))
181                         rmb();
182                 go[SLAVE] = 0;
183                 wmb();
184                 t1 = tick_ops->get_tick();
185
186                 if (t1 - t0 < best_t1 - best_t0)
187                         best_t0 = t0, best_t1 = t1, best_tm = tm;
188         }
189
190         *rt = best_t1 - best_t0;
191         *master = best_tm - best_t0;
192
193         /* average best_t0 and best_t1 without overflow: */
194         tcenter = (best_t0/2 + best_t1/2);
195         if (best_t0 % 2 + best_t1 % 2 == 2)
196                 tcenter++;
197         return tcenter - best_tm;
198 }
199
200 void smp_synchronize_tick_client(void)
201 {
202         long i, delta, adj, adjust_latency = 0, done = 0;
203         unsigned long flags, rt, master_time_stamp;
204 #if DEBUG_TICK_SYNC
205         struct {
206                 long rt;        /* roundtrip time */
207                 long master;    /* master's timestamp */
208                 long diff;      /* difference between midpoint and master's timestamp */
209                 long lat;       /* estimate of itc adjustment latency */
210         } t[NUM_ROUNDS];
211 #endif
212
213         go[MASTER] = 1;
214
215         while (go[MASTER])
216                 rmb();
217
218         local_irq_save(flags);
219         {
220                 for (i = 0; i < NUM_ROUNDS; i++) {
221                         delta = get_delta(&rt, &master_time_stamp);
222                         if (delta == 0)
223                                 done = 1;       /* let's lock on to this... */
224
225                         if (!done) {
226                                 if (i > 0) {
227                                         adjust_latency += -delta;
228                                         adj = -delta + adjust_latency/4;
229                                 } else
230                                         adj = -delta;
231
232                                 tick_ops->add_tick(adj);
233                         }
234 #if DEBUG_TICK_SYNC
235                         t[i].rt = rt;
236                         t[i].master = master_time_stamp;
237                         t[i].diff = delta;
238                         t[i].lat = adjust_latency/4;
239 #endif
240                 }
241         }
242         local_irq_restore(flags);
243
244 #if DEBUG_TICK_SYNC
245         for (i = 0; i < NUM_ROUNDS; i++)
246                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
248 #endif
249
250         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251                "(last diff %ld cycles, maxerr %lu cycles)\n",
252                smp_processor_id(), delta, rt);
253 }
254
255 static void smp_start_sync_tick_client(int cpu);
256
257 static void smp_synchronize_one_tick(int cpu)
258 {
259         unsigned long flags, i;
260
261         go[MASTER] = 0;
262
263         smp_start_sync_tick_client(cpu);
264
265         /* wait for client to be ready */
266         while (!go[MASTER])
267                 rmb();
268
269         /* now let the client proceed into his loop */
270         go[MASTER] = 0;
271         membar_safe("#StoreLoad");
272
273         raw_spin_lock_irqsave(&itc_sync_lock, flags);
274         {
275                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276                         while (!go[MASTER])
277                                 rmb();
278                         go[MASTER] = 0;
279                         wmb();
280                         go[SLAVE] = tick_ops->get_tick();
281                         membar_safe("#StoreLoad");
282                 }
283         }
284         raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285 }
286
287 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
288 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289                                 void **descrp)
290 {
291         extern unsigned long sparc64_ttable_tl0;
292         extern unsigned long kern_locked_tte_data;
293         struct hvtramp_descr *hdesc;
294         unsigned long trampoline_ra;
295         struct trap_per_cpu *tb;
296         u64 tte_vaddr, tte_data;
297         unsigned long hv_err;
298         int i;
299
300         hdesc = kzalloc(sizeof(*hdesc) +
301                         (sizeof(struct hvtramp_mapping) *
302                          num_kernel_image_mappings - 1),
303                         GFP_KERNEL);
304         if (!hdesc) {
305                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
306                        "hvtramp_descr.\n");
307                 return;
308         }
309         *descrp = hdesc;
310
311         hdesc->cpu = cpu;
312         hdesc->num_mappings = num_kernel_image_mappings;
313
314         tb = &trap_block[cpu];
315
316         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
317         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
318
319         hdesc->thread_reg = thread_reg;
320
321         tte_vaddr = (unsigned long) KERNBASE;
322         tte_data = kern_locked_tte_data;
323
324         for (i = 0; i < hdesc->num_mappings; i++) {
325                 hdesc->maps[i].vaddr = tte_vaddr;
326                 hdesc->maps[i].tte   = tte_data;
327                 tte_vaddr += 0x400000;
328                 tte_data  += 0x400000;
329         }
330
331         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
332
333         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
334                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
335                                  __pa(hdesc));
336         if (hv_err)
337                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
338                        "gives error %lu\n", hv_err);
339 }
340 #endif
341
342 extern unsigned long sparc64_cpu_startup;
343
344 /* The OBP cpu startup callback truncates the 3rd arg cookie to
345  * 32-bits (I think) so to be safe we have it read the pointer
346  * contained here so we work on >4GB machines. -DaveM
347  */
348 static struct thread_info *cpu_new_thread = NULL;
349
350 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
351 {
352         unsigned long entry =
353                 (unsigned long)(&sparc64_cpu_startup);
354         unsigned long cookie =
355                 (unsigned long)(&cpu_new_thread);
356         void *descr = NULL;
357         int timeout, ret;
358
359         callin_flag = 0;
360         cpu_new_thread = task_thread_info(idle);
361
362         if (tlb_type == hypervisor) {
363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364                 if (ldom_domaining_enabled)
365                         ldom_startcpu_cpuid(cpu,
366                                             (unsigned long) cpu_new_thread,
367                                             &descr);
368                 else
369 #endif
370                         prom_startcpu_cpuid(cpu, entry, cookie);
371         } else {
372                 struct device_node *dp = of_find_node_by_cpuid(cpu);
373
374                 prom_startcpu(dp->phandle, entry, cookie);
375         }
376
377         for (timeout = 0; timeout < 50000; timeout++) {
378                 if (callin_flag)
379                         break;
380                 udelay(100);
381         }
382
383         if (callin_flag) {
384                 ret = 0;
385         } else {
386                 printk("Processor %d is stuck.\n", cpu);
387                 ret = -ENODEV;
388         }
389         cpu_new_thread = NULL;
390
391         kfree(descr);
392
393         return ret;
394 }
395
396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397 {
398         u64 result, target;
399         int stuck, tmp;
400
401         if (this_is_starfire) {
402                 /* map to real upaid */
403                 cpu = (((cpu & 0x3c) << 1) |
404                         ((cpu & 0x40) >> 4) |
405                         (cpu & 0x3));
406         }
407
408         target = (cpu << 14) | 0x70;
409 again:
410         /* Ok, this is the real Spitfire Errata #54.
