GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / powerpc / platforms / pseries / lpar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <asm/processor.h>
25 #include <asm/mmu.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43
44 #include "pseries.h"
45
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST     0x4000000000000000UL
48 #define HBR_RESPONSE    0x8000000000000000UL
49 #define HBR_END         0xc000000000000000UL
50 #define HBR_AVPN        0x0200000000000000UL
51 #define HBR_ANDCOND     0x0100000000000000UL
52
53
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58
59 /*
60  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
61  * page size is that page size.
62  *
63  * The first index is the segment base page size, the second one is the actual
64  * page size.
65  */
66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
67
68 /*
69  * Due to the involved complexity, and that the current hypervisor is only
70  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
71  * buffer size to 8 size block.
72  */
73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
74
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
76 static u8 dtl_mask = DTL_LOG_PREEMPT;
77 #else
78 static u8 dtl_mask;
79 #endif
80
81 void alloc_dtl_buffers(unsigned long *time_limit)
82 {
83         int cpu;
84         struct paca_struct *pp;
85         struct dtl_entry *dtl;
86
87         for_each_possible_cpu(cpu) {
88                 pp = paca_ptrs[cpu];
89                 if (pp->dispatch_log)
90                         continue;
91                 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
92                 if (!dtl) {
93                         pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
94                                 cpu);
95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
96                         pr_warn("Stolen time statistics will be unreliable\n");
97 #endif
98                         break;
99                 }
100
101                 pp->dtl_ridx = 0;
102                 pp->dispatch_log = dtl;
103                 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
104                 pp->dtl_curr = dtl;
105
106                 if (time_limit && time_after(jiffies, *time_limit)) {
107                         cond_resched();
108                         *time_limit = jiffies + HZ;
109                 }
110         }
111 }
112
113 void register_dtl_buffer(int cpu)
114 {
115         long ret;
116         struct paca_struct *pp;
117         struct dtl_entry *dtl;
118         int hwcpu = get_hard_smp_processor_id(cpu);
119
120         pp = paca_ptrs[cpu];
121         dtl = pp->dispatch_log;
122         if (dtl && dtl_mask) {
123                 pp->dtl_ridx = 0;
124                 pp->dtl_curr = dtl;
125                 lppaca_of(cpu).dtl_idx = 0;
126
127                 /* hypervisor reads buffer length from this field */
128                 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
129                 ret = register_dtl(hwcpu, __pa(dtl));
130                 if (ret)
131                         pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
132                                cpu, hwcpu, ret);
133
134                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
135         }
136 }
137
138 #ifdef CONFIG_PPC_SPLPAR
139 struct dtl_worker {
140         struct delayed_work work;
141         int cpu;
142 };
143
144 struct vcpu_dispatch_data {
145         int last_disp_cpu;
146
147         int total_disp;
148
149         int same_cpu_disp;
150         int same_chip_disp;
151         int diff_chip_disp;
152         int far_chip_disp;
153
154         int numa_home_disp;
155         int numa_remote_disp;
156         int numa_far_disp;
157 };
158
159 /*
160  * This represents the number of cpus in the hypervisor. Since there is no
161  * architected way to discover the number of processors in the host, we
162  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
163  * is sufficient for our purposes. This will need to be tweaked if
164  * CONFIG_NR_CPUS is changed.
