GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / s390 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30 DEFINE_INSN_CACHE_OPS(s390_insn);
31
32 static int insn_page_in_use;
33 static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34
35 static void *alloc_s390_insn_page(void)
36 {
37         if (xchg(&insn_page_in_use, 1) == 1)
38                 return NULL;
39         set_memory_x((unsigned long) &insn_page, 1);
40         return &insn_page;
41 }
42
43 static void free_s390_insn_page(void *page)
44 {
45         set_memory_nx((unsigned long) page, 1);
46         xchg(&insn_page_in_use, 0);
47 }
48
49 struct kprobe_insn_cache kprobe_s390_insn_slots = {
50         .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51         .alloc = alloc_s390_insn_page,
52         .free = free_s390_insn_page,
53         .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54         .insn_size = MAX_INSN_SIZE,
55 };
56
57 static void copy_instruction(struct kprobe *p)
58 {
59         unsigned long ip = (unsigned long) p->addr;
60         s64 disp, new_disp;
61         u64 addr, new_addr;
62
63         if (ftrace_location(ip) == ip) {
64                 /*
65                  * If kprobes patches the instruction that is morphed by
66                  * ftrace make sure that kprobes always sees the branch
67                  * "jg .+24" that skips the mcount block or the "brcl 0,0"
68                  * in case of hotpatch.
69                  */
70                 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
71                 p->ainsn.is_ftrace_insn = 1;
72         } else
73                 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
74         p->opcode = p->ainsn.insn[0];
75         if (!probe_is_insn_relative_long(p->ainsn.insn))
76                 return;
77         /*
78          * For pc-relative instructions in RIL-b or RIL-c format patch the
79          * RI2 displacement field. We have already made sure that the insn
80          * slot for the patched instruction is within the same 2GB area
81          * as the original instruction (either kernel image or module area).
82          * Therefore the new displacement will always fit.
83          */
84         disp = *(s32 *)&p->ainsn.insn[1];
85         addr = (u64)(unsigned long)p->addr;
86         new_addr = (u64)(unsigned long)p->ainsn.insn;
87         new_disp = ((addr + (disp * 2)) - new_addr) / 2;
88         *(s32 *)&p->ainsn.insn[1] = new_disp;
89 }
90 NOKPROBE_SYMBOL(copy_instruction);
91
92 static inline int is_kernel_addr(void *addr)
93 {
94         return addr < (void *)_end;
95 }
96
97 static int s390_get_insn_slot(struct kprobe *p)
98 {
99         /*
100          * Get an insn slot that is within the same 2GB area like the original
101          * instruction. That way instructions with a 32bit signed displacement
102          * field can be patched and executed within the insn slot.
103          */
104         p->ainsn.insn = NULL;
105         if (is_kernel_addr(p->addr))
106                 p->ainsn.insn = get_s390_insn_slot();
107         else if (is_module_addr(p->addr))
108                 p->ainsn.insn = get_insn_slot();
109         return p->ainsn.insn ? 0 : -ENOMEM;
110 }
111 NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113 static void s390_free_insn_slot(struct kprobe *p)
114 {
115         if (!p->ainsn.insn)
116                 return;
117         if (is_kernel_addr(p->addr))
118                 free_s390_insn_slot(p->ainsn.insn, 0);
119         else
120                 free_insn_slot(p->ainsn.insn, 0);
121         p->ainsn.insn = NULL;
122 }
123 NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125 int arch_prepare_kprobe(struct kprobe *p)
126 {
127         if ((unsigned long) p->addr & 0x01)
128                 return -EINVAL;
129         /* Make sure the probe isn't going on a difficult instruction */
130         if (probe_is_prohibited_opcode(p->addr))
131                 return -EINVAL;
132         if (s390_get_insn_slot(p))
133                 return -ENOMEM;
134         copy_instruction(p);