411          * One must read back from a UDB internal register
412          * after writes to the UDB interrupt dispatch, but
413          * before the membar Sync for that write.
414          * So we use the high UDB control register (ASI 0x7f,
415          * ADDR 0x20) for the dummy read. -DaveM
416          */
417         tmp = 0x40;
418         __asm__ __volatile__(
419         "wrpr   %1, %2, %%pstate\n\t"
420         "stxa   %4, [%0] %3\n\t"
421         "stxa   %5, [%0+%8] %3\n\t"
422         "add    %0, %8, %0\n\t"
423         "stxa   %6, [%0+%8] %3\n\t"
424         "membar #Sync\n\t"
425         "stxa   %%g0, [%7] %3\n\t"
426         "membar #Sync\n\t"
427         "mov    0x20, %%g1\n\t"
428         "ldxa   [%%g1] 0x7f, %%g0\n\t"
429         "membar #Sync"
430         : "=r" (tmp)
431         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432           "r" (data0), "r" (data1), "r" (data2), "r" (target),
433           "r" (0x10), "0" (tmp)
434         : "g1");
435
436         /* NOTE: PSTATE_IE is still clear. */
437         stuck = 100000;
438         do {
439                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440                         : "=r" (result)
441                         : "i" (ASI_INTR_DISPATCH_STAT));
442                 if (result == 0) {
443                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444                                              : : "r" (pstate));
445                         return;
446                 }
447                 stuck -= 1;
448                 if (stuck == 0)
449                         break;
450         } while (result & 0x1);
451         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452                              : : "r" (pstate));
453         if (stuck == 0) {
454                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455                        smp_processor_id(), result);
456         } else {
457                 udelay(2);
458                 goto again;
459         }
460 }
461
462 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463 {
464         u64 *mondo, data0, data1, data2;
465         u16 *cpu_list;
466         u64 pstate;
467         int i;
468
469         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470         cpu_list = __va(tb->cpu_list_pa);
471         mondo = __va(tb->cpu_mondo_block_pa);
472         data0 = mondo[0];
473         data1 = mondo[1];
474         data2 = mondo[2];
475         for (i = 0; i < cnt; i++)
476                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477 }
478
479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480  * packet, but we have no use for that.  However we do take advantage of
481  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482  */
483 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484 {
485         int nack_busy_id, is_jbus, need_more;
486         u64 *mondo, pstate, ver, busy_mask;
487         u16 *cpu_list;
488
489         cpu_list = __va(tb->cpu_list_pa);
490         mondo = __va(tb->cpu_mondo_block_pa);
491
492         /* Unfortunately, someone at Sun had the brilliant idea to make the
493          * busy/nack fields hard-coded by ITID number for this Ultra-III
494          * derivative processor.