165  */
166 #define NR_CPUS_H       NR_CPUS
167
168 DEFINE_RWLOCK(dtl_access_lock);
169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
170 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
172 static enum cpuhp_state dtl_worker_state;
173 static DEFINE_MUTEX(dtl_enable_mutex);
174 static int vcpudispatch_stats_on __read_mostly;
175 static int vcpudispatch_stats_freq = 50;
176 static __be32 *vcpu_associativity, *pcpu_associativity;
177
178
179 static void free_dtl_buffers(unsigned long *time_limit)
180 {
181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
182         int cpu;
183         struct paca_struct *pp;
184
185         for_each_possible_cpu(cpu) {
186                 pp = paca_ptrs[cpu];
187                 if (!pp->dispatch_log)
188                         continue;
189                 kmem_cache_free(dtl_cache, pp->dispatch_log);
190                 pp->dtl_ridx = 0;
191                 pp->dispatch_log = 0;
192                 pp->dispatch_log_end = 0;
193                 pp->dtl_curr = 0;
194
195                 if (time_limit && time_after(jiffies, *time_limit)) {
196                         cond_resched();
197                         *time_limit = jiffies + HZ;
198                 }
199         }
200 #endif
201 }
202
203 static int init_cpu_associativity(void)
204 {
205         vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
206                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
207         pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
208                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209
210         if (!vcpu_associativity || !pcpu_associativity) {
211                 pr_err("error allocating memory for associativity information\n");
212                 return -ENOMEM;
213         }
214
215         return 0;
216 }
217
218 static void destroy_cpu_associativity(void)
219 {
220         kfree(vcpu_associativity);
221         kfree(pcpu_associativity);
222         vcpu_associativity = pcpu_associativity = 0;
223 }
224
225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
226 {
227         __be32 *assoc;
228         int rc = 0;
229
230         assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
231         if (!assoc[0]) {
232                 rc = hcall_vphn(cpu, flag, &assoc[0]);
233                 if (rc)
234                         return NULL;
235         }
236
237         return assoc;
238 }
239
240 static __be32 *get_pcpu_associativity(int cpu)
241 {
242         return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
243 }
244
245 static __be32 *get_vcpu_associativity(int cpu)
246 {
247         return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
248 }
249
250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
251 {
252         __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
253
254         if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
255                 return -EINVAL;
256
257         last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
258         cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
259
260         if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
261                 return -EIO;
262
263         return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
264 }
265
266 static int cpu_home_node_dispatch_distance(int disp_cpu)
267 {
268         __be32 *disp_cpu_assoc, *vcpu_assoc;
269         int vcpu_id = smp_processor_id();
270
271         if (disp_cpu >= NR_CPUS_H) {
272                 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
273                                                 disp_cpu, NR_CPUS_H);
274                 return -EINVAL;
275         }
276
277         disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
278         vcpu_assoc = get_vcpu_associativity(vcpu_id);
279
280         if (!disp_cpu_assoc || !vcpu_assoc)
281                 return -EIO;
282
283         return cpu_distance(disp_cpu_assoc, vcpu_assoc);
284 }
285
286 static void update_vcpu_disp_stat(int disp_cpu)
287 {
288         struct vcpu_dispatch_data *disp;
289         int distance;
290
291         disp = this_cpu_ptr(&vcpu_disp_data);
292         if (disp->last_disp_cpu == -1) {
293                 disp->last_disp_cpu = disp_cpu;
294                 return;
295         }
296
297         disp->total_disp++;
298
299         if (disp->last_disp_cpu == disp_cpu ||
300                 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
301                                         cpu_first_thread_sibling(disp_cpu)))
302                 disp->same_cpu_disp++;
303         else {
304                 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
305                                                                 disp_cpu);
306                 if (distance < 0)
307                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
308                                         smp_processor_id());
309                 else {
310                         switch (distance) {
311                         case 0:
312                                 disp->same_chip_disp++;
313                                 break;
314                         case 1:
315                                 disp->diff_chip_disp++;
316                                 break;
317                         case 2:
318                                 disp->far_chip_disp++;
319                                 break;
320                         default:
321                                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
322                                                  smp_processor_id(),
323                                                  disp->last_disp_cpu,
324                                                  disp_cpu,
325                                                  distance);
326                         }
