1 // SPDX-License-Identifier: GPL-2.0
3 * IBM System z Huge TLB Page Support for Kernel.
5 * Copyright IBM Corp. 2007,2020
6 * Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
9 #define KMSG_COMPONENT "hugetlb"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/sched/mm.h>
16 #include <linux/security.h>
19 * If the bit selected by single-bit bitmask "a" is set within "x", move
20 * it to the position indicated by single-bit bitmask "b".
22 #define move_set_bit(x, a, b) (((x) & (a)) >> ilog2(a) << ilog2(b))
24 static inline unsigned long __pte_to_rste(pte_t pte)
29 * Convert encoding pte bits pmd / pud bits
30 * lIR.uswrdy.p dy..R...I...wr
31 * empty 010.000000.0 -> 00..0...1...00
32 * prot-none, clean, old 111.000000.1 -> 00..1...1...00
33 * prot-none, clean, young 111.000001.1 -> 01..1...1...00
34 * prot-none, dirty, old 111.000010.1 -> 10..1...1...00
35 * prot-none, dirty, young 111.000011.1 -> 11..1...1...00
36 * read-only, clean, old 111.000100.1 -> 00..1...1...01
37 * read-only, clean, young 101.000101.1 -> 01..1...0...01
38 * read-only, dirty, old 111.000110.1 -> 10..1...1...01
39 * read-only, dirty, young 101.000111.1 -> 11..1...0...01
40 * read-write, clean, old 111.001100.1 -> 00..1...1...11
41 * read-write, clean, young 101.001101.1 -> 01..1...0...11
42 * read-write, dirty, old 110.001110.1 -> 10..0...1...11
43 * read-write, dirty, young 100.001111.1 -> 11..0...0...11
44 * HW-bits: R read-only, I invalid
45 * SW-bits: p present, y young, d dirty, r read, w write, s special,
48 if (pte_present(pte)) {
49 rste = pte_val(pte) & PAGE_MASK;
50 rste |= move_set_bit(pte_val(pte), _PAGE_READ,
52 rste |= move_set_bit(pte_val(pte), _PAGE_WRITE,
53 _SEGMENT_ENTRY_WRITE);
54 rste |= move_set_bit(pte_val(pte), _PAGE_INVALID,
55 _SEGMENT_ENTRY_INVALID);
56 rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT,
57 _SEGMENT_ENTRY_PROTECT);
58 rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY,
59 _SEGMENT_ENTRY_DIRTY);
60 rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG,
61 _SEGMENT_ENTRY_YOUNG);
62 #ifdef CONFIG_MEM_SOFT_DIRTY
63 rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY,
64 _SEGMENT_ENTRY_SOFT_DIRTY);
66 rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC,
67 _SEGMENT_ENTRY_NOEXEC);
69 rste = _SEGMENT_ENTRY_EMPTY;
73 static inline pte_t __rste_to_pte(unsigned long rste)
78 if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
79 present = pud_present(__pud(rste));
81 present = pmd_present(__pmd(rste));
84 * Convert encoding pmd / pud bits pte bits
85 * dy..R...I...wr lIR.uswrdy.p
86 * empty 00..0...1...00 -> 010.000000.0
87 * prot-none, clean, old 00..1...1...00 -> 111.000000.1
88 * prot-none, clean, young 01..1...1...00 -> 111.000001.1
89 * prot-none, dirty, old 10..1...1...00 -> 111.000010.1
90 * prot-none, dirty, young 11..1...1...00 -> 111.000011.1
91 * read-only, clean, old 00..1...1...01 -> 111.000100.1
92 * read-only, clean, young 01..1...0...01 -> 101.000101.1
93 * read-only, dirty, old 10..1...1...01 -> 111.000110.1
94 * read-only, dirty, young 11..1...0...01 -> 101.000111.1
95 * read-write, clean, old 00..1...1...11 -> 111.001100.1
96 * read-write, clean, young 01..1...0...11 -> 101.001101.1
97 * read-write, dirty, old 10..0...1...11 -> 110.001110.1
98 * read-write, dirty, young 11..0...0...11 -> 100.001111.1
99 * HW-bits: R read-only, I invalid
100 * SW-bits: p present, y young, d dirty, r read, w write, s special,
104 pte_val(pte) = rste & _SEGMENT_ENTRY_ORIGIN_LARGE;
105 pte_val(pte) |= _PAGE_LARGE | _PAGE_PRESENT;
106 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_READ,
108 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE,
110 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID,
112 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT,
114 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY,
116 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG,
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY,
122 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC,
125 pte_val(pte) = _PAGE_INVALID;
129 static void clear_huge_pte_skeys(struct mm_struct *mm, unsigned long rste)
132 unsigned long size, paddr;
134 if (!mm_uses_skeys(mm) ||
135 rste & _SEGMENT_ENTRY_INVALID)
138 if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
139 page = pud_page(__pud(rste));
141 paddr = rste & PUD_MASK;
143 page = pmd_page(__pmd(rste));
145 paddr = rste & PMD_MASK;
148 if (!test_and_set_bit(PG_arch_1, &page->flags))
149 __storage_key_init_range(paddr, paddr + size);
152 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
153 pte_t *ptep, pte_t pte)