495          */
496         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498                    (ver >> 32) == __SERRANO_ID);
499
500         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502 retry:
503         need_more = 0;
504         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505                              : : "r" (pstate), "i" (PSTATE_IE));
506
507         /* Setup the dispatch data registers. */
508         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
509                              "stxa      %1, [%4] %6\n\t"
510                              "stxa      %2, [%5] %6\n\t"
511                              "membar    #Sync\n\t"
512                              : /* no outputs */
513                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514                                "r" (0x40), "r" (0x50), "r" (0x60),
515                                "i" (ASI_INTR_W));
516
517         nack_busy_id = 0;
518         busy_mask = 0;
519         {
520                 int i;
521
522                 for (i = 0; i < cnt; i++) {
523                         u64 target, nr;
524
525                         nr = cpu_list[i];
526                         if (nr == 0xffff)
527                                 continue;
528
529                         target = (nr << 14) | 0x70;
530                         if (is_jbus) {
531                                 busy_mask |= (0x1UL << (nr * 2));
532                         } else {
533                                 target |= (nack_busy_id << 24);
534                                 busy_mask |= (0x1UL <<
535                                               (nack_busy_id * 2));
536                         }
537                         __asm__ __volatile__(
538                                 "stxa   %%g0, [%0] %1\n\t"
539                                 "membar #Sync\n\t"
540                                 : /* no outputs */
541                                 : "r" (target), "i" (ASI_INTR_W));
542                         nack_busy_id++;
543                         if (nack_busy_id == 32) {
544                                 need_more = 1;
545                                 break;
546                         }
547                 }
548         }
549
550         /* Now, poll for completion. */
551         {
552                 u64 dispatch_stat, nack_mask;
553                 long stuck;
554
555                 stuck = 100000 * nack_busy_id;
556                 nack_mask = busy_mask << 1;
557                 do {
558                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
559                                              : "=r" (dispatch_stat)
560                                              : "i" (ASI_INTR_DISPATCH_STAT));
561                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
562                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563                                                      : : "r" (pstate));
564                                 if (unlikely(need_more)) {
565                                         int i, this_cnt = 0;
566                                         for (i = 0; i < cnt; i++) {
567                                                 if (cpu_list[i] == 0xffff)
568                                                         continue;
569                                                 cpu_list[i] = 0xffff;
570                                                 this_cnt++;
571                                                 if (this_cnt == 32)
572                                                         break;
573                                         }
574                                         goto retry;
575                                 }
576                                 return;
577                         }
578                         if (!--stuck)
579                                 break;
580                 } while (dispatch_stat & busy_mask);
581
582                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583                                      : : "r" (pstate));
584
585                 if (dispatch_stat & busy_mask) {
586                         /* Busy bits will not clear, continue instead
587                          * of freezing up on this cpu.
588                          */
589                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590                                smp_processor_id(), dispatch_stat);
591                 } else {
592                         int i, this_busy_nack = 0;
593
594                         /* Delay some random time with interrupts enabled
595                          * to prevent deadlock.
596                          */
597                         udelay(2 * nack_busy_id);
598
599                         /* Clear out the mask bits for cpus which did not
600                          * NACK us.
601                          */
602                         for (i = 0; i < cnt; i++) {
603                                 u64 check_mask, nr;
604
605                                 nr = cpu_list[i];
606                                 if (nr == 0xffff)
607                                         continue;
608
609                                 if (is_jbus)
610                                         check_mask = (0x2UL << (2*nr));
611                                 else
612                                         check_mask = (0x2UL <<
613                                                       this_busy_nack);
614                                 if ((dispatch_stat & check_mask) == 0)
615                                         cpu_list[i] = 0xffff;
616                                 this_busy_nack += 2;
617                                 if (this_busy_nack == 64)
618                                         break;
619                         }
620
621                         goto retry;
622                 }
623         }
624 }
625
626 #define CPU_MONDO_COUNTER(cpuid)        (cpu_mondo_counter[cpuid])
627 #define MONDO_USEC_WAIT_MIN             2
628 #define MONDO_USEC_WAIT_MAX             100
629 #define MONDO_RETRY_LIMIT               500000
630
631 /* Multi-cpu list version.
632  *
633  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
634  * Sometimes not all cpus receive the mondo, requiring us to re-send
635  * the mondo until all cpus have received, or cpus are truly stuck
636  * unable to receive mondo, and we timeout.
637  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
638  * perform guest service, such as PCIe error handling. Consider the
639  * service time, 1 second overall wait is reasonable for 1 cpu.
640  * Here two in-between mondo check wait time are defined: 2 usec for
641  * single cpu quick turn around and up to 100usec for large cpu count.
642  * Deliver mondo to large number of cpus could take longer, we adjusts
643  * the retry count as long as target cpus are making forward progress.
644  */
645 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
646 {
647         int this_cpu, tot_cpus, prev_sent, i, rem;
648         int usec_wait, retries, tot_retries;
649         u16 first_cpu = 0xffff;
650         unsigned long xc_rcvd = 0;
651         unsigned long status;
652         int ecpuerror_id = 0;
653         int enocpu_id = 0;
654         u16 *cpu_list;
655         u16 cpu;
656
657         this_cpu = smp_processor_id();
658         cpu_list = __va(tb->cpu_list_pa);
659         usec_wait = cnt * MONDO_USEC_WAIT_MIN;
660         if (usec_wait > MONDO_USEC_WAIT_MAX)
661                 usec_wait = MONDO_USEC_WAIT_MAX;
662         retries = tot_retries = 0;
663         tot_cpus = cnt;
664         prev_sent = 0;
665
666         do {
667                 int n_sent, mondo_delivered, target_cpu_busy;
668
669                 status = sun4v_cpu_mondo_send(cnt,
670                                               tb->cpu_list_pa,
671                                               tb->cpu_mondo_block_pa);
672
673                 /* HV_EOK means all cpus received the xcall, we're done.  */
674                 if (likely(status == HV_EOK))
675                         goto xcall_done;
676
677                 /* If not these non-fatal errors, panic */
678                 if (unlikely((status != HV_EWOULDBLOCK) &&
679                         (status != HV_ECPUERROR) &&
680                         (status != HV_ENOCPU)))
681                         goto fatal_errors;
682
683                 /* First, see if we made any forward progress.