327                 }
328         }
329
330         distance = cpu_home_node_dispatch_distance(disp_cpu);
331         if (distance < 0)
332                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
333                                 smp_processor_id());
334         else {
335                 switch (distance) {
336                 case 0:
337                         disp->numa_home_disp++;
338                         break;
339                 case 1:
340                         disp->numa_remote_disp++;
341                         break;
342                 case 2:
343                         disp->numa_far_disp++;
344                         break;
345                 default:
346                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
347                                                  smp_processor_id(),
348                                                  disp_cpu,
349                                                  distance);
350                 }
351         }
352
353         disp->last_disp_cpu = disp_cpu;
354 }
355
356 static void process_dtl_buffer(struct work_struct *work)
357 {
358         struct dtl_entry dtle;
359         u64 i = __this_cpu_read(dtl_entry_ridx);
360         struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
361         struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
362         struct lppaca *vpa = local_paca->lppaca_ptr;
363         struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
364
365         if (!local_paca->dispatch_log)
366                 return;
367
368         /* if we have been migrated away, we cancel ourself */
369         if (d->cpu != smp_processor_id()) {
370                 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
371                                                 smp_processor_id());
372                 return;
373         }
374
375         if (i == be64_to_cpu(vpa->dtl_idx))
376                 goto out;
377
378         while (i < be64_to_cpu(vpa->dtl_idx)) {
379                 dtle = *dtl;
380                 barrier();
381                 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
382                         /* buffer has overflowed */
383                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
384                                 d->cpu,
385                                 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
386                         i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
387                         dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
388                         continue;
389                 }
390                 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
391                 ++i;
392                 ++dtl;
393                 if (dtl == dtl_end)
394                         dtl = local_paca->dispatch_log;
395         }
396
397         __this_cpu_write(dtl_entry_ridx, i);
398
399 out:
400         schedule_delayed_work_on(d->cpu, to_delayed_work(work),
401                                         HZ / vcpudispatch_stats_freq);
402 }
403
404 static int dtl_worker_online(unsigned int cpu)
405 {
406         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
407
408         memset(d, 0, sizeof(*d));
409         INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
410         d->cpu = cpu;
411
412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
413         per_cpu(dtl_entry_ridx, cpu) = 0;
414         register_dtl_buffer(cpu);
415 #else
416         per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
417 #endif
418
419         schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
420         return 0;
421 }
422
423 static int dtl_worker_offline(unsigned int cpu)
424 {
425         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
426
427         cancel_delayed_work_sync(&d->work);
428
429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430         unregister_dtl(get_hard_smp_processor_id(cpu));
431 #endif
432
433         return 0;
434 }
435
436 static void set_global_dtl_mask(u8 mask)
437 {
438         int cpu;
439
440         dtl_mask = mask;
441         for_each_present_cpu(cpu)
442                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
443 }
444
445 static void reset_global_dtl_mask(void)
446 {
447         int cpu;
448
449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
450         dtl_mask = DTL_LOG_PREEMPT;
451 #else
452         dtl_mask = 0;
453 #endif
454         for_each_present_cpu(cpu)
455                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
456 }
457
458 static int dtl_worker_enable(unsigned long *time_limit)
459 {
460         int rc = 0, state;
461
462         if (!write_trylock(&dtl_access_lock)) {
463                 rc = -EBUSY;
464                 goto out;
465         }
466
467         set_global_dtl_mask(DTL_LOG_ALL);
468
469         /* Setup dtl buffers and register those */
470         alloc_dtl_buffers(time_limit);
471
472         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
473                                         dtl_worker_online, dtl_worker_offline);
474         if (state < 0) {
475                 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
476                 free_dtl_buffers(time_limit);
477                 reset_global_dtl_mask();
478                 write_unlock(&dtl_access_lock);
479                 rc = -EINVAL;
480                 goto out;
481         }
482         dtl_worker_state = state;
483
484 out:
485         return rc;
486 }
487
488 static void dtl_worker_disable(unsigned long *time_limit)
489 {
490         cpuhp_remove_state(dtl_worker_state);
491         free_dtl_buffers(time_limit);
492         reset_global_dtl_mask();
493         write_unlock(&dtl_access_lock);
494 }
495
496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
