GNU Linux-libre 4.14.328-gnu1
[releases.git] / arch / s390 / kvm / sthyi.c
1 /*
2  * store hypervisor information instruction emulation functions.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License (version 2 only)
6  * as published by the Free Software Foundation.
7  *
8  * Copyright IBM Corp. 2016
9  * Author(s): Janosch Frank <frankja@linux.vnet.ibm.com>
10  */
11 #include <linux/kvm_host.h>
12 #include <linux/errno.h>
13 #include <linux/pagemap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/ratelimit.h>
16
17 #include <asm/kvm_host.h>
18 #include <asm/asm-offsets.h>
19 #include <asm/sclp.h>
20 #include <asm/diag.h>
21 #include <asm/sysinfo.h>
22 #include <asm/ebcdic.h>
23
24 #include "kvm-s390.h"
25 #include "gaccess.h"
26 #include "trace.h"
27
28 #define DED_WEIGHT 0xffff
29 /*
30  * CP and IFL as EBCDIC strings, SP/0x40 determines the end of string
31  * as they are justified with spaces.
32  */
33 #define CP  0xc3d7404040404040UL
34 #define IFL 0xc9c6d34040404040UL
35
36 enum hdr_flags {
37         HDR_NOT_LPAR   = 0x10,
38         HDR_STACK_INCM = 0x20,
39         HDR_STSI_UNAV  = 0x40,
40         HDR_PERF_UNAV  = 0x80,
41 };
42
43 enum mac_validity {
44         MAC_NAME_VLD = 0x20,
45         MAC_ID_VLD   = 0x40,
46         MAC_CNT_VLD  = 0x80,
47 };
48
49 enum par_flag {
50         PAR_MT_EN = 0x80,
51 };
52
53 enum par_validity {
54         PAR_GRP_VLD  = 0x08,
55         PAR_ID_VLD   = 0x10,
56         PAR_ABS_VLD  = 0x20,
57         PAR_WGHT_VLD = 0x40,
58         PAR_PCNT_VLD  = 0x80,
59 };
60
61 struct hdr_sctn {
62         u8 infhflg1;
63         u8 infhflg2; /* reserved */
64         u8 infhval1; /* reserved */
65         u8 infhval2; /* reserved */
66         u8 reserved[3];
67         u8 infhygct;
68         u16 infhtotl;
69         u16 infhdln;
70         u16 infmoff;
71         u16 infmlen;
72         u16 infpoff;
73         u16 infplen;
74         u16 infhoff1;
75         u16 infhlen1;
76         u16 infgoff1;
77         u16 infglen1;
78         u16 infhoff2;
79         u16 infhlen2;
80         u16 infgoff2;
81         u16 infglen2;
82         u16 infhoff3;
83         u16 infhlen3;
84         u16 infgoff3;
85         u16 infglen3;
86         u8 reserved2[4];
87 } __packed;
88
89 struct mac_sctn {
90         u8 infmflg1; /* reserved */
91         u8 infmflg2; /* reserved */
92         u8 infmval1;
93         u8 infmval2; /* reserved */
94         u16 infmscps;
95         u16 infmdcps;
96         u16 infmsifl;
97         u16 infmdifl;
98         char infmname[8];
99         char infmtype[4];
100         char infmmanu[16];
101         char infmseq[16];
102         char infmpman[4];
103         u8 reserved[4];
104 } __packed;
105
106 struct par_sctn {
107         u8 infpflg1;
108         u8 infpflg2; /* reserved */
109         u8 infpval1;
110         u8 infpval2; /* reserved */
111         u16 infppnum;
112         u16 infpscps;
113         u16 infpdcps;
114         u16 infpsifl;
115         u16 infpdifl;
116         u16 reserved;
117         char infppnam[8];
118         u32 infpwbcp;
119         u32 infpabcp;
120         u32 infpwbif;
121         u32 infpabif;
122         char infplgnm[8];
123         u32 infplgcp;
124         u32 infplgif;
125 } __packed;
126
127 struct sthyi_sctns {
128         struct hdr_sctn hdr;
129         struct mac_sctn mac;
130         struct par_sctn par;
131 } __packed;
132
133 struct cpu_inf {
134         u64 lpar_cap;
135         u64 lpar_grp_cap;
136         u64 lpar_weight;
137         u64 all_weight;
138         int cpu_num_ded;
139         int cpu_num_shd;
140 };
141
142 struct lpar_cpu_inf {
143         struct cpu_inf cp;
144         struct cpu_inf ifl;
145 };
146
147 static inline u64 cpu_id(u8 ctidx, void *diag224_buf)
148 {
149         return *((u64 *)(diag224_buf + (ctidx + 1) * DIAG204_CPU_NAME_LEN));
150 }
151
152 /*
153  * Scales the cpu capping from the lpar range to the one expected in
154  * sthyi data.