684                  *
685                  * Go through the cpu_list, count the target cpus that have
686                  * received our mondo (n_sent), and those that did not (rem).
687                  * Re-pack cpu_list with the cpus remain to be retried in the
688                  * front - this simplifies tracking the truly stalled cpus.
689                  *
690                  * The hypervisor indicates successful sends by setting
691                  * cpu list entries to the value 0xffff.
692                  *
693                  * EWOULDBLOCK means some target cpus did not receive the
694                  * mondo and retry usually helps.
695                  *
696                  * ECPUERROR means at least one target cpu is in error state,
697                  * it's usually safe to skip the faulty cpu and retry.
698                  *
699                  * ENOCPU means one of the target cpu doesn't belong to the
700                  * domain, perhaps offlined which is unexpected, but not
701                  * fatal and it's okay to skip the offlined cpu.
702                  */
703                 rem = 0;
704                 n_sent = 0;
705                 for (i = 0; i < cnt; i++) {
706                         cpu = cpu_list[i];
707                         if (likely(cpu == 0xffff)) {
708                                 n_sent++;
709                         } else if ((status == HV_ECPUERROR) &&
710                                 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
711                                 ecpuerror_id = cpu + 1;
712                         } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
713                                 enocpu_id = cpu + 1;
714                         } else {
715                                 cpu_list[rem++] = cpu;
716                         }
717                 }
718
719                 /* No cpu remained, we're done. */
720                 if (rem == 0)
721                         break;
722
723                 /* Otherwise, update the cpu count for retry. */
724                 cnt = rem;
725
726                 /* Record the overall number of mondos received by the
727                  * first of the remaining cpus.
728                  */
729                 if (first_cpu != cpu_list[0]) {
730                         first_cpu = cpu_list[0];
731                         xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
732                 }
733
734                 /* Was any mondo delivered successfully? */
735                 mondo_delivered = (n_sent > prev_sent);
736                 prev_sent = n_sent;
737
738                 /* or, was any target cpu busy processing other mondos? */
739                 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
740                 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
741
742                 /* Retry count is for no progress. If we're making progress,
743                  * reset the retry count.
744                  */
745                 if (likely(mondo_delivered || target_cpu_busy)) {
746                         tot_retries += retries;
747                         retries = 0;
748                 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
749                         goto fatal_mondo_timeout;
750                 }
751
752                 /* Delay a little bit to let other cpus catch up on
753                  * their cpu mondo queue work.
754                  */
755                 if (!mondo_delivered)
756                         udelay(usec_wait);
757
758                 retries++;
759         } while (1);
760
761 xcall_done:
762         if (unlikely(ecpuerror_id > 0)) {
763                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
764                        this_cpu, ecpuerror_id - 1);
765         } else if (unlikely(enocpu_id > 0)) {
766                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
767                        this_cpu, enocpu_id - 1);
768         }
769         return;
770
771 fatal_errors:
772         /* fatal errors include bad alignment, etc */
773         pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
774                this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
775         panic("Unexpected SUN4V mondo error %lu\n", status);
776
777 fatal_mondo_timeout:
778         /* some cpus being non-responsive to the cpu mondo */
779         pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
780                this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
781         panic("SUN4V mondo timeout panic\n");
782 }
783
784 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
785
786 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
787 {
788         struct trap_per_cpu *tb;
789         int this_cpu, i, cnt;
790         unsigned long flags;
791         u16 *cpu_list;
792         u64 *mondo;
793
794         /* We have to do this whole thing with interrupts fully disabled.
795          * Otherwise if we send an xcall from interrupt context it will
796          * corrupt both our mondo block and cpu list state.
797          *
798          * One consequence of this is that we cannot use timeout mechanisms
799          * that depend upon interrupts being delivered locally.  So, for
800          * example, we cannot sample jiffies and expect it to advance.
801          *
802          * Fortunately, udelay() uses %stick/%tick so we can use that.
803          */
804         local_irq_save(flags);
805
806         this_cpu = smp_processor_id();
807         tb = &trap_block[this_cpu];
808
809         mondo = __va(tb->cpu_mondo_block_pa);
810         mondo[0] = data0;
811         mondo[1] = data1;
812         mondo[2] = data2;
813         wmb();
814
815         cpu_list = __va(tb->cpu_list_pa);
816
817         /* Setup the initial cpu list.  */
818         cnt = 0;
819         for_each_cpu(i, mask) {
820                 if (i == this_cpu || !cpu_online(i))
821                         continue;
822                 cpu_list[cnt++] = i;
823         }
824
825         if (cnt)
826                 xcall_deliver_impl(tb, cnt);
827
828         local_irq_restore(flags);
829 }
830
831 /* Send cross call to all processors mentioned in MASK_P
832  * except self.  Really, there are only two cases currently,
833  * "cpu_online_mask" and "mm_cpumask(mm)".