135         return 0;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139 int arch_check_ftrace_location(struct kprobe *p)
140 {
141         return 0;
142 }
143
144 struct swap_insn_args {
145         struct kprobe *p;
146         unsigned int arm_kprobe : 1;
147 };
148
149 static int swap_instruction(void *data)
150 {
151         struct swap_insn_args *args = data;
152         struct ftrace_insn new_insn, *insn;
153         struct kprobe *p = args->p;
154         size_t len;
155
156         new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157         len = sizeof(new_insn.opc);
158         if (!p->ainsn.is_ftrace_insn)
159                 goto skip_ftrace;
160         len = sizeof(new_insn);
161         insn = (struct ftrace_insn *) p->addr;
162         if (args->arm_kprobe) {
163                 if (is_ftrace_nop(insn))
164                         new_insn.disp = KPROBE_ON_FTRACE_NOP;
165                 else
166                         new_insn.disp = KPROBE_ON_FTRACE_CALL;
167         } else {
168                 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169                 if (insn->disp == KPROBE_ON_FTRACE_NOP)
170                         ftrace_generate_nop_insn(&new_insn);
171         }
172 skip_ftrace:
173         s390_kernel_write(p->addr, &new_insn, len);
174         return 0;
175 }
176 NOKPROBE_SYMBOL(swap_instruction);
177
178 void arch_arm_kprobe(struct kprobe *p)
179 {
180         struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182         stop_machine_cpuslocked(swap_instruction, &args, NULL);
183 }
184 NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186 void arch_disarm_kprobe(struct kprobe *p)
187 {
188         struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190         stop_machine_cpuslocked(swap_instruction, &args, NULL);
191 }
192 NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194 void arch_remove_kprobe(struct kprobe *p)
195 {
196         s390_free_insn_slot(p);
197 }
198 NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200 static void enable_singlestep(struct kprobe_ctlblk *kcb,
201                               struct pt_regs *regs,
202                               unsigned long ip)
203 {
204         struct per_regs per_kprobe;
205
206         /* Set up the PER control registers %cr9-%cr11 */
207         per_kprobe.control = PER_EVENT_IFETCH;
208         per_kprobe.start = ip;
209         per_kprobe.end = ip;
210
211         /* Save control regs and psw mask */
212         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213         kcb->kprobe_saved_imask = regs->psw.mask &
214                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216         /* Set PER control regs, turns on single step for the given address */
217         __ctl_load(per_kprobe, 9, 11);
218         regs->psw.mask |= PSW_MASK_PER;
219         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220         regs->psw.addr = ip;
221 }
222 NOKPROBE_SYMBOL(enable_singlestep);
223
224 static void disable_singlestep(struct kprobe_ctlblk *kcb,
225                                struct pt_regs *regs,
226                                unsigned long ip)
227 {
228         /* Restore control regs and psw mask, set new psw address */
229         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230         regs->psw.mask &= ~PSW_MASK_PER;
231         regs->psw.mask |= kcb->kprobe_saved_imask;
232         regs->psw.addr = ip;
233 }
234 NOKPROBE_SYMBOL(disable_singlestep);
235
236 /*
237  * Activate a kprobe by storing its pointer to current_kprobe. The
238  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239  * two kprobes can be active, see KPROBE_REENTER.
240  */
241 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242 {
243         kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244         kcb->prev_kprobe.status = kcb->kprobe_status;
245         __this_cpu_write(current_kprobe, p);
246 }
247 NOKPROBE_SYMBOL(push_kprobe);
248
249 /*
250  * Deactivate a kprobe by backing up to the previous state. If the
251  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252  * for any other state prev_kprobe.kp will be NULL.