155  *
156  * diag204 reports a cap in hundredths of processor units.
157  * z/VM's range for one core is 0 - 0x10000.
158  */
159 static u32 scale_cap(u32 in)
160 {
161         return (0x10000 * in) / 100;
162 }
163
164 static void fill_hdr(struct sthyi_sctns *sctns)
165 {
166         sctns->hdr.infhdln = sizeof(sctns->hdr);
167         sctns->hdr.infmoff = sizeof(sctns->hdr);
168         sctns->hdr.infmlen = sizeof(sctns->mac);
169         sctns->hdr.infplen = sizeof(sctns->par);
170         sctns->hdr.infpoff = sctns->hdr.infhdln + sctns->hdr.infmlen;
171         sctns->hdr.infhtotl = sctns->hdr.infpoff + sctns->hdr.infplen;
172 }
173
174 static void fill_stsi_mac(struct sthyi_sctns *sctns,
175                           struct sysinfo_1_1_1 *sysinfo)
176 {
177         sclp_ocf_cpc_name_copy(sctns->mac.infmname);
178         if (*(u64 *)sctns->mac.infmname != 0)
179                 sctns->mac.infmval1 |= MAC_NAME_VLD;
180
181         if (stsi(sysinfo, 1, 1, 1))
182                 return;
183
184         memcpy(sctns->mac.infmtype, sysinfo->type, sizeof(sctns->mac.infmtype));
185         memcpy(sctns->mac.infmmanu, sysinfo->manufacturer, sizeof(sctns->mac.infmmanu));
186         memcpy(sctns->mac.infmpman, sysinfo->plant, sizeof(sctns->mac.infmpman));
187         memcpy(sctns->mac.infmseq, sysinfo->sequence, sizeof(sctns->mac.infmseq));
188
189         sctns->mac.infmval1 |= MAC_ID_VLD;
190 }
191
192 static void fill_stsi_par(struct sthyi_sctns *sctns,
193                           struct sysinfo_2_2_2 *sysinfo)
194 {
195         if (stsi(sysinfo, 2, 2, 2))
196                 return;
197
198         sctns->par.infppnum = sysinfo->lpar_number;
199         memcpy(sctns->par.infppnam, sysinfo->name, sizeof(sctns->par.infppnam));
200
201         sctns->par.infpval1 |= PAR_ID_VLD;
202 }
203
204 static void fill_stsi(struct sthyi_sctns *sctns)
205 {
206         void *sysinfo;
207
208         /* Errors are handled through the validity bits in the response. */
209         sysinfo = (void *)__get_free_page(GFP_KERNEL);
210         if (!sysinfo)
211                 return;
212
213         fill_stsi_mac(sctns, sysinfo);
214         fill_stsi_par(sctns, sysinfo);
215
216         free_pages((unsigned long)sysinfo, 0);
217 }
218
219 static void fill_diag_mac(struct sthyi_sctns *sctns,
220                           struct diag204_x_phys_block *block,
221                           void *diag224_buf)
222 {
223         int i;
224
225         for (i = 0; i < block->hdr.cpus; i++) {
226                 switch (cpu_id(block->cpus[i].ctidx, diag224_buf)) {
227                 case CP:
228                         if (block->cpus[i].weight == DED_WEIGHT)
229                                 sctns->mac.infmdcps++;
230                         else
231                                 sctns->mac.infmscps++;
232                         break;
233                 case IFL:
234                         if (block->cpus[i].weight == DED_WEIGHT)
235                                 sctns->mac.infmdifl++;
236                         else
237                                 sctns->mac.infmsifl++;
238                         break;
239                 }
240         }
241         sctns->mac.infmval1 |= MAC_CNT_VLD;
242 }
243
244 /* Returns a pointer to the the next partition block. */
245 static struct diag204_x_part_block *lpar_cpu_inf(struct lpar_cpu_inf *part_inf,
246                                                  bool this_lpar,
247                                                  void *diag224_buf,
248                                                  struct diag204_x_part_block *block)
249 {
250         int i, capped = 0, weight_cp = 0, weight_ifl = 0;
251         struct cpu_inf *cpu_inf;
252
253         for (i = 0; i < block->hdr.rcpus; i++) {
254                 if (!(block->cpus[i].cflag & DIAG204_CPU_ONLINE))
255                         continue;
256
257                 switch (cpu_id(block->cpus[i].ctidx, diag224_buf)) {
258                 case CP:
259                         cpu_inf = &part_inf->cp;
260                         if (block->cpus[i].cur_weight < DED_WEIGHT)
261                                 weight_cp |= block->cpus[i].cur_weight;
262                         break;
