GNU Linux-libre 6.7.9-gnu
[releases.git] / arch / riscv / kernel / elf_kexec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Load ELF vmlinux file for the kexec_file_load syscall.
4  *
5  * Copyright (C) 2021 Huawei Technologies Co, Ltd.
6  *
7  * Author: Liao Chang (liaochang1@huawei.com)
8  *
9  * Based on kexec-tools' kexec-elf-riscv.c, heavily modified
10  * for kernel.
11  */
12
13 #define pr_fmt(fmt)     "kexec_image: " fmt
14
15 #include <linux/elf.h>
16 #include <linux/kexec.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/libfdt.h>
20 #include <linux/types.h>
21 #include <linux/memblock.h>
22 #include <asm/setup.h>
23
24 int arch_kimage_file_post_load_cleanup(struct kimage *image)
25 {
26         kvfree(image->arch.fdt);
27         image->arch.fdt = NULL;
28
29         vfree(image->elf_headers);
30         image->elf_headers = NULL;
31         image->elf_headers_sz = 0;
32
33         return kexec_image_post_load_cleanup_default(image);
34 }
35
36 static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
37                                 struct kexec_elf_info *elf_info, unsigned long old_pbase,
38                                 unsigned long new_pbase)
39 {
40         int i;
41         int ret = 0;
42         size_t size;
43         struct kexec_buf kbuf;
44         const struct elf_phdr *phdr;
45
46         kbuf.image = image;
47
48         for (i = 0; i < ehdr->e_phnum; i++) {
49                 phdr = &elf_info->proghdrs[i];
50                 if (phdr->p_type != PT_LOAD)
51                         continue;
52
53                 size = phdr->p_filesz;
54                 if (size > phdr->p_memsz)
55                         size = phdr->p_memsz;
56
57                 kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
58                 kbuf.bufsz = size;
59                 kbuf.buf_align = phdr->p_align;
60                 kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
61                 kbuf.memsz = phdr->p_memsz;
62                 kbuf.top_down = false;
63                 ret = kexec_add_buffer(&kbuf);
64                 if (ret)
65                         break;
66         }
67
68         return ret;
69 }
70
71 /*
72  * Go through the available phsyical memory regions and find one that hold
73  * an image of the specified size.
74  */
75 static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
76                           struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
77                           unsigned long *old_pbase, unsigned long *new_pbase)
78 {
79         int i;
80         int ret;
81         struct kexec_buf kbuf;
82         const struct elf_phdr *phdr;
83         unsigned long lowest_paddr = ULONG_MAX;
84         unsigned long lowest_vaddr = ULONG_MAX;
85
86         for (i = 0; i < ehdr->e_phnum; i++) {
87                 phdr = &elf_info->proghdrs[i];
88                 if (phdr->p_type != PT_LOAD)
89                         continue;
90
91                 if (lowest_paddr > phdr->p_paddr)
92                         lowest_paddr = phdr->p_paddr;
93
94                 if (lowest_vaddr > phdr->p_vaddr)
95                         lowest_vaddr = phdr->p_vaddr;
96         }
97
98         kbuf.image = image;
99         kbuf.buf_min = lowest_paddr;
100         kbuf.buf_max = ULONG_MAX;
101
102         /*
103          * Current riscv boot protocol requires 2MB alignment for
104          * RV64 and 4MB alignment for RV32
105          *
106          */
107         kbuf.buf_align = PMD_SIZE;
108         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
109         kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
110         kbuf.top_down = false;
111         ret = arch_kexec_locate_mem_hole(&kbuf);
112         if (!ret) {
113                 *old_pbase = lowest_paddr;
114                 *new_pbase = kbuf.mem;
115                 image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
116         }
117         return ret;
118 }
119
120 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
121 {
122         unsigned int *nr_ranges = arg;
123
124         (*nr_ranges)++;
125         return 0;
126 }
127
128 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
129 {
130         struct crash_mem *cmem = arg;
131
132         cmem->ranges[cmem->nr_ranges].start = res->start;
133         cmem->ranges[cmem->nr_ranges].end = res->end;
134         cmem->nr_ranges++;
135
136         return 0;
137 }
138
139 static int prepare_elf_headers(void **addr, unsigned long *sz)
140 {
141         struct crash_mem *cmem;
142         unsigned int nr_ranges;
143         int ret;
144
145         nr_ranges = 1; /* For exclusion of crashkernel region */
146         walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
147
148         cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
149         if (!cmem)
150                 return -ENOMEM;
151
152         cmem->max_nr_ranges = nr_ranges;
153         cmem->nr_ranges = 0;
154         ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
155         if (ret)
156                 goto out;
157
158         /* Exclude crashkernel region */
159         ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
160         if (!ret)
161                 ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
162
163 out:
164         kfree(cmem);
165         return ret;
166 }
167
168 static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
169                                  unsigned long cmdline_len)
170 {
171         int elfcorehdr_strlen;
172         char *cmdline_ptr;
173
174         cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
175         if (!cmdline_ptr)
176                 return NULL;
177
178         elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
179                 image->elf_load_addr);
180
181         if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
182                 pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
183                 kfree(cmdline_ptr);
184                 return NULL;
185         }
186
187         memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