253  */
254 static void pop_kprobe(struct kprobe_ctlblk *kcb)
255 {
256         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257         kcb->kprobe_status = kcb->prev_kprobe.status;
258         kcb->prev_kprobe.kp = NULL;
259 }
260 NOKPROBE_SYMBOL(pop_kprobe);
261
262 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
263 {
264         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
265
266         /* Replace the return addr with trampoline addr */
267         regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
268 }
269 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
270
271 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
272 {
273         switch (kcb->kprobe_status) {
274         case KPROBE_HIT_SSDONE:
275         case KPROBE_HIT_ACTIVE:
276                 kprobes_inc_nmissed_count(p);
277                 break;
278         case KPROBE_HIT_SS:
279         case KPROBE_REENTER:
280         default:
281                 /*
282                  * A kprobe on the code path to single step an instruction
283                  * is a BUG. The code path resides in the .kprobes.text
284                  * section and is executed with interrupts disabled.
285                  */
286                 pr_err("Invalid kprobe detected.\n");
287                 dump_kprobe(p);
288                 BUG();
289         }
290 }
291 NOKPROBE_SYMBOL(kprobe_reenter_check);
292
293 static int kprobe_handler(struct pt_regs *regs)
294 {
295         struct kprobe_ctlblk *kcb;
296         struct kprobe *p;
297
298         /*
299          * We want to disable preemption for the entire duration of kprobe
300          * processing. That includes the calls to the pre/post handlers
301          * and single stepping the kprobe instruction.
302          */
303         preempt_disable();
304         kcb = get_kprobe_ctlblk();
305         p = get_kprobe((void *)(regs->psw.addr - 2));
306
307         if (p) {
308                 if (kprobe_running()) {
309                         /*
310                          * We have hit a kprobe while another is still
311                          * active. This can happen in the pre and post
312                          * handler. Single step the instruction of the
313                          * new probe but do not call any handler function
314                          * of this secondary kprobe.
315                          * push_kprobe and pop_kprobe saves and restores
316                          * the currently active kprobe.
317                          */
318                         kprobe_reenter_check(kcb, p);
319                         push_kprobe(kcb, p);
320                         kcb->kprobe_status = KPROBE_REENTER;
321                 } else {
322                         /*
323                          * If we have no pre-handler or it returned 0, we
324                          * continue with single stepping. If we have a
325                          * pre-handler and it returned non-zero, it prepped
326                          * for changing execution path, so get out doing
327                          * nothing more here.
328                          */
329                         push_kprobe(kcb, p);
330                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
331                         if (p->pre_handler && p->pre_handler(p, regs)) {
332                                 pop_kprobe(kcb);
333                                 preempt_enable_no_resched();
334                                 return 1;
335                         }
336                         kcb->kprobe_status = KPROBE_HIT_SS;
337                 }
338                 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
339                 return 1;
340         } /* else:
341            * No kprobe at this address and no active kprobe. The trap has
342            * not been caused by a kprobe breakpoint. The race of breakpoint
343            * vs. kprobe remove does not exist because on s390 as we use
344            * stop_machine to arm/disarm the breakpoints.
345            */
346         preempt_enable_no_resched();
347         return 0;
348 }
349 NOKPROBE_SYMBOL(kprobe_handler);
350
351 /*
352  * Function return probe trampoline:
353  *      - init_kprobes() establishes a probepoint here
354  *      - When the probed function returns, this probe
355  *              causes the handlers to fire
356  */
357 static void __used kretprobe_trampoline_holder(void)
358 {
359         asm volatile(".global kretprobe_trampoline\n"
360                      "kretprobe_trampoline: bcr 0,0\n");
361 }
362
363 /*
364  * Called when the probe at kretprobe trampoline is hit
365  */
366 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
367 {
368         struct kretprobe_instance *ri;
369         struct hlist_head *head, empty_rp;
370         struct hlist_node *tmp;
371         unsigned long flags, orig_ret_address;
372         unsigned long trampoline_address;
373         kprobe_opcode_t *correct_ret_addr;
374
375         INIT_HLIST_HEAD(&empty_rp);
376         kretprobe_hash_lock(current, &head, &flags);
377
378         /*
379          * It is possible to have multiple instances associated with a given
380          * task either because an multiple functions in the call path
381          * have a return probe installed on them, and/or more than one return
382          * return probe was registered for a target function.
