GNU Linux-libre 6.7.9-gnu
[releases.git] / arch / riscv / kernel / kgdb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 SiFive
4  */
5
6 #include <linux/ptrace.h>
7 #include <linux/kdebug.h>
8 #include <linux/bug.h>
9 #include <linux/kgdb.h>
10 #include <linux/irqflags.h>
11 #include <linux/string.h>
12 #include <asm/cacheflush.h>
13 #include <asm/gdb_xml.h>
14 #include <asm/insn.h>
15
16 enum {
17         NOT_KGDB_BREAK = 0,
18         KGDB_SW_BREAK,
19         KGDB_COMPILED_BREAK,
20         KGDB_SW_SINGLE_STEP
21 };
22
23 static unsigned long stepped_address;
24 static unsigned int stepped_opcode;
25
26 static int decode_register_index(unsigned long opcode, int offset)
27 {
28         return (opcode >> offset) & 0x1F;
29 }
30
31 static int decode_register_index_short(unsigned long opcode, int offset)
32 {
33         return ((opcode >> offset) & 0x7) + 8;
34 }
35
36 /* Calculate the new address for after a step */
37 static int get_step_address(struct pt_regs *regs, unsigned long *next_addr)
38 {
39         unsigned long pc = regs->epc;
40         unsigned long *regs_ptr = (unsigned long *)regs;
41         unsigned int rs1_num, rs2_num;
42         int op_code;
43
44         if (get_kernel_nofault(op_code, (void *)pc))
45                 return -EINVAL;
46         if ((op_code & __INSN_LENGTH_MASK) != __INSN_LENGTH_GE_32) {
47                 if (riscv_insn_is_c_jalr(op_code) ||
48                     riscv_insn_is_c_jr(op_code)) {
49                         rs1_num = decode_register_index(op_code, RVC_C2_RS1_OPOFF);
50                         *next_addr = regs_ptr[rs1_num];
51                 } else if (riscv_insn_is_c_j(op_code) ||
52                            riscv_insn_is_c_jal(op_code)) {
53                         *next_addr = RVC_EXTRACT_JTYPE_IMM(op_code) + pc;
54                 } else if (riscv_insn_is_c_beqz(op_code)) {
55                         rs1_num = decode_register_index_short(op_code,
56                                                               RVC_C1_RS1_OPOFF);
57                         if (!rs1_num || regs_ptr[rs1_num] == 0)
58                                 *next_addr = RVC_EXTRACT_BTYPE_IMM(op_code) + pc;
59                         else
60                                 *next_addr = pc + 2;
61                 } else if (riscv_insn_is_c_bnez(op_code)) {
62                         rs1_num =
63                             decode_register_index_short(op_code, RVC_C1_RS1_OPOFF);
64                         if (rs1_num && regs_ptr[rs1_num] != 0)
65                                 *next_addr = RVC_EXTRACT_BTYPE_IMM(op_code) + pc;
66                         else
67                                 *next_addr = pc + 2;
68                 } else {
69                         *next_addr = pc + 2;
70                 }
71         } else {
72                 if ((op_code & __INSN_OPCODE_MASK) == __INSN_BRANCH_OPCODE) {
73                         bool result = false;
74                         long imm = RV_EXTRACT_BTYPE_IMM(op_code);
75                         unsigned long rs1_val = 0, rs2_val = 0;
76
77                         rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF);
78                         rs2_num = decode_register_index(op_code, RVG_RS2_OPOFF);
79                         if (rs1_num)
80                                 rs1_val = regs_ptr[rs1_num];
81                         if (rs2_num)
82                                 rs2_val = regs_ptr[rs2_num];
83
84                         if (riscv_insn_is_beq(op_code))
85                                 result = (rs1_val == rs2_val) ? true : false;
86                         else if (riscv_insn_is_bne(op_code))
87                                 result = (rs1_val != rs2_val) ? true : false;
88                         else if (riscv_insn_is_blt(op_code))
89                                 result =