497                 size_t count, loff_t *ppos)
498 {
499         unsigned long time_limit = jiffies + HZ;
500         struct vcpu_dispatch_data *disp;
501         int rc, cmd, cpu;
502         char buf[16];
503
504         if (count > 15)
505                 return -EINVAL;
506
507         if (copy_from_user(buf, p, count))
508                 return -EFAULT;
509
510         buf[count] = 0;
511         rc = kstrtoint(buf, 0, &cmd);
512         if (rc || cmd < 0 || cmd > 1) {
513                 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
514                 return rc ? rc : -EINVAL;
515         }
516
517         mutex_lock(&dtl_enable_mutex);
518
519         if ((cmd == 0 && !vcpudispatch_stats_on) ||
520                         (cmd == 1 && vcpudispatch_stats_on))
521                 goto out;
522
523         if (cmd) {
524                 rc = init_cpu_associativity();
525                 if (rc) {
526                         destroy_cpu_associativity();
527                         goto out;
528                 }
529
530                 for_each_possible_cpu(cpu) {
531                         disp = per_cpu_ptr(&vcpu_disp_data, cpu);
532                         memset(disp, 0, sizeof(*disp));
533                         disp->last_disp_cpu = -1;
534                 }
535
536                 rc = dtl_worker_enable(&time_limit);
537                 if (rc) {
538                         destroy_cpu_associativity();
539                         goto out;
540                 }
541         } else {
542                 dtl_worker_disable(&time_limit);
543                 destroy_cpu_associativity();
544         }
545
546         vcpudispatch_stats_on = cmd;
547
548 out:
549         mutex_unlock(&dtl_enable_mutex);
550         if (rc)
551                 return rc;
552         return count;
553 }
554
555 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
556 {
557         int cpu;
558         struct vcpu_dispatch_data *disp;
559
560         if (!vcpudispatch_stats_on) {
561                 seq_puts(p, "off\n");
562                 return 0;
563         }
564
565         for_each_online_cpu(cpu) {
566                 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
567                 seq_printf(p, "cpu%d", cpu);
568                 seq_put_decimal_ull(p, " ", disp->total_disp);
569                 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
570                 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
571                 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
572                 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
573                 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
574                 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
575                 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
576                 seq_puts(p, "\n");
577         }
578
579         return 0;
580 }
581
582 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
583 {
584         return single_open(file, vcpudispatch_stats_display, NULL);
585 }
586
587 static const struct file_operations vcpudispatch_stats_proc_ops = {
588         .open           = vcpudispatch_stats_open,
589         .read           = seq_read,
590         .write          = vcpudispatch_stats_write,
591         .llseek         = seq_lseek,
592         .release        = single_release,
593 };
594
595 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
596                 const char __user *p, size_t count, loff_t *ppos)
597 {
598         int rc, freq;
599         char buf[16];
600
601         if (count > 15)
602                 return -EINVAL;
603
604         if (copy_from_user(buf, p, count))
605                 return -EFAULT;
606
607         buf[count] = 0;
608         rc = kstrtoint(buf, 0, &freq);
609         if (rc || freq < 1 || freq > HZ) {
610                 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
611                                 HZ);
612                 return rc ? rc : -EINVAL;
613         }
614
615         vcpudispatch_stats_freq = freq;
616
617         return count;
618 }
619
620 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
621 {
622         seq_printf(p, "%d\n", vcpudispatch_stats_freq);
623         return 0;
624 }
625
626 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
627 {
628         return single_open(file, vcpudispatch_stats_freq_display, NULL);
629 }
630
631 static const struct file_operations vcpudispatch_stats_freq_proc_ops = {
632         .open           = vcpudispatch_stats_freq_open,
633         .read           = seq_read,
634         .write          = vcpudispatch_stats_freq_write,
635         .llseek         = seq_lseek,
636         .release        = single_release,
637 };
638
639 static int __init vcpudispatch_stats_procfs_init(void)
640 {
641         if (!lppaca_shared_proc(get_lppaca()))
642                 return 0;
643
644         if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
645                                         &vcpudispatch_stats_proc_ops))
646                 pr_err("vcpudispatch_stats: error creating procfs file\n");
647         else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
648                                         &vcpudispatch_stats_freq_proc_ops))
649                 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
650
651         return 0;
652 }
653
654 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
655 #endif /* CONFIG_PPC_SPLPAR */
656
657 void vpa_init(int cpu)
658 {
659         int hwcpu = get_hard_smp_processor_id(cpu);
660         unsigned long addr;
661         long ret;
662
663         /*
664          * The spec says it "may be problematic" if CPU x registers the VPA of
665          * CPU y. We should never do that, but wail if we ever do.
