GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / riscv / kvm / tlb.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2022 Ventana Micro Systems Inc.
4  */
5
6 #include <linux/bitmap.h>
7 #include <linux/cpumask.h>
8 #include <linux/errno.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/smp.h>
12 #include <linux/kvm_host.h>
13 #include <asm/cacheflush.h>
14 #include <asm/csr.h>
15 #include <asm/hwcap.h>
16 #include <asm/insn-def.h>
17
18 #define has_svinval()   \
19         static_branch_unlikely(&riscv_isa_ext_keys[RISCV_ISA_EXT_KEY_SVINVAL])
20
21 void kvm_riscv_local_hfence_gvma_vmid_gpa(unsigned long vmid,
22                                           gpa_t gpa, gpa_t gpsz,
23                                           unsigned long order)
24 {
25         gpa_t pos;
26
27         if (PTRS_PER_PTE < (gpsz >> order)) {
28                 kvm_riscv_local_hfence_gvma_vmid_all(vmid);
29                 return;
30         }
31
32         if (has_svinval()) {
33                 asm volatile (SFENCE_W_INVAL() ::: "memory");
34                 for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
35                         asm volatile (HINVAL_GVMA(%0, %1)
36                         : : "r" (pos >> 2), "r" (vmid) : "memory");
37                 asm volatile (SFENCE_INVAL_IR() ::: "memory");
38         } else {
39                 for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
40                         asm volatile (HFENCE_GVMA(%0, %1)
41                         : : "r" (pos >> 2), "r" (vmid) : "memory");
42         }
43 }
44
45 void kvm_riscv_local_hfence_gvma_vmid_all(unsigned long vmid)
46 {
47         asm volatile(HFENCE_GVMA(zero, %0) : : "r" (vmid) : "memory");
48 }
49
50 void kvm_riscv_local_hfence_gvma_gpa(gpa_t gpa, gpa_t gpsz,
51                                      unsigned long order)
52 {
53         gpa_t pos;
54
55         if (PTRS_PER_PTE < (gpsz >> order)) {
56                 kvm_riscv_local_hfence_gvma_all();
57                 return;
58         }
59
60         if (has_svinval()) {
61                 asm volatile (SFENCE_W_INVAL() ::: "memory");
62                 for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
63                         asm volatile(HINVAL_GVMA(%0, zero)
64                         : : "r" (pos >> 2) : "memory");
65                 asm volatile (SFENCE_INVAL_IR() ::: "memory");
66         } else {
67                 for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
68                         asm volatile(HFENCE_GVMA(%0, zero)
69                         : : "r" (pos >> 2) : "memory");
70         }
71 }
72
73 void kvm_riscv_local_hfence_gvma_all(void)
74 {
75         asm volatile(HFENCE_GVMA(zero, zero) : : : "memory");
76 }
77
78 void kvm_riscv_local_hfence_vvma_asid_gva(unsigned long vmid,
79                                           unsigned long asid,
80                                           unsigned long gva,
81                                           unsigned long gvsz,
82                                           unsigned long order)
83 {
84         unsigned long pos, hgatp;
85
86         if (PTRS_PER_PTE < (gvsz >> order)) {
87                 kvm_riscv_local_hfence_vvma_asid_all(vmid, asid);
88                 return;
89         }
90
91         hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
92
93         if (has_svinval()) {
94                 asm volatile (SFENCE_W_INVAL() ::: "memory");
95                 for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
96                         asm volatile(HINVAL_VVMA(%0, %1)
97                         : : "r" (pos), "r" (asid) : "memory");
98                 asm volatile (SFENCE_INVAL_IR() ::: "memory");
99         } else {
100                 for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
101                         asm volatile(HFENCE_VVMA(%0, %1)
102                         : : "r" (pos), "r" (asid) : "memory");
103         }
104
105         csr_write(CSR_HGATP, hgatp);
106 }
107
108 void kvm_riscv_local_hfence_vvma_asid_all(unsigned long vmid,
109                                           unsigned long asid)
110 {
111         unsigned long hgatp;
112
113         hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
114
115         asm volatile(HFENCE_VVMA(zero, %0) : : "r" (asid) : "memory");
116
117         csr_write(CSR_HGATP, hgatp);
118 }
119
120 void kvm_riscv_local_hfence_vvma_gva(unsigned long vmid,
121                                      unsigned long gva, unsigned long gvsz,
122                                      unsigned long order)
123 {
124         unsigned long pos, hgatp;
125
126         if (PTRS_PER_PTE < (gvsz >> order)) {
127                 kvm_riscv_local_hfence_vvma_all(vmid);
128                 return;
129         }
130
131         hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
132
133         if (has_svinval()) {
134                 asm volatile (SFENCE_W_INVAL() ::: "memory");
135                 for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
136                         asm volatile(HINVAL_VVMA(%0, zero)
137                         : : "r" (pos) : "memory");
138                 asm volatile (SFENCE_INVAL_IR() ::: "memory");
139         } else {
140                 for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
141                         asm volatile(HFENCE_VVMA(%0, zero)
142                         : : "r" (pos) : "memory");
143         }
144
145         csr_write(CSR_HGATP, hgatp);
146 }
147
148 void kvm_riscv_local_hfence_vvma_all(unsigned long vmid)
149 {
150         unsigned long hgatp;
151
152         hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
153
154         asm volatile(HFENCE_VVMA(zero, zero) : : : "memory");
155
156         csr_write(CSR_HGATP, hgatp);
157 }
158
159 void kvm_riscv_local_tlb_sanitize(struct kvm_vcpu *vcpu)
160 {
161         unsigned long vmid;
162
163         if (!kvm_riscv_gstage_vmid_bits() ||
164             vcpu->arch.last_exit_cpu == vcpu->cpu)
165                 return;
166
167         /*
168          * On RISC-V platforms with hardware VMID support, we share same
169          * VMID for all VCPUs of a particular Guest/VM. This means we might
170          * have stale G-stage TLB entries on the current Host CPU due to
171          * some other VCPU of the same Guest which ran previously on the
172          * current Host CPU.