90                                     ((long)rs1_val <
91                                      (long)rs2_val) ? true : false;
92                         else if (riscv_insn_is_bge(op_code))
93                                 result =
94                                     ((long)rs1_val >=
95                                      (long)rs2_val) ? true : false;
96                         else if (riscv_insn_is_bltu(op_code))
97                                 result = (rs1_val < rs2_val) ? true : false;
98                         else if (riscv_insn_is_bgeu(op_code))
99                                 result = (rs1_val >= rs2_val) ? true : false;
100                         if (result)
101                                 *next_addr = imm + pc;
102                         else
103                                 *next_addr = pc + 4;
104                 } else if (riscv_insn_is_jal(op_code)) {
105                         *next_addr = RV_EXTRACT_JTYPE_IMM(op_code) + pc;
106                 } else if (riscv_insn_is_jalr(op_code)) {
107                         rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF);
108                         if (rs1_num)
109                                 *next_addr = ((unsigned long *)regs)[rs1_num];
110                         *next_addr += RV_EXTRACT_ITYPE_IMM(op_code);
111                 } else if (riscv_insn_is_sret(op_code)) {
112                         *next_addr = pc;
113                 } else {
114                         *next_addr = pc + 4;
115                 }
116         }
117         return 0;
118 }
119
120 static int do_single_step(struct pt_regs *regs)
121 {
122         /* Determine where the target instruction will send us to */
123         unsigned long addr = 0;
124         int error = get_step_address(regs, &addr);
125
126         if (error)
127                 return error;
128
129         /* Store the op code in the stepped address */
130         error = get_kernel_nofault(stepped_opcode, (void *)addr);
131         if (error)
132                 return error;
133
134         stepped_address = addr;
135
136         /* Replace the op code with the break instruction */
137         error = copy_to_kernel_nofault((void *)stepped_address,
138                                    arch_kgdb_ops.gdb_bpt_instr,
139                                    BREAK_INSTR_SIZE);
140         /* Flush and return */
141         if (!error) {
142                 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
143                 kgdb_single_step = 1;
144                 atomic_set(&kgdb_cpu_doing_single_step,
145                            raw_smp_processor_id());
146         } else {
147                 stepped_address = 0;
148                 stepped_opcode = 0;
149         }
150         return error;
151 }
152
153 /* Undo a single step */
154 static void undo_single_step(struct pt_regs *regs)
155 {
156         if (stepped_opcode != 0) {
157                 copy_to_kernel_nofault((void *)stepped_address,
158                                    (void *)&stepped_opcode, BREAK_INSTR_SIZE);
159                 flush_icache_range(stepped_address,
160                                    stepped_address + BREAK_INSTR_SIZE);
161         }
162         stepped_address = 0;
163         stepped_opcode = 0;
164         kgdb_single_step = 0;
165         atomic_set(&kgdb_cpu_doing_single_step, -1);
166 }
167
168 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
169         {DBG_REG_ZERO, GDB_SIZEOF_REG, -1},
170         {DBG_REG_RA, GDB_SIZEOF_REG, offsetof(struct pt_regs, ra)},
171         {DBG_REG_SP, GDB_SIZEOF_REG, offsetof(struct pt_regs, sp)},
172         {DBG_REG_GP, GDB_SIZEOF_REG, offsetof(struct pt_regs, gp)},
173         {DBG_REG_TP, GDB_SIZEOF_REG, offsetof(struct pt_regs, tp)},
174         {DBG_REG_T0, GDB_SIZEOF_REG, offsetof(struct pt_regs, t0)},