157 rste = __pte_to_rste(pte);
159 rste &= ~_SEGMENT_ENTRY_NOEXEC;
161 /* Set correct table type for 2G hugepages */
162 if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
163 if (likely(pte_present(pte)))
164 rste |= _REGION3_ENTRY_LARGE;
165 rste |= _REGION_ENTRY_TYPE_R3;
166 } else if (likely(pte_present(pte)))
167 rste |= _SEGMENT_ENTRY_LARGE;
169 clear_huge_pte_skeys(mm, rste);
170 pte_val(*ptep) = rste;
173 pte_t huge_ptep_get(pte_t *ptep)
175 return __rste_to_pte(pte_val(*ptep));
178 pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
179 unsigned long addr, pte_t *ptep)
181 pte_t pte = huge_ptep_get(ptep);
182 pmd_t *pmdp = (pmd_t *) ptep;
183 pud_t *pudp = (pud_t *) ptep;
185 if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
186 pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY));
188 pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
192 pte_t *huge_pte_alloc(struct mm_struct *mm,
193 unsigned long addr, unsigned long sz)
200 pgdp = pgd_offset(mm, addr);
201 p4dp = p4d_alloc(mm, pgdp, addr);
203 pudp = pud_alloc(mm, p4dp, addr);
206 return (pte_t *) pudp;
207 else if (sz == PMD_SIZE)
208 pmdp = pmd_alloc(mm, pudp, addr);
211 return (pte_t *) pmdp;
214 pte_t *huge_pte_offset(struct mm_struct *mm,
215 unsigned long addr, unsigned long sz)
222 pgdp = pgd_offset(mm, addr);
223 if (pgd_present(*pgdp)) {
224 p4dp = p4d_offset(pgdp, addr);
225 if (p4d_present(*p4dp)) {
226 pudp = pud_offset(p4dp, addr);
227 if (pud_present(*pudp)) {
228 if (pud_large(*pudp))
229 return (pte_t *) pudp;
230 pmdp = pmd_offset(pudp, addr);
234 return (pte_t *) pmdp;
237 int pmd_huge(pmd_t pmd)
239 return pmd_large(pmd);
242 int pud_huge(pud_t pud)
244 return pud_large(pud);
248 follow_huge_pud(struct mm_struct *mm, unsigned long address,
249 pud_t *pud, int flags)
251 if (flags & FOLL_GET)
254 return pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
257 static __init int setup_hugepagesz(char *opt)
262 size = memparse(opt, &opt);
263 if (MACHINE_HAS_EDAT1 && size == PMD_SIZE) {
264 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
265 } else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE) {
266 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
269 pr_err("hugepagesz= specifies an unsupported page size %s\n",
275 __setup("hugepagesz=", setup_hugepagesz);
277 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
278 unsigned long addr, unsigned long len,
279 unsigned long pgoff, unsigned long flags)
281 struct hstate *h = hstate_file(file);
282 struct vm_unmapped_area_info info;
286 info.low_limit = current->mm->mmap_base;
287 info.high_limit = TASK_SIZE;
288 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
289 info.align_offset = 0;
290 return vm_unmapped_area(&info);
293 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
294 unsigned long addr0, unsigned long len,
295 unsigned long pgoff, unsigned long flags)
297 struct hstate *h = hstate_file(file);
298 struct vm_unmapped_area_info info;
301 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
303 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
304 info.high_limit = current->mm->mmap_base;
305 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
306 info.align_offset = 0;
307 addr = vm_unmapped_area(&info);
310 * A failed mmap() very likely causes application failure,
311 * so fall back to the bottom-up function here. This scenario
312 * can happen with large stack limits and large mmap()
315 if (addr & ~PAGE_MASK) {
316 VM_BUG_ON(addr != -ENOMEM);
318 info.low_limit = TASK_UNMAPPED_BASE;
319 info.high_limit = TASK_SIZE;
320 addr = vm_unmapped_area(&info);
326 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
327 unsigned long len, unsigned long pgoff, unsigned long flags)
329 struct hstate *h = hstate_file(file);
330 struct mm_struct *mm = current->mm;
331 struct vm_area_struct *vma;
334 if (len & ~huge_page_mask(h))
336 if (len > TASK_SIZE - mmap_min_addr)
339 if (flags & MAP_FIXED) {
340 if (prepare_hugepage_range(file, addr, len))
342 goto check_asce_limit;
346 addr = ALIGN(addr, huge_page_size(h));
347 vma = find_vma(mm, addr);
348 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
349 (!vma || addr + len <= vm_start_gap(vma)))
350 goto check_asce_limit;
353 if (mm->get_unmapped_area == arch_get_unmapped_area)
354 addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
357 addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
359 if (addr & ~PAGE_MASK)
363 if (addr + len > current->mm->context.asce_limit &&
364 addr + len <= TASK_SIZE) {
365 rc = crst_table_upgrade(mm, addr + len);
367 return (unsigned long) rc;