383          *
384          * We can handle this because:
385          *     - instances are always inserted at the head of the list
386          *     - when multiple return probes are registered for the same
387          *       function, the first instance's ret_addr will point to the
388          *       real return address, and all the rest will point to
389          *       kretprobe_trampoline
390          */
391         ri = NULL;
392         orig_ret_address = 0;
393         correct_ret_addr = NULL;
394         trampoline_address = (unsigned long) &kretprobe_trampoline;
395         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
396                 if (ri->task != current)
397                         /* another task is sharing our hash bucket */
398                         continue;
399
400                 orig_ret_address = (unsigned long) ri->ret_addr;
401
402                 if (orig_ret_address != trampoline_address)
403                         /*
404                          * This is the real return address. Any other
405                          * instances associated with this task are for
406                          * other calls deeper on the call stack
407                          */
408                         break;
409         }
410
411         kretprobe_assert(ri, orig_ret_address, trampoline_address);
412
413         correct_ret_addr = ri->ret_addr;
414         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
415                 if (ri->task != current)
416                         /* another task is sharing our hash bucket */
417                         continue;
418
419                 orig_ret_address = (unsigned long) ri->ret_addr;
420
421                 if (ri->rp && ri->rp->handler) {
422                         ri->ret_addr = correct_ret_addr;
423                         ri->rp->handler(ri, regs);
424                 }
425
426                 recycle_rp_inst(ri, &empty_rp);
427
428                 if (orig_ret_address != trampoline_address)
429                         /*
430                          * This is the real return address. Any other
431                          * instances associated with this task are for
432                          * other calls deeper on the call stack
433                          */
434                         break;
435         }
436
437         regs->psw.addr = orig_ret_address;
438
439         kretprobe_hash_unlock(current, &flags);
440
441         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
442                 hlist_del(&ri->hlist);
443                 kfree(ri);
444         }
445         /*
446          * By returning a non-zero value, we are telling
447          * kprobe_handler() that we don't want the post_handler
448          * to run (and have re-enabled preemption)
449          */
450         return 1;
451 }
452 NOKPROBE_SYMBOL(trampoline_probe_handler);
453
454 /*
455  * Called after single-stepping.  p->addr is the address of the
456  * instruction whose first byte has been replaced by the "breakpoint"
457  * instruction.  To avoid the SMP problems that can occur when we
458  * temporarily put back the original opcode to single-step, we
459  * single-stepped a copy of the instruction.  The address of this
460  * copy is p->ainsn.insn.
461  */
462 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
463 {
464         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
465         unsigned long ip = regs->psw.addr;
466         int fixup = probe_get_fixup_type(p->ainsn.insn);
467
468         /* Check if the kprobes location is an enabled ftrace caller */
469         if (p->ainsn.is_ftrace_insn) {
470                 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
471                 struct ftrace_insn call_insn;
472
473                 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
474                 /*
475                  * A kprobe on an enabled ftrace call site actually single
476                  * stepped an unconditional branch (ftrace nop equivalent).
477                  * Now we need to fixup things and pretend that a brasl r0,...
478                  * was executed instead.
479                  */
480                 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
481                         ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
482                         regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
483                 }
484         }
485
486         if (fixup & FIXUP_PSW_NORMAL)
487                 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
488
489         if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
490                 int ilen = insn_length(p->ainsn.insn[0] >> 8);
491                 if (ip - (unsigned long) p->ainsn.insn == ilen)
492                         ip = (unsigned long) p->addr + ilen;
493         }
494
495         if (fixup & FIXUP_RETURN_REGISTER) {
496                 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
497                 regs->gprs[reg] += (unsigned long) p->addr -
498                                    (unsigned long) p->ainsn.insn;
499         }
500
501         disable_singlestep(kcb, regs, ip);
502 }
503 NOKPROBE_SYMBOL(resume_execution);
504
505 static int post_kprobe_handler(struct pt_regs *regs)
506 {
507         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
508         struct kprobe *p = kprobe_running();
509
510         if (!p)
511                 return 0;
512
513         resume_execution(p, regs);
514         if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
515                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
516                 p->post_handler(p, regs, 0);
517         }
518         pop_kprobe(kcb);
519         preempt_enable_no_resched();
520
521         /*
522          * if somebody else is singlestepping across a probe point, psw mask
523          * will have PER set, in which case, continue the remaining processing
524          * of do_single_step, as if this is not a probe hit.