175         {DBG_REG_T1, GDB_SIZEOF_REG, offsetof(struct pt_regs, t1)},
176         {DBG_REG_T2, GDB_SIZEOF_REG, offsetof(struct pt_regs, t2)},
177         {DBG_REG_FP, GDB_SIZEOF_REG, offsetof(struct pt_regs, s0)},
178         {DBG_REG_S1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)},
179         {DBG_REG_A0, GDB_SIZEOF_REG, offsetof(struct pt_regs, a0)},
180         {DBG_REG_A1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)},
181         {DBG_REG_A2, GDB_SIZEOF_REG, offsetof(struct pt_regs, a2)},
182         {DBG_REG_A3, GDB_SIZEOF_REG, offsetof(struct pt_regs, a3)},
183         {DBG_REG_A4, GDB_SIZEOF_REG, offsetof(struct pt_regs, a4)},
184         {DBG_REG_A5, GDB_SIZEOF_REG, offsetof(struct pt_regs, a5)},
185         {DBG_REG_A6, GDB_SIZEOF_REG, offsetof(struct pt_regs, a6)},
186         {DBG_REG_A7, GDB_SIZEOF_REG, offsetof(struct pt_regs, a7)},
187         {DBG_REG_S2, GDB_SIZEOF_REG, offsetof(struct pt_regs, s2)},
188         {DBG_REG_S3, GDB_SIZEOF_REG, offsetof(struct pt_regs, s3)},
189         {DBG_REG_S4, GDB_SIZEOF_REG, offsetof(struct pt_regs, s4)},
190         {DBG_REG_S5, GDB_SIZEOF_REG, offsetof(struct pt_regs, s5)},
191         {DBG_REG_S6, GDB_SIZEOF_REG, offsetof(struct pt_regs, s6)},
192         {DBG_REG_S7, GDB_SIZEOF_REG, offsetof(struct pt_regs, s7)},
193         {DBG_REG_S8, GDB_SIZEOF_REG, offsetof(struct pt_regs, s8)},
194         {DBG_REG_S9, GDB_SIZEOF_REG, offsetof(struct pt_regs, s9)},
195         {DBG_REG_S10, GDB_SIZEOF_REG, offsetof(struct pt_regs, s10)},
196         {DBG_REG_S11, GDB_SIZEOF_REG, offsetof(struct pt_regs, s11)},
197         {DBG_REG_T3, GDB_SIZEOF_REG, offsetof(struct pt_regs, t3)},
198         {DBG_REG_T4, GDB_SIZEOF_REG, offsetof(struct pt_regs, t4)},
199         {DBG_REG_T5, GDB_SIZEOF_REG, offsetof(struct pt_regs, t5)},
200         {DBG_REG_T6, GDB_SIZEOF_REG, offsetof(struct pt_regs, t6)},
201         {DBG_REG_EPC, GDB_SIZEOF_REG, offsetof(struct pt_regs, epc)},
202         {DBG_REG_STATUS, GDB_SIZEOF_REG, offsetof(struct pt_regs, status)},
203         {DBG_REG_BADADDR, GDB_SIZEOF_REG, offsetof(struct pt_regs, badaddr)},
204         {DBG_REG_CAUSE, GDB_SIZEOF_REG, offsetof(struct pt_regs, cause)},
205 };
206
207 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
208 {
209         if (regno >= DBG_MAX_REG_NUM || regno < 0)
210                 return NULL;
211
212         if (dbg_reg_def[regno].offset != -1)
213                 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
214                        dbg_reg_def[regno].size);
215         else
216                 memset(mem, 0, dbg_reg_def[regno].size);
217         return dbg_reg_def[regno].name;
218 }
219
220 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
221 {
222         if (regno >= DBG_MAX_REG_NUM || regno < 0)
223                 return -EINVAL;
224
225         if (dbg_reg_def[regno].offset != -1)
226                 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
227                        dbg_reg_def[regno].size);
228         return 0;
229 }
230
231 void
232 sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task)
233 {
234         /* Initialize to zero */
235         memset((char *)gdb_regs, 0, NUMREGBYTES);
236
237         gdb_regs[DBG_REG_SP_OFF] = task->thread.sp;
238         gdb_regs[DBG_REG_FP_OFF] = task->thread.s[0];
239         gdb_regs[DBG_REG_S1_OFF] = task->thread.s[1];
240         gdb_regs[DBG_REG_S2_OFF] = task->thread.s[2];
241         gdb_regs[DBG_REG_S3_OFF] = task->thread.s[3];
242         gdb_regs[DBG_REG_S4_OFF] = task->thread.s[4];
243         gdb_regs[DBG_REG_S5_OFF] = task->thread.s[5];
244         gdb_regs[DBG_REG_S6_OFF] = task->thread.s[6];
245         gdb_regs[DBG_REG_S7_OFF] = task->thread.s[7];
246         gdb_regs[DBG_REG_S8_OFF] = task->thread.s[8];
247         gdb_regs[DBG_REG_S9_OFF] = task->thread.s[10];