173          *
174          * To cleanup stale TLB entries, we simply flush all G-stage TLB
175          * entries by VMID whenever underlying Host CPU changes for a VCPU.
176          */
177
178         vmid = READ_ONCE(vcpu->kvm->arch.vmid.vmid);
179         kvm_riscv_local_hfence_gvma_vmid_all(vmid);
180 }
181
182 void kvm_riscv_fence_i_process(struct kvm_vcpu *vcpu)
183 {
184         local_flush_icache_all();
185 }
186
187 void kvm_riscv_hfence_gvma_vmid_all_process(struct kvm_vcpu *vcpu)
188 {
189         struct kvm_vmid *vmid;
190
191         vmid = &vcpu->kvm->arch.vmid;
192         kvm_riscv_local_hfence_gvma_vmid_all(READ_ONCE(vmid->vmid));
193 }
194
195 void kvm_riscv_hfence_vvma_all_process(struct kvm_vcpu *vcpu)
196 {
197         struct kvm_vmid *vmid;
198
199         vmid = &vcpu->kvm->arch.vmid;
200         kvm_riscv_local_hfence_vvma_all(READ_ONCE(vmid->vmid));
201 }
202
203 static bool vcpu_hfence_dequeue(struct kvm_vcpu *vcpu,
204                                 struct kvm_riscv_hfence *out_data)
205 {
206         bool ret = false;
207         struct kvm_vcpu_arch *varch = &vcpu->arch;
208
209         spin_lock(&varch->hfence_lock);
210
211         if (varch->hfence_queue[varch->hfence_head].type) {
212                 memcpy(out_data, &varch->hfence_queue[varch->hfence_head],
213                        sizeof(*out_data));
214                 varch->hfence_queue[varch->hfence_head].type = 0;
215
216                 varch->hfence_head++;
217                 if (varch->hfence_head == KVM_RISCV_VCPU_MAX_HFENCE)
218                         varch->hfence_head = 0;
219
220                 ret = true;
221         }
222
223         spin_unlock(&varch->hfence_lock);
224
225         return ret;
226 }
227
228 static bool vcpu_hfence_enqueue(struct kvm_vcpu *vcpu,
229                                 const struct kvm_riscv_hfence *data)
230 {
231         bool ret = false;
232         struct kvm_vcpu_arch *varch = &vcpu->arch;
233
234         spin_lock(&varch->hfence_lock);
235
236         if (!varch->hfence_queue[varch->hfence_tail].type) {
237                 memcpy(&varch->hfence_queue[varch->hfence_tail],
238                        data, sizeof(*data));
239
240                 varch->hfence_tail++;
241                 if (varch->hfence_tail == KVM_RISCV_VCPU_MAX_HFENCE)
242                         varch->hfence_tail = 0;
243
244                 ret = true;
245         }
246
247         spin_unlock(&varch->hfence_lock);
248
249         return ret;
250 }
251
252 void kvm_riscv_hfence_process(struct kvm_vcpu *vcpu)
253 {
254         struct kvm_riscv_hfence d = { 0 };
255         struct kvm_vmid *v = &vcpu->kvm->arch.vmid;
256
257         while (vcpu_hfence_dequeue(vcpu, &d)) {
258                 switch (d.type) {
259                 case KVM_RISCV_HFENCE_UNKNOWN:
260                         break;
261                 case KVM_RISCV_HFENCE_GVMA_VMID_GPA:
262                         kvm_riscv_local_hfence_gvma_vmid_gpa(
263                                                 READ_ONCE(v->vmid),
264                                                 d.addr, d.size, d.order);
265                         break;
266                 case KVM_RISCV_HFENCE_VVMA_ASID_GVA:
267                         kvm_riscv_local_hfence_vvma_asid_gva(
268                                                 READ_ONCE(v->vmid), d.asid,
269                                                 d.addr, d.size, d.order);
270                         break;
271                 case KVM_RISCV_HFENCE_VVMA_ASID_ALL:
272                         kvm_riscv_local_hfence_vvma_asid_all(
273                                                 READ_ONCE(v->vmid), d.asid);
274                         break;
275                 case KVM_RISCV_HFENCE_VVMA_GVA:
276                         kvm_riscv_local_hfence_vvma_gva(
277                                                 READ_ONCE(v->vmid),
278                                                 d.addr, d.size, d.order);
279                         break;
280                 default:
281                         break;
282                 }
283         }
284 }
285
286 static void make_xfence_request(struct kvm *kvm,
287                                 unsigned long hbase, unsigned long hmask,
288                                 unsigned int req, unsigned int fallback_req,
289                                 const struct kvm_riscv_hfence *data)
290 {
291         unsigned long i;
