GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / s390 / kernel / vtime.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Virtual cpu timer based timer functions.
4  *
5  *    Copyright IBM Corp. 2004, 2012
6  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7  */
8
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21
22 #include "entry.h"
23
24 static void virt_timer_expire(void);
25
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
36 static inline u64 get_vtimer(void)
37 {
38         u64 timer;
39
40         asm volatile("stpt %0" : "=Q" (timer));
41         return timer;
42 }
43
44 static inline void set_vtimer(u64 expires)
45 {
46         u64 timer;
47
48         asm volatile(
49                 "       stpt    %0\n"   /* Store current cpu timer value */
50                 "       spt     %1"     /* Set new value imm. afterwards */
51                 : "=Q" (timer) : "Q" (expires));
52         S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53         S390_lowcore.last_update_timer = expires;
54 }
55
56 static inline int virt_timer_forward(u64 elapsed)
57 {
58         BUG_ON(!irqs_disabled());
59
60         if (list_empty(&virt_timer_list))
61                 return 0;
62         elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63         return elapsed >= atomic64_read(&virt_timer_current);
64 }
65
66 static void update_mt_scaling(void)
67 {
68         u64 cycles_new[8], *cycles_old;
69         u64 delta, fac, mult, div;
70         int i;
71
72         stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73         cycles_old = this_cpu_ptr(mt_cycles);
74         fac = 1;
75         mult = div = 0;
76         for (i = 0; i <= smp_cpu_mtid; i++) {
77                 delta = cycles_new[i] - cycles_old[i];
78                 div += delta;
79                 mult *= i + 1;
80                 mult += delta * fac;
81                 fac *= i + 1;
82         }
83         div *= fac;
84         if (div > 0) {
85                 /* Update scaling factor */
86                 __this_cpu_write(mt_scaling_mult, mult);
87                 __this_cpu_write(mt_scaling_div, div);
88                 memcpy(cycles_old, cycles_new,
89                        sizeof(u64) * (smp_cpu_mtid + 1));
90         }
91         __this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93
94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96         u64 delta;
97
98         delta = new - *tsk_vtime;
99         *tsk_vtime = new;
100         return delta;
101 }
102
103
104 static inline u64 scale_vtime(u64 vtime)
105 {
106         u64 mult = __this_cpu_read(mt_scaling_mult);
107         u64 div = __this_cpu_read(mt_scaling_div);
108
109         if (smp_cpu_mtid)
110                 return vtime * mult / div;
111         return vtime;
112 }
113
114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115                                         enum cpu_usage_stat index)
116 {
117         p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118         account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120
121 /*
122  * Update process times based on virtual cpu times stored by entry.S
123  * to the lowcore fields user_timer, system_timer & steal_clock.
124  */
125 static int do_account_vtime(struct task_struct *tsk)
126 {
127         u64 timer, clock, user, guest, system, hardirq, softirq;
128
129         timer = S390_lowcore.last_update_timer;
130         clock = S390_lowcore.last_update_clock;
131         asm volatile(
132                 "       stpt    %0\n"   /* Store current cpu timer value */
133 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
134                 "       stckf   %1"     /* Store current tod clock value */
135 #else
136                 "       stck    %1"     /* Store current tod clock value */
137 #endif
138                 : "=Q" (S390_lowcore.last_update_timer),
139                   "=Q" (S390_lowcore.last_update_clock)
140                 : : "cc");
141         clock = S390_lowcore.last_update_clock - clock;
142         timer -= S390_lowcore.last_update_timer;
143
144         if (hardirq_count())
145                 S390_lowcore.hardirq_timer += timer;
146         else
147                 S390_lowcore.system_timer += timer;
148
149         /* Update MT utilization calculation */
150         if (smp_cpu_mtid &&
151             time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
152                 update_mt_scaling();
153
154         /* Calculate cputime delta */
155         user = update_tsk_timer(&tsk->thread.user_timer,
156                                 READ_ONCE(S390_lowcore.user_timer));
157         guest = update_tsk_timer(&tsk->thread.guest_timer,
158                                  READ_ONCE(S390_lowcore.guest_timer));
159         system = update_tsk_timer(&tsk->thread.system_timer,
160                                   READ_ONCE(S390_lowcore.system_timer));
161         hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
162                                    READ_ONCE(S390_lowcore.hardirq_timer));
163         softirq = update_tsk_timer(&tsk->thread.softirq_timer,
164                                    READ_ONCE(S390_lowcore.softirq_timer));
165         S390_lowcore.steal_timer +=
166                 clock - user - guest - system - hardirq - softirq;
167
168         /* Push account value */
169         if (user) {
170                 account_user_time(tsk, cputime_to_nsecs(user));
171                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
172         }
173
174         if (guest) {
175                 account_guest_time(tsk, cputime_to_nsecs(guest));
176                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
177         }
178
179         if (system)
180                 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
181         if (hardirq)
182                 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
183         if (softirq)
184                 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
185
186         return virt_timer_forward(user + guest + system + hardirq + softirq);
187 }
188
189 void vtime_task_switch(struct task_struct *prev)
190 {
191         do_account_vtime(prev);
192         prev->thread.user_timer = S390_lowcore.user_timer;
193         prev->thread.guest_timer = S390_lowcore.guest_timer;
194         prev->thread.system_timer = S390_lowcore.system_timer;
195         prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
196         prev->thread.softirq_timer = S390_lowcore.softirq_timer;
197         S390_lowcore.user_timer = current->thread.user_timer;
198         S390_lowcore.guest_timer = current->thread.guest_timer;
199         S390_lowcore.system_timer = current->thread.system_timer;
200         S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
201         S390_lowcore.softirq_timer = current->thread.softirq_timer;
202 }
203
204 /*
205  * In s390, accounting pending user time also implies
206  * accounting system time in order to correctly compute
207  * the stolen time accounting.