263                 case IFL:
264                         cpu_inf = &part_inf->ifl;
265                         if (block->cpus[i].cur_weight < DED_WEIGHT)
266                                 weight_ifl |= block->cpus[i].cur_weight;
267                         break;
268                 default:
269                         continue;
270                 }
271
272                 if (!this_lpar)
273                         continue;
274
275                 capped |= block->cpus[i].cflag & DIAG204_CPU_CAPPED;
276                 cpu_inf->lpar_cap |= block->cpus[i].cpu_type_cap;
277                 cpu_inf->lpar_grp_cap |= block->cpus[i].group_cpu_type_cap;
278
279                 if (block->cpus[i].weight == DED_WEIGHT)
280                         cpu_inf->cpu_num_ded += 1;
281                 else
282                         cpu_inf->cpu_num_shd += 1;
283         }
284
285         if (this_lpar && capped) {
286                 part_inf->cp.lpar_weight = weight_cp;
287                 part_inf->ifl.lpar_weight = weight_ifl;
288         }
289         part_inf->cp.all_weight += weight_cp;
290         part_inf->ifl.all_weight += weight_ifl;
291         return (struct diag204_x_part_block *)&block->cpus[i];
292 }
293
294 static void fill_diag(struct sthyi_sctns *sctns)
295 {
296         int i, r, pages;
297         bool this_lpar;
298         void *diag204_buf;
299         void *diag224_buf = NULL;
300         struct diag204_x_info_blk_hdr *ti_hdr;
301         struct diag204_x_part_block *part_block;
302         struct diag204_x_phys_block *phys_block;
303         struct lpar_cpu_inf lpar_inf = {};
304
305         /* Errors are handled through the validity bits in the response. */
306         pages = diag204((unsigned long)DIAG204_SUBC_RSI |
307                         (unsigned long)DIAG204_INFO_EXT, 0, NULL);
308         if (pages <= 0)
309                 return;
310
311         diag204_buf = vmalloc(PAGE_SIZE * pages);
312         if (!diag204_buf)
313                 return;
314
315         r = diag204((unsigned long)DIAG204_SUBC_STIB7 |
316                     (unsigned long)DIAG204_INFO_EXT, pages, diag204_buf);
317         if (r < 0)
318                 goto out;
319
320         diag224_buf = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
321         if (!diag224_buf || diag224(diag224_buf))
322                 goto out;
323
324         ti_hdr = diag204_buf;
325         part_block = diag204_buf + sizeof(*ti_hdr);
326
327         for (i = 0; i < ti_hdr->npar; i++) {
328                 /*
329                  * For the calling lpar we also need to get the cpu
330                  * caps and weights. The time information block header
331                  * specifies the offset to the partition block of the
332                  * caller lpar, so we know when we process its data.
333                  */
334                 this_lpar = (void *)part_block - diag204_buf == ti_hdr->this_part;
335                 part_block = lpar_cpu_inf(&lpar_inf, this_lpar, diag224_buf,
336                                           part_block);
337         }
338
339         phys_block = (struct diag204_x_phys_block *)part_block;
340         part_block = diag204_buf + ti_hdr->this_part;
341         if (part_block->hdr.mtid)
342                 sctns->par.infpflg1 = PAR_MT_EN;
343
344         sctns->par.infpval1 |= PAR_GRP_VLD;
345         sctns->par.infplgcp = scale_cap(lpar_inf.cp.lpar_grp_cap);
346         sctns->par.infplgif = scale_cap(lpar_inf.ifl.lpar_grp_cap);
347         memcpy(sctns->par.infplgnm, part_block->hdr.hardware_group_name,
348                sizeof(sctns->par.infplgnm));
349
350         sctns->par.infpscps = lpar_inf.cp.cpu_num_shd;
351         sctns->par.infpdcps = lpar_inf.cp.cpu_num_ded;
352         sctns->par.infpsifl = lpar_inf.ifl.cpu_num_shd;
353         sctns->par.infpdifl = lpar_inf.ifl.cpu_num_ded;
354         sctns->par.infpval1 |= PAR_PCNT_VLD;
355
356         sctns->par.infpabcp = scale_cap(lpar_inf.cp.lpar_cap);
357         sctns->par.infpabif = scale_cap(lpar_inf.ifl.lpar_cap);
358         sctns->par.infpval1 |= PAR_ABS_VLD;
359
360         /*
361          * Everything below needs global performance data to be
362          * meaningful.