188         /* Ensure it's nul terminated */
189         cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
190         return cmdline_ptr;
191 }
192
193 static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
194                             unsigned long kernel_len, char *initrd,
195                             unsigned long initrd_len, char *cmdline,
196                             unsigned long cmdline_len)
197 {
198         int ret;
199         unsigned long old_kernel_pbase = ULONG_MAX;
200         unsigned long new_kernel_pbase = 0UL;
201         unsigned long initrd_pbase = 0UL;
202         unsigned long headers_sz;
203         unsigned long kernel_start;
204         void *fdt, *headers;
205         struct elfhdr ehdr;
206         struct kexec_buf kbuf;
207         struct kexec_elf_info elf_info;
208         char *modified_cmdline = NULL;
209
210         ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
211         if (ret)
212                 return ERR_PTR(ret);
213
214         ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
215                              &old_kernel_pbase, &new_kernel_pbase);
216         if (ret)
217                 goto out;
218         kernel_start = image->start;
219         pr_notice("The entry point of kernel at 0x%lx\n", image->start);
220
221         /* Add the kernel binary to the image */
222         ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
223                                    old_kernel_pbase, new_kernel_pbase);
224         if (ret)
225                 goto out;
226
227         kbuf.image = image;
228         kbuf.buf_min = new_kernel_pbase + kernel_len;
229         kbuf.buf_max = ULONG_MAX;
230
231         /* Add elfcorehdr */
232         if (image->type == KEXEC_TYPE_CRASH) {
233                 ret = prepare_elf_headers(&headers, &headers_sz);
234                 if (ret) {
235                         pr_err("Preparing elf core header failed\n");
236                         goto out;
237                 }
238
239                 kbuf.buffer = headers;
240                 kbuf.bufsz = headers_sz;
241                 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
242                 kbuf.memsz = headers_sz;
243                 kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
244                 kbuf.top_down = true;
245
246                 ret = kexec_add_buffer(&kbuf);
247                 if (ret) {
248                         vfree(headers);
249                         goto out;
250                 }
251                 image->elf_headers = headers;
252                 image->elf_load_addr = kbuf.mem;
253                 image->elf_headers_sz = headers_sz;
254
255                 pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
256                          image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
257
258                 /* Setup cmdline for kdump kernel case */
259                 modified_cmdline = setup_kdump_cmdline(image, cmdline,
260                                                        cmdline_len);
261                 if (!modified_cmdline) {
262                         pr_err("Setting up cmdline for kdump kernel failed\n");
263                         ret = -EINVAL;
264                         goto out;
265                 }
266                 cmdline = modified_cmdline;
267         }
268
269 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
270         /* Add purgatory to the image */
271         kbuf.top_down = true;
272         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
273         ret = kexec_load_purgatory(image, &kbuf);
274         if (ret) {
275                 pr_err("Error loading purgatory ret=%d\n", ret);
276                 goto out;
277         }
278         ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
279                                              &kernel_start,
280                                              sizeof(kernel_start), 0);
281         if (ret)
282                 pr_err("Error update purgatory ret=%d\n", ret);
283 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
284
285         /* Add the initrd to the image */
286         if (initrd != NULL) {
287                 kbuf.buffer = initrd;
288                 kbuf.bufsz = kbuf.memsz = initrd_len;
289                 kbuf.buf_align = PAGE_SIZE;
290                 kbuf.top_down = true;
291                 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
292                 ret = kexec_add_buffer(&kbuf);
293                 if (ret)
294                         goto out;
295                 initrd_pbase = kbuf.mem;
296                 pr_notice("Loaded initrd at 0x%lx\n", initrd_pbase);
297         }
298
299         /* Add the DTB to the image */
300         fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
301                                            initrd_len, cmdline, 0);
302         if (!fdt) {
303                 pr_err("Error setting up the new device tree.\n");
304                 ret = -EINVAL;
305                 goto out;
306         }
307
308         fdt_pack(fdt);
309         kbuf.buffer = fdt;
310         kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
311         kbuf.buf_align = PAGE_SIZE;
312         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
313         kbuf.top_down = true;
314         ret = kexec_add_buffer(&kbuf);
315         if (ret) {
316                 pr_err("Error add DTB kbuf ret=%d\n", ret);
317                 goto out_free_fdt;
318         }
319         /* Cache the fdt buffer address for memory cleanup */
320         image->arch.fdt = fdt;
321         pr_notice("Loaded device tree at 0x%lx\n", kbuf.mem);
322         goto out;
323
324 out_free_fdt:
325         kvfree(fdt);
326 out:
327         kfree(modified_cmdline);
328         kexec_free_elf_info(&elf_info);
329         return ret ? ERR_PTR(ret) : NULL;
330 }
331
332 #define RV_X(x, s, n)  (((x) >> (s)) & ((1 << (n)) - 1))
333 #define RISCV_IMM_BITS 12
334 #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
335 #define RISCV_CONST_HIGH_PART(x) \
336         (((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