208  */
209 void vtime_flush(struct task_struct *tsk)
210 {
211         u64 steal, avg_steal;
212
213         if (do_account_vtime(tsk))
214                 virt_timer_expire();
215
216         steal = S390_lowcore.steal_timer;
217         avg_steal = S390_lowcore.avg_steal_timer;
218         if ((s64) steal > 0) {
219                 S390_lowcore.steal_timer = 0;
220                 account_steal_time(cputime_to_nsecs(steal));
221                 avg_steal += steal;
222         }
223         S390_lowcore.avg_steal_timer = avg_steal / 2;
224 }
225
226 /*
227  * Update process times based on virtual cpu times stored by entry.S
228  * to the lowcore fields user_timer, system_timer & steal_clock.
229  */
230 void vtime_account_irq_enter(struct task_struct *tsk)
231 {
232         u64 timer;
233
234         timer = S390_lowcore.last_update_timer;
235         S390_lowcore.last_update_timer = get_vtimer();
236         timer -= S390_lowcore.last_update_timer;
237
238         if ((tsk->flags & PF_VCPU) && (irq_count() == 0))
239                 S390_lowcore.guest_timer += timer;
240         else if (hardirq_count())
241                 S390_lowcore.hardirq_timer += timer;
242         else if (in_serving_softirq())
243                 S390_lowcore.softirq_timer += timer;
244         else
245                 S390_lowcore.system_timer += timer;
246
247         virt_timer_forward(timer);
248 }
249 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
250
251 void vtime_account_system(struct task_struct *tsk)
252 __attribute__((alias("vtime_account_irq_enter")));
253 EXPORT_SYMBOL_GPL(vtime_account_system);
254
255 /*
256  * Sorted add to a list. List is linear searched until first bigger
257  * element is found.
258  */
259 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
260 {
261         struct vtimer_list *tmp;
262
263         list_for_each_entry(tmp, head, entry) {
264                 if (tmp->expires > timer->expires) {
265                         list_add_tail(&timer->entry, &tmp->entry);
266                         return;
267                 }
268         }
269         list_add_tail(&timer->entry, head);
270 }
271
272 /*
273  * Handler for expired virtual CPU timer.