834  */
835 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
836 {
837         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
838
839         xcall_deliver(data0, data1, data2, mask);
840 }
841
842 /* Send cross call to all processors except self. */
843 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
844 {
845         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
846 }
847
848 extern unsigned long xcall_sync_tick;
849
850 static void smp_start_sync_tick_client(int cpu)
851 {
852         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
853                       cpumask_of(cpu));
854 }
855
856 extern unsigned long xcall_call_function;
857
858 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
859 {
860         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
861 }
862
863 extern unsigned long xcall_call_function_single;
864
865 void arch_send_call_function_single_ipi(int cpu)
866 {
867         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
868                       cpumask_of(cpu));
869 }
870
871 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
872 {
873         clear_softint(1 << irq);
874         irq_enter();
875         generic_smp_call_function_interrupt();
876         irq_exit();
877 }
878
879 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
880 {
881         clear_softint(1 << irq);
882         irq_enter();
883         generic_smp_call_function_single_interrupt();
884         irq_exit();
885 }
886
887 static void tsb_sync(void *info)
888 {
889         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
890         struct mm_struct *mm = info;
891
892         /* It is not valid to test "current->active_mm == mm" here.
893          *
894          * The value of "current" is not changed atomically with
895          * switch_mm().  But that's OK, we just need to check the
896          * current cpu's trap block PGD physical address.
897          */
898         if (tp->pgd_paddr == __pa(mm->pgd))
899                 tsb_context_switch(mm);
900 }
901
902 void smp_tsb_sync(struct mm_struct *mm)
903 {
904         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
905 }
906
907 extern unsigned long xcall_flush_tlb_mm;
908 extern unsigned long xcall_flush_tlb_page;
909 extern unsigned long xcall_flush_tlb_kernel_range;
910 extern unsigned long xcall_fetch_glob_regs;
911 extern unsigned long xcall_fetch_glob_pmu;
912 extern unsigned long xcall_fetch_glob_pmu_n4;
913 extern unsigned long xcall_receive_signal;
914 extern unsigned long xcall_new_mmu_context_version;
915 #ifdef CONFIG_KGDB
916 extern unsigned long xcall_kgdb_capture;
917 #endif
918
919 #ifdef DCACHE_ALIASING_POSSIBLE
920 extern unsigned long xcall_flush_dcache_page_cheetah;
921 #endif
922 extern unsigned long xcall_flush_dcache_page_spitfire;
923
924 static inline void __local_flush_dcache_folio(struct folio *folio)
925 {
926         unsigned int i, nr = folio_nr_pages(folio);
927
928 #ifdef DCACHE_ALIASING_POSSIBLE
929         for (i = 0; i < nr; i++)
930                 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
931                             ((tlb_type == spitfire) &&
932                              folio_flush_mapping(folio) != NULL));
933 #else
934         if (folio_flush_mapping(folio) != NULL &&
935             tlb_type == spitfire) {
936                 unsigned long pfn = folio_pfn(folio)
937                 for (i = 0; i < nr; i++)
938                         __flush_icache_page((pfn + i) * PAGE_SIZE);
939         }
940 #endif
941 }
942
943 void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
944 {
945         int this_cpu;
946
947         if (tlb_type == hypervisor)
948                 return;
949
950 #ifdef CONFIG_DEBUG_DCFLUSH
951         atomic_inc(&dcpage_flushes);
952 #endif
953
954         this_cpu = get_cpu();
955
956         if (cpu == this_cpu) {
957                 __local_flush_dcache_folio(folio);
958         } else if (cpu_online(cpu)) {
959                 void *pg_addr = folio_address(folio);
960                 u64 data0 = 0;
961
962                 if (tlb_type == spitfire) {
963                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
964                         if (folio_flush_mapping(folio) != NULL)
965                                 data0 |= ((u64)1 << 32);
966                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
967 #ifdef DCACHE_ALIASING_POSSIBLE
968                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
969 #endif
970                 }
971                 if (data0) {
972                         unsigned int i, nr = folio_nr_pages(folio);
973
974                         for (i = 0; i < nr; i++) {
975                                 xcall_deliver(data0, __pa(pg_addr),
976                                               (u64) pg_addr, cpumask_of(cpu));
977 #ifdef CONFIG_DEBUG_DCFLUSH
978                                 atomic_inc(&dcpage_flushes_xcall);
979 #endif
980                                 pg_addr += PAGE_SIZE;
981                         }
982                 }
983         }
984
985         put_cpu();
986 }
987
988 void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
989 {
990         void *pg_addr;
991         u64 data0;
992
993         if (tlb_type == hypervisor)
994                 return;
995
996         preempt_disable();
997
998 #ifdef CONFIG_DEBUG_DCFLUSH
999         atomic_inc(&dcpage_flushes);
1000 #endif
1001         data0 = 0;
1002         pg_addr = folio_address(folio);
1003         if (tlb_type == spitfire) {
1004                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1005                 if (folio_flush_mapping(folio) != NULL)
1006                         data0 |= ((u64)1 << 32);
1007         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1008 #ifdef DCACHE_ALIASING_POSSIBLE
1009                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1010 #endif
1011         }
1012         if (data0) {
1013                 unsigned int i, nr = folio_nr_pages(folio);
1014
1015                 for (i = 0; i < nr; i++) {
1016                         xcall_deliver(data0, __pa(pg_addr),
1017                                       (u64) pg_addr, cpu_online_mask);
1018 #ifdef CONFIG_DEBUG_DCFLUSH
1019                         atomic_inc(&dcpage_flushes_xcall);
1020 #endif
1021                         pg_addr += PAGE_SIZE;
1022                 }
1023         }
1024         __local_flush_dcache_folio(folio);
1025
1026         preempt_enable();
1027 }
1028
1029 #ifdef CONFIG_KGDB
1030 void kgdb_roundup_cpus(void)
1031 {
1032         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1033 }
1034 #endif
1035
1036 void smp_fetch_global_regs(void)
1037 {
1038         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1039 }
1040
1041 void smp_fetch_global_pmu(void)
1042 {
1043         if (tlb_type == hypervisor &&
1044             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1045                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1046         else
1047                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1048 }
1049
1050 /* We know that the window frames of the user have been flushed
1051  * to the stack before we get here because all callers of us
1052  * are flush_tlb_*() routines, and these run after flush_cache_*()
1053  * which performs the flushw.