363          */
364         if (!(ti_hdr->flags & DIAG204_LPAR_PHYS_FLG)) {
365                 sctns->hdr.infhflg1 |= HDR_PERF_UNAV;
366                 goto out;
367         }
368
369         fill_diag_mac(sctns, phys_block, diag224_buf);
370
371         if (lpar_inf.cp.lpar_weight) {
372                 sctns->par.infpwbcp = sctns->mac.infmscps * 0x10000 *
373                         lpar_inf.cp.lpar_weight / lpar_inf.cp.all_weight;
374         }
375
376         if (lpar_inf.ifl.lpar_weight) {
377                 sctns->par.infpwbif = sctns->mac.infmsifl * 0x10000 *
378                         lpar_inf.ifl.lpar_weight / lpar_inf.ifl.all_weight;
379         }
380         sctns->par.infpval1 |= PAR_WGHT_VLD;
381
382 out:
383         free_page((unsigned long)diag224_buf);
384         vfree(diag204_buf);
385 }
386
387 static int sthyi(u64 vaddr)
388 {
389         register u64 code asm("0") = 0;
390         register u64 addr asm("2") = vaddr;
391         int cc;
392
393         asm volatile(
394                 ".insn   rre,0xB2560000,%[code],%[addr]\n"
395                 "ipm     %[cc]\n"
396                 "srl     %[cc],28\n"
397                 : [cc] "=d" (cc)
398                 : [code] "d" (code), [addr] "a" (addr)
399                 : "3", "memory", "cc");
400         return cc;
401 }
402
403 int handle_sthyi(struct kvm_vcpu *vcpu)
404 {
405         int reg1, reg2, r = 0;
406         u64 code, addr, cc = 0;
407         struct sthyi_sctns *sctns = NULL;
408
409         if (!test_kvm_facility(vcpu->kvm, 74))
410                 return kvm_s390_inject_program_int(vcpu, PGM_OPERATION);
411
412         /*
413          * STHYI requires extensive locking in the higher hypervisors
414          * and is very computational/memory expensive. Therefore we
415          * ratelimit the executions per VM.
416          */
417         if (!__ratelimit(&vcpu->kvm->arch.sthyi_limit)) {
418                 kvm_s390_retry_instr(vcpu);
419                 return 0;
420         }
421
422         kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
423         code = vcpu->run->s.regs.gprs[reg1];
424         addr = vcpu->run->s.regs.gprs[reg2];
425
426         vcpu->stat.instruction_sthyi++;
427         VCPU_EVENT(vcpu, 3, "STHYI: fc: %llu addr: 0x%016llx", code, addr);
428         trace_kvm_s390_handle_sthyi(vcpu, code, addr);
429
430         if (reg1 == reg2 || reg1 & 1 || reg2 & 1)
431                 return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
432
433         if (code & 0xffff) {
434                 cc = 3;
435                 goto out;
436         }
437
438         if (addr & ~PAGE_MASK)
439                 return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
440
441         sctns = (void *)get_zeroed_page(GFP_KERNEL);
442         if (!sctns)
443                 return -ENOMEM;
444
445         /*
446          * If we are a guest, we don't want to emulate an emulated
447          * instruction. We ask the hypervisor to provide the data.
448          */
449         if (test_facility(74)) {
450                 cc = sthyi((u64)sctns);
451                 goto out;
452         }
453
454         fill_hdr(sctns);
455         fill_stsi(sctns);
456         fill_diag(sctns);
457
458 out:
459         if (!cc) {
460                 r = write_guest(vcpu, addr, reg2, sctns, PAGE_SIZE);
461                 if (r) {
462                         free_page((unsigned long)sctns);
463                         return kvm_s390_inject_prog_cond(vcpu, r);
464                 }
465         }
466
467         free_page((unsigned long)sctns);
468         vcpu->run->s.regs.gprs[reg2 + 1] = cc ? 4 : 0;
469         kvm_s390_set_psw_cc(vcpu, cc);
470         return r;
471 }