337 #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
338
339 #define ENCODE_ITYPE_IMM(x) \
340         (RV_X(x, 0, 12) << 20)
341 #define ENCODE_BTYPE_IMM(x) \
342         ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
343         (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
344 #define ENCODE_UTYPE_IMM(x) \
345         (RV_X(x, 12, 20) << 12)
346 #define ENCODE_JTYPE_IMM(x) \
347         ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
348         (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
349 #define ENCODE_CBTYPE_IMM(x) \
350         ((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
351         (RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
352 #define ENCODE_CJTYPE_IMM(x) \
353         ((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
354         (RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
355         (RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
356 #define ENCODE_UJTYPE_IMM(x) \
357         (ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
358         (ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
359 #define ENCODE_UITYPE_IMM(x) \
360         (ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
361
362 #define CLEAN_IMM(type, x) \
363         ((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
364
365 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
366                                      Elf_Shdr *section,
367                                      const Elf_Shdr *relsec,
368                                      const Elf_Shdr *symtab)
369 {
370         const char *strtab, *name, *shstrtab;
371         const Elf_Shdr *sechdrs;
372         Elf64_Rela *relas;
373         int i, r_type;
374
375         /* String & section header string table */
376         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
377         strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
378         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
379
380         relas = (void *)pi->ehdr + relsec->sh_offset;
381
382         for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
383                 const Elf_Sym *sym;     /* symbol to relocate */
384                 unsigned long addr;     /* final location after relocation */
385                 unsigned long val;      /* relocated symbol value */
386                 unsigned long sec_base; /* relocated symbol value */
387                 void *loc;              /* tmp location to modify */
388
389                 sym = (void *)pi->ehdr + symtab->sh_offset;
390                 sym += ELF64_R_SYM(relas[i].r_info);
391
392                 if (sym->st_name)
393                         name = strtab + sym->st_name;
394                 else
395                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
396
397                 loc = pi->purgatory_buf;
398                 loc += section->sh_offset;
399                 loc += relas[i].r_offset;
400
401                 if (sym->st_shndx == SHN_ABS)
402                         sec_base = 0;
403                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
404                         pr_err("Invalid section %d for symbol %s\n",
405                                sym->st_shndx, name);
406                         return -ENOEXEC;
407                 } else
408                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
409
410                 val = sym->st_value;
411                 val += sec_base;
412                 val += relas[i].r_addend;
413
414                 addr = section->sh_addr + relas[i].r_offset;
415
416                 r_type = ELF64_R_TYPE(relas[i].r_info);
417
418                 switch (r_type) {
419                 case R_RISCV_BRANCH:
420                         *(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
421                                  ENCODE_BTYPE_IMM(val - addr);
422                         break;
423                 case R_RISCV_JAL:
424                         *(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
425                                  ENCODE_JTYPE_IMM(val - addr);
426                         break;
427                 /*
428                  * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
429                  * sym is expected to be next to R_RISCV_PCREL_HI20
430                  * in purgatory relsec. Handle it like R_RISCV_CALL
431                  * sym, instead of searching the whole relsec.
432                  */
433                 case R_RISCV_PCREL_HI20:
434                 case R_RISCV_CALL_PLT:
435                 case R_RISCV_CALL:
436                         *(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
437                                  ENCODE_UJTYPE_IMM(val - addr);
438                         break;
439                 case R_RISCV_RVC_BRANCH:
440                         *(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
441                                  ENCODE_CBTYPE_IMM(val - addr);
442                         break;
443                 case R_RISCV_RVC_JUMP:
444                         *(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
445                                  ENCODE_CJTYPE_IMM(val - addr);
446                         break;
447                 case R_RISCV_ADD32:
448                         *(u32 *)loc += val;
449                         break;
450                 case R_RISCV_SUB32:
451                         *(u32 *)loc -= val;
452                         break;
453                 /* It has been applied by R_RISCV_PCREL_HI20 sym */
454                 case R_RISCV_PCREL_LO12_I:
455                 case R_RISCV_ALIGN:
456                 case R_RISCV_RELAX:
457                         break;
458                 default:
459                         pr_err("Unknown rela relocation: %d\n", r_type);
460                         return -ENOEXEC;
461                 }
462         }
463         return 0;
464 }
465
466 const struct kexec_file_ops elf_kexec_ops = {
467         .probe = kexec_elf_probe,
468         .load  = elf_kexec_load,
469 };