1054  *
1055  * mm->cpu_vm_mask is a bit mask of which cpus an address
1056  * space has (potentially) executed on, this is the heuristic
1057  * we use to limit cross calls.
1058  */
1059
1060 /* This currently is only used by the hugetlb arch pre-fault
1061  * hook on UltraSPARC-III+ and later when changing the pagesize
1062  * bits of the context register for an address space.
1063  */
1064 void smp_flush_tlb_mm(struct mm_struct *mm)
1065 {
1066         u32 ctx = CTX_HWBITS(mm->context);
1067
1068         get_cpu();
1069
1070         smp_cross_call_masked(&xcall_flush_tlb_mm,
1071                               ctx, 0, 0,
1072                               mm_cpumask(mm));
1073
1074         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1075
1076         put_cpu();
1077 }
1078
1079 struct tlb_pending_info {
1080         unsigned long ctx;
1081         unsigned long nr;
1082         unsigned long *vaddrs;
1083 };
1084
1085 static void tlb_pending_func(void *info)
1086 {
1087         struct tlb_pending_info *t = info;
1088
1089         __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1090 }
1091
1092 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1093 {
1094         u32 ctx = CTX_HWBITS(mm->context);
1095         struct tlb_pending_info info;
1096
1097         get_cpu();
1098
1099         info.ctx = ctx;
1100         info.nr = nr;
1101         info.vaddrs = vaddrs;
1102
1103         smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104                                &info, 1);
1105
1106         __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108         put_cpu();
1109 }
1110
1111 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112 {
1113         unsigned long context = CTX_HWBITS(mm->context);
1114
1115         get_cpu();
1116
1117         smp_cross_call_masked(&xcall_flush_tlb_page,
1118                               context, vaddr, 0,
1119                               mm_cpumask(mm));
1120
1121         __flush_tlb_page(context, vaddr);
1122
1123         put_cpu();
1124 }
1125
1126 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1127 {
1128         start &= PAGE_MASK;
1129         end    = PAGE_ALIGN(end);
1130         if (start != end) {
1131                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1132                                0, start, end);
1133
1134                 __flush_tlb_kernel_range(start, end);
1135         }
1136 }
1137
1138 /* CPU capture. */
1139 /* #define CAPTURE_DEBUG */
1140 extern unsigned long xcall_capture;
1141
1142 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1143 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1144 static unsigned long penguins_are_doing_time;
1145
1146 void smp_capture(void)
1147 {
1148         int result = atomic_add_return(1, &smp_capture_depth);
1149
1150         if (result == 1) {
1151                 int ncpus = num_online_cpus();
1152
1153 #ifdef CAPTURE_DEBUG
1154                 printk("CPU[%d]: Sending penguins to jail...",
1155                        smp_processor_id());
1156 #endif
1157                 penguins_are_doing_time = 1;
1158                 atomic_inc(&smp_capture_registry);
1159                 smp_cross_call(&xcall_capture, 0, 0, 0);
1160                 while (atomic_read(&smp_capture_registry) != ncpus)
1161                         rmb();
1162 #ifdef CAPTURE_DEBUG
1163                 printk("done\n");
1164 #endif
1165         }
1166 }
1167
1168 void smp_release(void)
1169 {
1170         if (atomic_dec_and_test(&smp_capture_depth)) {
1171 #ifdef CAPTURE_DEBUG
1172                 printk("CPU[%d]: Giving pardon to "
1173                        "imprisoned penguins\n",
1174                        smp_processor_id());
1175 #endif
1176                 penguins_are_doing_time = 0;
1177                 membar_safe("#StoreLoad");
1178                 atomic_dec(&smp_capture_registry);
1179         }
1180 }
1181
1182 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1183  * set, so they can service tlb flush xcalls...
