GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / s390 / mm / hugetlbpage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  IBM System z Huge TLB Page Support for Kernel.
4  *
5  *    Copyright IBM Corp. 2007,2020
6  *    Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
7  */
8
9 #define KMSG_COMPONENT "hugetlb"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11
12 #include <asm/pgalloc.h>
13 #include <linux/mm.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mman.h>
16 #include <linux/sched/mm.h>
17 #include <linux/security.h>
18
19 /*
20  * If the bit selected by single-bit bitmask "a" is set within "x", move
21  * it to the position indicated by single-bit bitmask "b".
22  */
23 #define move_set_bit(x, a, b)   (((x) & (a)) >> ilog2(a) << ilog2(b))
24
25 static inline unsigned long __pte_to_rste(pte_t pte)
26 {
27         unsigned long rste;
28
29         /*
30          * Convert encoding               pte bits      pmd / pud bits
31          *                              lIR.uswrdy.p    dy..R...I...wr
32          * empty                        010.000000.0 -> 00..0...1...00
33          * prot-none, clean, old        111.000000.1 -> 00..1...1...00
34          * prot-none, clean, young      111.000001.1 -> 01..1...1...00
35          * prot-none, dirty, old        111.000010.1 -> 10..1...1...00
36          * prot-none, dirty, young      111.000011.1 -> 11..1...1...00
37          * read-only, clean, old        111.000100.1 -> 00..1...1...01
38          * read-only, clean, young      101.000101.1 -> 01..1...0...01
39          * read-only, dirty, old        111.000110.1 -> 10..1...1...01
40          * read-only, dirty, young      101.000111.1 -> 11..1...0...01
41          * read-write, clean, old       111.001100.1 -> 00..1...1...11
42          * read-write, clean, young     101.001101.1 -> 01..1...0...11
43          * read-write, dirty, old       110.001110.1 -> 10..0...1...11
44          * read-write, dirty, young     100.001111.1 -> 11..0...0...11
45          * HW-bits: R read-only, I invalid
46          * SW-bits: p present, y young, d dirty, r read, w write, s special,
47          *          u unused, l large
48          */
49         if (pte_present(pte)) {
50                 rste = pte_val(pte) & PAGE_MASK;
51                 rste |= move_set_bit(pte_val(pte), _PAGE_READ,
52                                      _SEGMENT_ENTRY_READ);
53                 rste |= move_set_bit(pte_val(pte), _PAGE_WRITE,
54                                      _SEGMENT_ENTRY_WRITE);
55                 rste |= move_set_bit(pte_val(pte), _PAGE_INVALID,
56                                      _SEGMENT_ENTRY_INVALID);
57                 rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT,
58                                      _SEGMENT_ENTRY_PROTECT);
59                 rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY,
60                                      _SEGMENT_ENTRY_DIRTY);
61                 rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG,
62                                      _SEGMENT_ENTRY_YOUNG);
63 #ifdef CONFIG_MEM_SOFT_DIRTY
64                 rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY,
65                                      _SEGMENT_ENTRY_SOFT_DIRTY);
66 #endif
67                 rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC,
68                                      _SEGMENT_ENTRY_NOEXEC);
69         } else
70                 rste = _SEGMENT_ENTRY_EMPTY;
71         return rste;
72 }
73
74 static inline pte_t __rste_to_pte(unsigned long rste)
75 {
76         unsigned long pteval;
77         int present;
78
79         if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
80                 present = pud_present(__pud(rste));
81         else
82                 present = pmd_present(__pmd(rste));
83
84         /*
85          * Convert encoding             pmd / pud bits      pte bits
86          *                              dy..R...I...wr    lIR.uswrdy.p
87          * empty                        00..0...1...00 -> 010.000000.0
88          * prot-none, clean, old        00..1...1...00 -> 111.000000.1
89          * prot-none, clean, young      01..1...1...00 -> 111.000001.1
90          * prot-none, dirty, old        10..1...1...00 -> 111.000010.1
91          * prot-none, dirty, young      11..1...1...00 -> 111.000011.1
92          * read-only, clean, old        00..1...1...01 -> 111.000100.1
93          * read-only, clean, young      01..1...0...01 -> 101.000101.1
94          * read-only, dirty, old        10..1...1...01 -> 111.000110.1