666          */
667         WARN_ON(cpu != smp_processor_id());
668
669         if (cpu_has_feature(CPU_FTR_ALTIVEC))
670                 lppaca_of(cpu).vmxregs_in_use = 1;
671
672         if (cpu_has_feature(CPU_FTR_ARCH_207S))
673                 lppaca_of(cpu).ebb_regs_in_use = 1;
674
675         addr = __pa(&lppaca_of(cpu));
676         ret = register_vpa(hwcpu, addr);
677
678         if (ret) {
679                 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
680                        "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
681                 return;
682         }
683
684 #ifdef CONFIG_PPC_BOOK3S_64
685         /*
686          * PAPR says this feature is SLB-Buffer but firmware never
687          * reports that.  All SPLPAR support SLB shadow buffer.
688          */
689         if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
690                 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
691                 ret = register_slb_shadow(hwcpu, addr);
692                 if (ret)
693                         pr_err("WARNING: SLB shadow buffer registration for "
694                                "cpu %d (hw %d) of area %lx failed with %ld\n",
695                                cpu, hwcpu, addr, ret);
696         }
697 #endif /* CONFIG_PPC_BOOK3S_64 */
698
699         /*
700          * Register dispatch trace log, if one has been allocated.
701          */
702         register_dtl_buffer(cpu);
703 }
704
705 #ifdef CONFIG_PPC_BOOK3S_64
706
707 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
708                                      unsigned long vpn, unsigned long pa,
709                                      unsigned long rflags, unsigned long vflags,
710                                      int psize, int apsize, int ssize)
711 {
712         unsigned long lpar_rc;
713         unsigned long flags;
714         unsigned long slot;
715         unsigned long hpte_v, hpte_r;
716
717         if (!(vflags & HPTE_V_BOLTED))
718                 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
719                          "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
720                          hpte_group, vpn,  pa, rflags, vflags, psize);
721
722         hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
723         hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
724
725         if (!(vflags & HPTE_V_BOLTED))
726                 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
727
728         /* Now fill in the actual HPTE */
729         /* Set CEC cookie to 0         */
730         /* Zero page = 0               */
731         /* I-cache Invalidate = 0      */
732         /* I-cache synchronize = 0     */
733         /* Exact = 0                   */
734         flags = 0;
735
736         if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
737                 flags |= H_COALESCE_CAND;
738
739         lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
740         if (unlikely(lpar_rc == H_PTEG_FULL)) {
741                 pr_devel("Hash table group is full\n");
742                 return -1;
743         }
744
745         /*
746          * Since we try and ioremap PHBs we don't own, the pte insert
747          * will fail. However we must catch the failure in hash_page
748          * or we will loop forever, so return -2 in this case.