1184  */
1185 extern void prom_world(int);
1186
1187 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1188 {
1189         clear_softint(1 << irq);
1190
1191         preempt_disable();
1192
1193         __asm__ __volatile__("flushw");
1194         prom_world(1);
1195         atomic_inc(&smp_capture_registry);
1196         membar_safe("#StoreLoad");
1197         while (penguins_are_doing_time)
1198                 rmb();
1199         atomic_dec(&smp_capture_registry);
1200         prom_world(0);
1201
1202         preempt_enable();
1203 }
1204
1205 void __init smp_prepare_cpus(unsigned int max_cpus)
1206 {
1207 }
1208
1209 void smp_prepare_boot_cpu(void)
1210 {
1211 }
1212
1213 void __init smp_setup_processor_id(void)
1214 {
1215         if (tlb_type == spitfire)
1216                 xcall_deliver_impl = spitfire_xcall_deliver;
1217         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1218                 xcall_deliver_impl = cheetah_xcall_deliver;
1219         else
1220                 xcall_deliver_impl = hypervisor_xcall_deliver;
1221 }
1222
1223 void __init smp_fill_in_cpu_possible_map(void)
1224 {
1225         int possible_cpus = num_possible_cpus();
1226         int i;
1227
1228         if (possible_cpus > nr_cpu_ids)
1229                 possible_cpus = nr_cpu_ids;
1230
1231         for (i = 0; i < possible_cpus; i++)
1232                 set_cpu_possible(i, true);
1233         for (; i < NR_CPUS; i++)
1234                 set_cpu_possible(i, false);
1235 }
1236
1237 void smp_fill_in_sib_core_maps(void)
1238 {
1239         unsigned int i;
1240
1241         for_each_present_cpu(i) {
1242                 unsigned int j;
1243
1244                 cpumask_clear(&cpu_core_map[i]);
1245                 if (cpu_data(i).core_id == 0) {
1246                         cpumask_set_cpu(i, &cpu_core_map[i]);
1247                         continue;
1248                 }
1249
1250                 for_each_present_cpu(j) {
1251                         if (cpu_data(i).core_id ==
1252                             cpu_data(j).core_id)
1253                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1254                 }
1255         }
1256
1257         for_each_present_cpu(i)  {
1258                 unsigned int j;
1259
1260                 for_each_present_cpu(j)  {
1261                         if (cpu_data(i).max_cache_id ==
1262                             cpu_data(j).max_cache_id)
1263                                 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1264
1265                         if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1266                                 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1267                 }
1268         }
1269
1270         for_each_present_cpu(i) {
1271                 unsigned int j;
1272
1273                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1274                 if (cpu_data(i).proc_id == -1) {
1275                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1276                         continue;
1277                 }
1278
1279                 for_each_present_cpu(j) {
1280                         if (cpu_data(i).proc_id ==
1281                             cpu_data(j).proc_id)
1282                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1283                 }
1284         }
1285 }
1286
1287 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1288 {
1289         int ret = smp_boot_one_cpu(cpu, tidle);
1290
1291         if (!ret) {
1292                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1293                 while (!cpu_online(cpu))
1294                         mb();
1295                 if (!cpu_online(cpu)) {
1296                         ret = -ENODEV;
1297                 } else {
1298                         /* On SUN4V, writes to %tick and %stick are
1299                          * not allowed.
1300                          */
1301                         if (tlb_type != hypervisor)
1302                                 smp_synchronize_one_tick(cpu);
1303                 }
1304         }
1305         return ret;
1306 }
1307
1308 #ifdef CONFIG_HOTPLUG_CPU
1309 void cpu_play_dead(void)
1310 {
1311         int cpu = smp_processor_id();
1312         unsigned long pstate;
1313
1314         idle_task_exit();
1315
1316         if (tlb_type == hypervisor) {
1317                 struct trap_per_cpu *tb = &trap_block[cpu];
1318
1319                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1320                                 tb->cpu_mondo_pa, 0);
1321                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1322                                 tb->dev_mondo_pa, 0);
1323                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1324                                 tb->resum_mondo_pa, 0);
1325                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1326                                 tb->nonresum_mondo_pa, 0);
1327         }
1328
1329         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1330         membar_safe("#Sync");
1331
1332         local_irq_disable();
1333
1334         __asm__ __volatile__(
1335                 "rdpr   %%pstate, %0\n\t"
1336                 "wrpr   %0, %1, %%pstate"
1337                 : "=r" (pstate)
1338                 : "i" (PSTATE_IE));
1339
1340         while (1)
1341                 barrier();
1342 }
1343
1344 int __cpu_disable(void)
1345 {
1346         int cpu = smp_processor_id();
1347         cpuinfo_sparc *c;
1348         int i;
1349
1350         for_each_cpu(i, &cpu_core_map[cpu])
1351                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1352         cpumask_clear(&cpu_core_map[cpu]);
1353
1354         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1355                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1356         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1357
1358         c = &cpu_data(cpu);
1359
1360         c->core_id = 0;
1361         c->proc_id = -1;
1362
1363         smp_wmb();
1364
1365         /* Make sure no interrupts point to this cpu.  */
1366         fixup_irqs();
1367
1368         local_irq_enable();
1369         mdelay(1);
1370         local_irq_disable();
1371
1372         set_cpu_online(cpu, false);
1373
1374         cpu_map_rebuild();
1375
1376         return 0;
1377 }
1378
1379 void __cpu_die(unsigned int cpu)
1380 {
1381         int i;
1382
1383         for (i = 0; i < 100; i++) {
1384                 smp_rmb();
1385                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1386                         break;