95          * read-only, dirty, young      11..1...0...01 -> 101.000111.1
96          * read-write, clean, old       00..1...1...11 -> 111.001100.1
97          * read-write, clean, young     01..1...0...11 -> 101.001101.1
98          * read-write, dirty, old       10..0...1...11 -> 110.001110.1
99          * read-write, dirty, young     11..0...0...11 -> 100.001111.1
100          * HW-bits: R read-only, I invalid
101          * SW-bits: p present, y young, d dirty, r read, w write, s special,
102          *          u unused, l large
103          */
104         if (present) {
105                 pteval = rste & _SEGMENT_ENTRY_ORIGIN_LARGE;
106                 pteval |= _PAGE_LARGE | _PAGE_PRESENT;
107                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_READ, _PAGE_READ);
108                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE, _PAGE_WRITE);
109                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID, _PAGE_INVALID);
110                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT, _PAGE_PROTECT);
111                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY, _PAGE_DIRTY);
112                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG, _PAGE_YOUNG);
113 #ifdef CONFIG_MEM_SOFT_DIRTY
114                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY, _PAGE_SOFT_DIRTY);
115 #endif
116                 pteval |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC, _PAGE_NOEXEC);
117         } else
118                 pteval = _PAGE_INVALID;
119         return __pte(pteval);
120 }
121
122 static void clear_huge_pte_skeys(struct mm_struct *mm, unsigned long rste)
123 {
124         struct page *page;
125         unsigned long size, paddr;
126
127         if (!mm_uses_skeys(mm) ||
128             rste & _SEGMENT_ENTRY_INVALID)
129                 return;
130
131         if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
132                 page = pud_page(__pud(rste));
133                 size = PUD_SIZE;
134                 paddr = rste & PUD_MASK;
135         } else {
136                 page = pmd_page(__pmd(rste));
137                 size = PMD_SIZE;
138                 paddr = rste & PMD_MASK;
139         }
140
141         if (!test_and_set_bit(PG_arch_1, &page->flags))
142                 __storage_key_init_range(paddr, paddr + size - 1);
143 }
144
145 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
146                      pte_t *ptep, pte_t pte)
147 {
148         unsigned long rste;
149
150         rste = __pte_to_rste(pte);
151         if (!MACHINE_HAS_NX)
152                 rste &= ~_SEGMENT_ENTRY_NOEXEC;
153
154         /* Set correct table type for 2G hugepages */
155         if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
156                 if (likely(pte_present(pte)))
157                         rste |= _REGION3_ENTRY_LARGE;
158                 rste |= _REGION_ENTRY_TYPE_R3;
159         } else if (likely(pte_present(pte)))
160                 rste |= _SEGMENT_ENTRY_LARGE;
161
162         clear_huge_pte_skeys(mm, rste);
163         set_pte(ptep, __pte(rste));
164 }
165
166 pte_t huge_ptep_get(pte_t *ptep)
167 {
168         return __rste_to_pte(pte_val(*ptep));
169 }
170
171 pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
172                               unsigned long addr, pte_t *ptep)
173 {
174         pte_t pte = huge_ptep_get(ptep);
175         pmd_t *pmdp = (pmd_t *) ptep;
176         pud_t *pudp = (pud_t *) ptep;
177
178         if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
179                 pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY));
180         else
181                 pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
182         return pte;
183 }
184
185 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
186                         unsigned long addr, unsigned long sz)
187 {
188         pgd_t *pgdp;
189         p4d_t *p4dp;
190         pud_t *pudp;
191         pmd_t *pmdp = NULL;
192
193         pgdp = pgd_offset(mm, addr);
194         p4dp = p4d_alloc(mm, pgdp, addr);
195         if (p4dp) {
196                 pudp = pud_alloc(mm, p4dp, addr);
197                 if (pudp) {
198                         if (sz == PUD_SIZE)
199                                 return (pte_t *) pudp;
200                         else if (sz == PMD_SIZE)
201                                 pmdp = pmd_alloc(mm, pudp, addr);
202                 }
203         }
204         return (pte_t *) pmdp;
205 }
206
207 pte_t *huge_pte_offset(struct mm_struct *mm,