749          */
750         if (unlikely(lpar_rc != H_SUCCESS)) {
751                 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
752                 return -2;
753         }
754         if (!(vflags & HPTE_V_BOLTED))
755                 pr_devel(" -> slot: %lu\n", slot & 7);
756
757         /* Because of iSeries, we have to pass down the secondary
758          * bucket bit here as well
759          */
760         return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
761 }
762
763 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
764
765 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
766 {
767         unsigned long slot_offset;
768         unsigned long lpar_rc;
769         int i;
770         unsigned long dummy1, dummy2;
771
772         /* pick a random slot to start at */
773         slot_offset = mftb() & 0x7;
774
775         for (i = 0; i < HPTES_PER_GROUP; i++) {
776
777                 /* don't remove a bolted entry */
778                 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
779                                            (0x1UL << 4), &dummy1, &dummy2);
780                 if (lpar_rc == H_SUCCESS)
781                         return i;
782
783                 /*
784                  * The test for adjunct partition is performed before the
785                  * ANDCOND test.  H_RESOURCE may be returned, so we need to
786                  * check for that as well.
787                  */
788                 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
789
790                 slot_offset++;
791                 slot_offset &= 0x7;
792         }
793
794         return -1;
795 }
796
797 static void manual_hpte_clear_all(void)
798 {
799         unsigned long size_bytes = 1UL << ppc64_pft_size;
800         unsigned long hpte_count = size_bytes >> 4;
801         struct {
802                 unsigned long pteh;
803                 unsigned long ptel;
804         } ptes[4];
805         long lpar_rc;
806         unsigned long i, j;
807
808         /* Read in batches of 4,
809          * invalidate only valid entries not in the VRMA
810          * hpte_count will be a multiple of 4
811          */
812         for (i = 0; i < hpte_count; i += 4) {
813                 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
814                 if (lpar_rc != H_SUCCESS) {
815                         pr_info("Failed to read hash page table at %ld err %ld\n",
816                                 i, lpar_rc);
817                         continue;
818                 }
819                 for (j = 0; j < 4; j++){
820                         if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
821                                 HPTE_V_VRMA_MASK)
822                                 continue;
823                         if (ptes[j].pteh & HPTE_V_VALID)
824                                 plpar_pte_remove_raw(0, i + j, 0,
825                                         &(ptes[j].pteh), &(ptes[j].ptel));
826                 }
827         }
828 }
829
830 static int hcall_hpte_clear_all(void)
831 {
832         int rc;
833
834         do {
835                 rc = plpar_hcall_norets(H_CLEAR_HPT);
836         } while (rc == H_CONTINUE);
837
838         return rc;
839 }
840
841 static void pseries_hpte_clear_all(void)
842 {
843         int rc;
844
845         rc = hcall_hpte_clear_all();
846         if (rc != H_SUCCESS)
847                 manual_hpte_clear_all();
848
849 #ifdef __LITTLE_ENDIAN__
850         /*
851          * Reset exceptions to big endian.
852          *
853          * FIXME this is a hack for kexec, we need to reset the exception
854          * endian before starting the new kernel and this is a convenient place
855          * to do it.
856          *
857          * This is also called on boot when a fadump happens. In that case we
858          * must not change the exception endian mode.
859          */
860         if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
861                 pseries_big_endian_exceptions();
862 #endif
863 }
864
865 /*
866  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
867  * the low 3 bits of flags happen to line up.  So no transform is needed.
868  * We can probably optimize here and assume the high bits of newpp are
869  * already zero.  For now I am paranoid.