248         gdb_regs[DBG_REG_S10_OFF] = task->thread.s[11];
249         gdb_regs[DBG_REG_EPC_OFF] = task->thread.ra;
250 }
251
252 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
253 {
254         regs->epc = pc;
255 }
256
257 void kgdb_arch_handle_qxfer_pkt(char *remcom_in_buffer,
258                                 char *remcom_out_buffer)
259 {
260         if (!strncmp(remcom_in_buffer, gdb_xfer_read_target,
261                      sizeof(gdb_xfer_read_target)))
262                 strcpy(remcom_out_buffer, riscv_gdb_stub_target_desc);
263         else if (!strncmp(remcom_in_buffer, gdb_xfer_read_cpuxml,
264                           sizeof(gdb_xfer_read_cpuxml)))
265                 strcpy(remcom_out_buffer, riscv_gdb_stub_cpuxml);
266 }
267
268 static inline void kgdb_arch_update_addr(struct pt_regs *regs,
269                                          char *remcom_in_buffer)
270 {
271         unsigned long addr;
272         char *ptr;
273
274         ptr = &remcom_in_buffer[1];
275         if (kgdb_hex2long(&ptr, &addr))
276                 regs->epc = addr;
277 }
278
279 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
280                                char *remcom_in_buffer, char *remcom_out_buffer,
281                                struct pt_regs *regs)
282 {
283         int err = 0;
284
285         undo_single_step(regs);
286
287         switch (remcom_in_buffer[0]) {
288         case 'c':
289         case 'D':
290         case 'k':
291                 if (remcom_in_buffer[0] == 'c')
292                         kgdb_arch_update_addr(regs, remcom_in_buffer);
293                 break;
294         case 's':
295                 kgdb_arch_update_addr(regs, remcom_in_buffer);
296                 err = do_single_step(regs);
297                 break;
298         default:
299                 err = -1;
300         }
301         return err;
302 }
303
304 static int kgdb_riscv_kgdbbreak(unsigned long addr)
305 {
306         if (stepped_address == addr)
307                 return KGDB_SW_SINGLE_STEP;
308         if (atomic_read(&kgdb_setting_breakpoint))
309                 if (addr == (unsigned long)&kgdb_compiled_break)
310                         return KGDB_COMPILED_BREAK;
311
312         return kgdb_has_hit_break(addr);
313 }
314
315 static int kgdb_riscv_notify(struct notifier_block *self, unsigned long cmd,
316                              void *ptr)
317 {
318         struct die_args *args = (struct die_args *)ptr;
319         struct pt_regs *regs = args->regs;
320         unsigned long flags;
321         int type;
322
323         if (user_mode(regs))
324                 return NOTIFY_DONE;
325
326         type = kgdb_riscv_kgdbbreak(regs->epc);
327         if (type == NOT_KGDB_BREAK && cmd == DIE_TRAP)
328                 return NOTIFY_DONE;
329
330         local_irq_save(flags);
331
332         if (kgdb_handle_exception(type == KGDB_SW_SINGLE_STEP ? 0 : 1,
333                                   args->signr, cmd, regs))
334                 return NOTIFY_DONE;
335
336         if (type == KGDB_COMPILED_BREAK)
337                 regs->epc += 4;
338
339         local_irq_restore(flags);
340
341         return NOTIFY_STOP;
342 }
343
344 static struct notifier_block kgdb_notifier = {
345         .notifier_call = kgdb_riscv_notify,
346 };
347
348 int kgdb_arch_init(void)
349 {
350         register_die_notifier(&kgdb_notifier);
351
352         return 0;
353 }
354
355 void kgdb_arch_exit(void)
356 {
357         unregister_die_notifier(&kgdb_notifier);
358 }
359
360 /*
361  * Global data
362  */
363 #ifdef CONFIG_RISCV_ISA_C
364 const struct kgdb_arch arch_kgdb_ops = {
365         .gdb_bpt_instr = {0x02, 0x90},  /* c.ebreak */
366 };
367 #else
368 const struct kgdb_arch arch_kgdb_ops = {
369         .gdb_bpt_instr = {0x73, 0x00, 0x10, 0x00},      /* ebreak */
370 };
371 #endif