292         struct kvm_vcpu *vcpu;
293         unsigned int actual_req = req;
294         DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
295
296         bitmap_clear(vcpu_mask, 0, KVM_MAX_VCPUS);
297         kvm_for_each_vcpu(i, vcpu, kvm) {
298                 if (hbase != -1UL) {
299                         if (vcpu->vcpu_id < hbase)
300                                 continue;
301                         if (!(hmask & (1UL << (vcpu->vcpu_id - hbase))))
302                                 continue;
303                 }
304
305                 bitmap_set(vcpu_mask, i, 1);
306
307                 if (!data || !data->type)
308                         continue;
309
310                 /*
311                  * Enqueue hfence data to VCPU hfence queue. If we don't
312                  * have space in the VCPU hfence queue then fallback to
313                  * a more conservative hfence request.
314                  */
315                 if (!vcpu_hfence_enqueue(vcpu, data))
316                         actual_req = fallback_req;
317         }
318
319         kvm_make_vcpus_request_mask(kvm, actual_req, vcpu_mask);
320 }
321
322 void kvm_riscv_fence_i(struct kvm *kvm,
323                        unsigned long hbase, unsigned long hmask)
324 {
325         make_xfence_request(kvm, hbase, hmask, KVM_REQ_FENCE_I,
326                             KVM_REQ_FENCE_I, NULL);
327 }
328
329 void kvm_riscv_hfence_gvma_vmid_gpa(struct kvm *kvm,
330                                     unsigned long hbase, unsigned long hmask,
331                                     gpa_t gpa, gpa_t gpsz,
332                                     unsigned long order)
333 {
334         struct kvm_riscv_hfence data;
335
336         data.type = KVM_RISCV_HFENCE_GVMA_VMID_GPA;
337         data.asid = 0;
338         data.addr = gpa;
339         data.size = gpsz;
340         data.order = order;
341         make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
342                             KVM_REQ_HFENCE_GVMA_VMID_ALL, &data);
343 }
344
345 void kvm_riscv_hfence_gvma_vmid_all(struct kvm *kvm,
346                                     unsigned long hbase, unsigned long hmask)
347 {
348         make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE_GVMA_VMID_ALL,
349                             KVM_REQ_HFENCE_GVMA_VMID_ALL, NULL);
350 }
351
352 void kvm_riscv_hfence_vvma_asid_gva(struct kvm *kvm,
353                                     unsigned long hbase, unsigned long hmask,
354                                     unsigned long gva, unsigned long gvsz,
355                                     unsigned long order, unsigned long asid)
356 {
357         struct kvm_riscv_hfence data;
358
359         data.type = KVM_RISCV_HFENCE_VVMA_ASID_GVA;
360         data.asid = asid;
361         data.addr = gva;
362         data.size = gvsz;
363         data.order = order;
364         make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
365                             KVM_REQ_HFENCE_VVMA_ALL, &data);
366 }
367
368 void kvm_riscv_hfence_vvma_asid_all(struct kvm *kvm,
369                                     unsigned long hbase, unsigned long hmask,
370                                     unsigned long asid)
371 {
372         struct kvm_riscv_hfence data;
373
374         data.type = KVM_RISCV_HFENCE_VVMA_ASID_ALL;
375         data.asid = asid;
376         data.addr = data.size = data.order = 0;
377         make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
378                             KVM_REQ_HFENCE_VVMA_ALL, &data);
379 }
380
381 void kvm_riscv_hfence_vvma_gva(struct kvm *kvm,
382                                unsigned long hbase, unsigned long hmask,
383                                unsigned long gva, unsigned long gvsz,
384                                unsigned long order)
385 {
386         struct kvm_riscv_hfence data;
387
388         data.type = KVM_RISCV_HFENCE_VVMA_GVA;
389         data.asid = 0;
390         data.addr = gva;
391         data.size = gvsz;
392         data.order = order;
393         make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
394                             KVM_REQ_HFENCE_VVMA_ALL, &data);
395 }
396
397 void kvm_riscv_hfence_vvma_all(struct kvm *kvm,
398                                unsigned long hbase, unsigned long hmask)
399 {
400         make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE_VVMA_ALL,
401                             KVM_REQ_HFENCE_VVMA_ALL, NULL);
402 }