1387                 msleep(100);
1388         }
1389         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1390                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1391         } else {
1392 #if defined(CONFIG_SUN_LDOMS)
1393                 unsigned long hv_err;
1394                 int limit = 100;
1395
1396                 do {
1397                         hv_err = sun4v_cpu_stop(cpu);
1398                         if (hv_err == HV_EOK) {
1399                                 set_cpu_present(cpu, false);
1400                                 break;
1401                         }
1402                 } while (--limit > 0);
1403                 if (limit <= 0) {
1404                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1405                                hv_err);
1406                 }
1407 #endif
1408         }
1409 }
1410 #endif
1411
1412 void __init smp_cpus_done(unsigned int max_cpus)
1413 {
1414 }
1415
1416 static void send_cpu_ipi(int cpu)
1417 {
1418         xcall_deliver((u64) &xcall_receive_signal,
1419                         0, 0, cpumask_of(cpu));
1420 }
1421
1422 void scheduler_poke(void)
1423 {
1424         if (!cpu_poke)
1425                 return;
1426
1427         if (!__this_cpu_read(poke))
1428                 return;
1429
1430         __this_cpu_write(poke, false);
1431         set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432 }
1433
1434 static unsigned long send_cpu_poke(int cpu)
1435 {
1436         unsigned long hv_err;
1437
1438         per_cpu(poke, cpu) = true;
1439         hv_err = sun4v_cpu_poke(cpu);
1440         if (hv_err != HV_EOK) {
1441                 per_cpu(poke, cpu) = false;
1442                 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1443                                     __func__, hv_err);
1444         }
1445
1446         return hv_err;
1447 }
1448
1449 void arch_smp_send_reschedule(int cpu)
1450 {
1451         if (cpu == smp_processor_id()) {
1452                 WARN_ON_ONCE(preemptible());
1453                 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1454                 return;
1455         }
1456
1457         /* Use cpu poke to resume idle cpu if supported. */
1458         if (cpu_poke && idle_cpu(cpu)) {
1459                 unsigned long ret;
1460
1461                 ret = send_cpu_poke(cpu);
1462                 if (ret == HV_EOK)
1463                         return;
1464         }
1465
1466         /* Use IPI in following cases:
1467          * - cpu poke not supported
1468          * - cpu not idle
1469          * - send_cpu_poke() returns with error
1470          */
1471         send_cpu_ipi(cpu);
1472 }
1473
1474 void smp_init_cpu_poke(void)
1475 {
1476         unsigned long major;
1477         unsigned long minor;
1478         int ret;
1479
1480         if (tlb_type != hypervisor)
1481                 return;
1482
1483         ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1484         if (ret) {
1485                 pr_debug("HV_GRP_CORE is not registered\n");
1486                 return;
1487         }
1488
1489         if (major == 1 && minor >= 6) {
1490                 /* CPU POKE is registered. */
1491                 cpu_poke = true;
1492                 return;
1493         }
1494
1495         pr_debug("CPU_POKE not supported\n");
1496 }
1497
1498 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1499 {
1500         clear_softint(1 << irq);
1501         scheduler_ipi();
1502 }
1503
1504 static void stop_this_cpu(void *dummy)
1505 {
1506         set_cpu_online(smp_processor_id(), false);
1507         prom_stopself();
1508 }
1509
1510 void smp_send_stop(void)
1511 {
1512         int cpu;
1513
1514         if (tlb_type == hypervisor) {
1515                 int this_cpu = smp_processor_id();
1516 #ifdef CONFIG_SERIAL_SUNHV
1517                 sunhv_migrate_hvcons_irq(this_cpu);
1518 #endif
1519                 for_each_online_cpu(cpu) {
1520                         if (cpu == this_cpu)
1521                                 continue;
1522
1523                         set_cpu_online(cpu, false);
1524 #ifdef CONFIG_SUN_LDOMS
1525                         if (ldom_domaining_enabled) {
1526                                 unsigned long hv_err;
1527                                 hv_err = sun4v_cpu_stop(cpu);
1528                                 if (hv_err)
1529                                         printk(KERN_ERR "sun4v_cpu_stop() "
1530                                                "failed err=%lu\n", hv_err);
1531                         } else
1532 #endif
1533                                 prom_stopcpu_cpuid(cpu);
1534                 }
1535         } else
1536                 smp_call_function(stop_this_cpu, NULL, 0);
1537 }
1538
1539 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1540 {
1541         if (cpu_to_node(from) == cpu_to_node(to))
1542                 return LOCAL_DISTANCE;
1543         else
1544                 return REMOTE_DISTANCE;
1545 }
1546
1547 static int __init pcpu_cpu_to_node(int cpu)
1548 {
1549         return cpu_to_node(cpu);
1550 }
1551
1552 void __init setup_per_cpu_areas(void)
1553 {
1554         unsigned long delta;
1555         unsigned int cpu;
1556         int rc = -EINVAL;
1557
1558         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1559                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1560                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1561                                             pcpu_cpu_distance,
1562                                             pcpu_cpu_to_node);
1563                 if (rc)
1564                         pr_warn("PERCPU: %s allocator failed (%d), "
1565                                 "falling back to page size\n",
1566                                 pcpu_fc_names[pcpu_chosen_fc], rc);
1567         }
1568         if (rc < 0)
1569                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1570                                            pcpu_cpu_to_node);
1571         if (rc < 0)
1572                 panic("cannot initialize percpu area (err=%d)", rc);
1573
1574         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1575         for_each_possible_cpu(cpu)
1576                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1577
1578         /* Setup %g5 for the boot cpu.  */
1579         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1580
1581         of_fill_in_cpu_data();
1582         if (tlb_type == hypervisor)
1583                 mdesc_fill_in_cpu_data(cpu_all_mask);
1584 }