525          */
526         if (regs->psw.mask & PSW_MASK_PER)
527                 return 0;
528
529         return 1;
530 }
531 NOKPROBE_SYMBOL(post_kprobe_handler);
532
533 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534 {
535         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536         struct kprobe *p = kprobe_running();
537         const struct exception_table_entry *entry;
538
539         switch(kcb->kprobe_status) {
540         case KPROBE_HIT_SS:
541         case KPROBE_REENTER:
542                 /*
543                  * We are here because the instruction being single
544                  * stepped caused a page fault. We reset the current
545                  * kprobe and the nip points back to the probe address
546                  * and allow the page fault handler to continue as a
547                  * normal page fault.
548                  */
549                 disable_singlestep(kcb, regs, (unsigned long) p->addr);
550                 pop_kprobe(kcb);
551                 preempt_enable_no_resched();
552                 break;
553         case KPROBE_HIT_ACTIVE:
554         case KPROBE_HIT_SSDONE:
555                 /*
556                  * We increment the nmissed count for accounting,
557                  * we can also use npre/npostfault count for accounting
558                  * these specific fault cases.
559                  */
560                 kprobes_inc_nmissed_count(p);
561
562                 /*
563                  * We come here because instructions in the pre/post
564                  * handler caused the page_fault, this could happen
565                  * if handler tries to access user space by
566                  * copy_from_user(), get_user() etc. Let the
567                  * user-specified handler try to fix it first.
568                  */
569                 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570                         return 1;
571
572                 /*
573                  * In case the user-specified fault handler returned
574                  * zero, try to fix up.
575                  */
576                 entry = s390_search_extables(regs->psw.addr);
577                 if (entry) {
578                         regs->psw.addr = extable_fixup(entry);
579                         return 1;
580                 }
581
582                 /*
583                  * fixup_exception() could not handle it,
584                  * Let do_page_fault() fix it.
585                  */
586                 break;
587         default:
588                 break;
589         }
590         return 0;
591 }
592 NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595 {
596         int ret;
597
598         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599                 local_irq_disable();
600         ret = kprobe_trap_handler(regs, trapnr);
601         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603         return ret;
604 }
605 NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607 /*
608  * Wrapper routine to for handling exceptions.
609  */
610 int kprobe_exceptions_notify(struct notifier_block *self,
611                              unsigned long val, void *data)
612 {
613         struct die_args *args = (struct die_args *) data;
614         struct pt_regs *regs = args->regs;
615         int ret = NOTIFY_DONE;
616
617         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618                 local_irq_disable();
619
620         switch (val) {
621         case DIE_BPT:
622                 if (kprobe_handler(regs))
623                         ret = NOTIFY_STOP;
624                 break;
625         case DIE_SSTEP:
626                 if (post_kprobe_handler(regs))
627                         ret = NOTIFY_STOP;
628                 break;
629         case DIE_TRAP:
630                 if (!preemptible() && kprobe_running() &&
631                     kprobe_trap_handler(regs, args->trapnr))
632                         ret = NOTIFY_STOP;
633                 break;
634         default:
635                 break;
636         }
637
638         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641         return ret;
642 }
643 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
644
645 static struct kprobe trampoline = {
646         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647         .pre_handler = trampoline_probe_handler
648 };
649
650 int __init arch_init_kprobes(void)
651 {
652         return register_kprobe(&trampoline);
653 }
654
655 int arch_trampoline_kprobe(struct kprobe *p)
656 {
657         return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658 }
659 NOKPROBE_SYMBOL(arch_trampoline_kprobe);