274  */
275 static void virt_timer_expire(void)
276 {
277         struct vtimer_list *timer, *tmp;
278         unsigned long elapsed;
279         LIST_HEAD(cb_list);
280
281         /* walk timer list, fire all expired timers */
282         spin_lock(&virt_timer_lock);
283         elapsed = atomic64_read(&virt_timer_elapsed);
284         list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
285                 if (timer->expires < elapsed)
286                         /* move expired timer to the callback queue */
287                         list_move_tail(&timer->entry, &cb_list);
288                 else
289                         timer->expires -= elapsed;
290         }
291         if (!list_empty(&virt_timer_list)) {
292                 timer = list_first_entry(&virt_timer_list,
293                                          struct vtimer_list, entry);
294                 atomic64_set(&virt_timer_current, timer->expires);
295         }
296         atomic64_sub(elapsed, &virt_timer_elapsed);
297         spin_unlock(&virt_timer_lock);
298
299         /* Do callbacks and recharge periodic timers */
300         list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
301                 list_del_init(&timer->entry);
302                 timer->function(timer->data);
303                 if (timer->interval) {
304                         /* Recharge interval timer */
305                         timer->expires = timer->interval +
306                                 atomic64_read(&virt_timer_elapsed);
307                         spin_lock(&virt_timer_lock);
308                         list_add_sorted(timer, &virt_timer_list);
309                         spin_unlock(&virt_timer_lock);
310                 }
311         }
312 }
313
314 void init_virt_timer(struct vtimer_list *timer)
315 {
316         timer->function = NULL;
317         INIT_LIST_HEAD(&timer->entry);
318 }
319 EXPORT_SYMBOL(init_virt_timer);
320
321 static inline int vtimer_pending(struct vtimer_list *timer)
322 {
323         return !list_empty(&timer->entry);
324 }
325
326 static void internal_add_vtimer(struct vtimer_list *timer)
327 {
328         if (list_empty(&virt_timer_list)) {
329                 /* First timer, just program it. */
330                 atomic64_set(&virt_timer_current, timer->expires);
331                 atomic64_set(&virt_timer_elapsed, 0);
332                 list_add(&timer->entry, &virt_timer_list);
333         } else {
334                 /* Update timer against current base. */
335                 timer->expires += atomic64_read(&virt_timer_elapsed);
336                 if (likely((s64) timer->expires <
337                            (s64) atomic64_read(&virt_timer_current)))
338                         /* The new timer expires before the current timer. */
339                         atomic64_set(&virt_timer_current, timer->expires);
340                 /* Insert new timer into the list. */
341                 list_add_sorted(timer, &virt_timer_list);
342         }
343 }
344
345 static void __add_vtimer(struct vtimer_list *timer, int periodic)
346 {
347         unsigned long flags;
348
349         timer->interval = periodic ? timer->expires : 0;
350         spin_lock_irqsave(&virt_timer_lock, flags);
351         internal_add_vtimer(timer);
352         spin_unlock_irqrestore(&virt_timer_lock, flags);
353 }
354
355 /*
356  * add_virt_timer - add a oneshot virtual CPU timer
357  */
358 void add_virt_timer(struct vtimer_list *timer)
359 {
360         __add_vtimer(timer, 0);
361 }
362 EXPORT_SYMBOL(add_virt_timer);
363
364 /*
365  * add_virt_timer_int - add an interval virtual CPU timer
366  */
367 void add_virt_timer_periodic(struct vtimer_list *timer)
368 {
369         __add_vtimer(timer, 1);
370 }
371 EXPORT_SYMBOL(add_virt_timer_periodic);
372
373 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
374 {
375         unsigned long flags;
376         int rc;
377
378         BUG_ON(!timer->function);
379
380         if (timer->expires == expires && vtimer_pending(timer))
381                 return 1;
382         spin_lock_irqsave(&virt_timer_lock, flags);
383         rc = vtimer_pending(timer);
384         if (rc)
385                 list_del_init(&timer->entry);
386         timer->interval = periodic ? expires : 0;
387         timer->expires = expires;
388         internal_add_vtimer(timer);
389         spin_unlock_irqrestore(&virt_timer_lock, flags);
390         return rc;
391 }
392
393 /*
394  * returns whether it has modified a pending timer (1) or not (0)
395  */
396 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
397 {
398         return __mod_vtimer(timer, expires, 0);
399 }
400 EXPORT_SYMBOL(mod_virt_timer);
401
402 /*
403  * returns whether it has modified a pending timer (1) or not (0)
404  */
405 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
406 {
407         return __mod_vtimer(timer, expires, 1);
408 }
409 EXPORT_SYMBOL(mod_virt_timer_periodic);
410
411 /*
412  * Delete a virtual timer.
413  *
414  * returns whether the deleted timer was pending (1) or not (0)
415  */
416 int del_virt_timer(struct vtimer_list *timer)
417 {
418         unsigned long flags;
419
420         if (!vtimer_pending(timer))
421                 return 0;
422         spin_lock_irqsave(&virt_timer_lock, flags);
423         list_del_init(&timer->entry);
424         spin_unlock_irqrestore(&virt_timer_lock, flags);
425         return 1;
426 }
427 EXPORT_SYMBOL(del_virt_timer);
428
429 /*
430  * Start the virtual CPU timer on the current CPU.
431  */
432 void vtime_init(void)
433 {
434         /* set initial cpu timer */
435         set_vtimer(VTIMER_MAX_SLICE);
436         /* Setup initial MT scaling values */
437         if (smp_cpu_mtid) {
438                 __this_cpu_write(mt_scaling_jiffies, jiffies);
439                 __this_cpu_write(mt_scaling_mult, 1);
440                 __this_cpu_write(mt_scaling_div, 1);
441                 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
442         }
443 }