208                        unsigned long addr, unsigned long sz)
209 {
210         pgd_t *pgdp;
211         p4d_t *p4dp;
212         pud_t *pudp;
213         pmd_t *pmdp = NULL;
214
215         pgdp = pgd_offset(mm, addr);
216         if (pgd_present(*pgdp)) {
217                 p4dp = p4d_offset(pgdp, addr);
218                 if (p4d_present(*p4dp)) {
219                         pudp = pud_offset(p4dp, addr);
220                         if (pud_present(*pudp)) {
221                                 if (pud_large(*pudp))
222                                         return (pte_t *) pudp;
223                                 pmdp = pmd_offset(pudp, addr);
224                         }
225                 }
226         }
227         return (pte_t *) pmdp;
228 }
229
230 int pmd_huge(pmd_t pmd)
231 {
232         return pmd_large(pmd);
233 }
234
235 int pud_huge(pud_t pud)
236 {
237         return pud_large(pud);
238 }
239
240 bool __init arch_hugetlb_valid_size(unsigned long size)
241 {
242         if (MACHINE_HAS_EDAT1 && size == PMD_SIZE)
243                 return true;
244         else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE)
245                 return true;
246         else
247                 return false;
248 }
249
250 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
251                 unsigned long addr, unsigned long len,
252                 unsigned long pgoff, unsigned long flags)
253 {
254         struct hstate *h = hstate_file(file);
255         struct vm_unmapped_area_info info;
256
257         info.flags = 0;
258         info.length = len;
259         info.low_limit = current->mm->mmap_base;
260         info.high_limit = TASK_SIZE;
261         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
262         info.align_offset = 0;
263         return vm_unmapped_area(&info);
264 }
265
266 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
267                 unsigned long addr0, unsigned long len,
268                 unsigned long pgoff, unsigned long flags)
269 {
270         struct hstate *h = hstate_file(file);
271         struct vm_unmapped_area_info info;
272         unsigned long addr;
273
274         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
275         info.length = len;
276         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
277         info.high_limit = current->mm->mmap_base;
278         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
279         info.align_offset = 0;
280         addr = vm_unmapped_area(&info);
281
282         /*
283          * A failed mmap() very likely causes application failure,
284          * so fall back to the bottom-up function here. This scenario
285          * can happen with large stack limits and large mmap()
286          * allocations.
287          */
288         if (addr & ~PAGE_MASK) {
289                 VM_BUG_ON(addr != -ENOMEM);
290                 info.flags = 0;
291                 info.low_limit = TASK_UNMAPPED_BASE;
292                 info.high_limit = TASK_SIZE;
293                 addr = vm_unmapped_area(&info);
294         }
295
296         return addr;
297 }
298
299 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
300                 unsigned long len, unsigned long pgoff, unsigned long flags)
301 {
302         struct hstate *h = hstate_file(file);
303         struct mm_struct *mm = current->mm;
304         struct vm_area_struct *vma;
305
306         if (len & ~huge_page_mask(h))
307                 return -EINVAL;
308         if (len > TASK_SIZE - mmap_min_addr)
309                 return -ENOMEM;
310
311         if (flags & MAP_FIXED) {
312                 if (prepare_hugepage_range(file, addr, len))
313                         return -EINVAL;
314                 goto check_asce_limit;
315         }
316
317         if (addr) {
318                 addr = ALIGN(addr, huge_page_size(h));
319                 vma = find_vma(mm, addr);
320                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
321                     (!vma || addr + len <= vm_start_gap(vma)))
322                         goto check_asce_limit;
323         }
324
325         if (mm->get_unmapped_area == arch_get_unmapped_area)
326                 addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
327                                 pgoff, flags);
328         else
329                 addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
330                                 pgoff, flags);
331         if (offset_in_page(addr))
332                 return addr;
333
334 check_asce_limit:
335         return check_asce_limit(mm, addr, len);
336 }