870  */
871 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
872                                        unsigned long newpp,
873                                        unsigned long vpn,
874                                        int psize, int apsize,
875                                        int ssize, unsigned long inv_flags)
876 {
877         unsigned long lpar_rc;
878         unsigned long flags;
879         unsigned long want_v;
880
881         want_v = hpte_encode_avpn(vpn, psize, ssize);
882
883         flags = (newpp & 7) | H_AVPN;
884         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
885                 /* Move pp0 into bit 8 (IBM 55) */
886                 flags |= (newpp & HPTE_R_PP0) >> 55;
887
888         pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
889                  want_v, slot, flags, psize);
890
891         lpar_rc = plpar_pte_protect(flags, slot, want_v);
892
893         if (lpar_rc == H_NOT_FOUND) {
894                 pr_devel("not found !\n");
895                 return -1;
896         }
897
898         pr_devel("ok\n");
899
900         BUG_ON(lpar_rc != H_SUCCESS);
901
902         return 0;
903 }
904
905 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
906 {
907         long lpar_rc;
908         unsigned long i, j;
909         struct {
910                 unsigned long pteh;
911                 unsigned long ptel;
912         } ptes[4];
913
914         for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
915
916                 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
917                 if (lpar_rc != H_SUCCESS) {
918                         pr_info("Failed to read hash page table at %ld err %ld\n",
919                                 hpte_group, lpar_rc);
920                         continue;
921                 }
922
923                 for (j = 0; j < 4; j++) {
924                         if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
925                             (ptes[j].pteh & HPTE_V_VALID))
926                                 return i + j;
927                 }
928         }
929
930         return -1;
931 }
932
933 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
934 {
935         long slot;
936         unsigned long hash;
937         unsigned long want_v;
938         unsigned long hpte_group;
939
940         hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
941         want_v = hpte_encode_avpn(vpn, psize, ssize);
942
943         /* Bolted entries are always in the primary group */
944         hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
945         slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
946         if (slot < 0)
947                 return -1;
948         return hpte_group + slot;
949 }
950
951 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
952                                              unsigned long ea,
953                                              int psize, int ssize)
954 {
955         unsigned long vpn;
956         unsigned long lpar_rc, slot, vsid, flags;
957
958         vsid = get_kernel_vsid(ea, ssize);
959         vpn = hpt_vpn(ea, vsid, ssize);
960
961         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
962         BUG_ON(slot == -1);
963
964         flags = newpp & 7;
965         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
966                 /* Move pp0 into bit 8 (IBM 55) */
967                 flags |= (newpp & HPTE_R_PP0) >> 55;
968
969         lpar_rc = plpar_pte_protect(flags, slot, 0);
970
971         BUG_ON(lpar_rc != H_SUCCESS);
972 }
973
974 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
975                                          int psize, int apsize,
976                                          int ssize, int local)
977 {
978         unsigned long want_v;
979         unsigned long lpar_rc;
980         unsigned long dummy1, dummy2;
981
982         pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
983                  slot, vpn, psize, local);
984
985         want_v = hpte_encode_avpn(vpn, psize, ssize);
986         lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
987         if (lpar_rc == H_NOT_FOUND)
988                 return;
989
990         BUG_ON(lpar_rc != H_SUCCESS);
991 }
992
993
994 /*
995  * As defined in the PAPR's section 14.5.4.1.8
996  * The control mask doesn't include the returned reference and change bit from
997  * the processed PTE.
998  */
999 #define HBLKR_AVPN              0x0100000000000000UL
1000 #define HBLKR_CTRL_MASK         0xf800000000000000UL
1001 #define HBLKR_CTRL_SUCCESS      0x8000000000000000UL
1002 #define HBLKR_CTRL_ERRNOTFOUND  0x8800000000000000UL
1003 #define HBLKR_CTRL_ERRBUSY      0xa000000000000000UL
1004
1005 /*
1006  * Returned true if we are supporting this block size for the specified segment
1007  * base page size and actual page size.
1008  *
1009  * Currently, we only support 8 size block.
1010  */
1011 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1012 {
1013         return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1014 }
1015
1016 /**
1017  * H_BLOCK_REMOVE caller.
1018  * @idx should point to the latest @param entry set with a PTEX.
1019  * If PTE cannot be processed because another CPUs has already locked that
1020  * group, those entries are put back in @param starting at index 1.
1021  * If entries has to be retried and @retry_busy is set to true, these entries
1022  * are retried until success. If @retry_busy is set to false, the returned
1023  * is the number of entries yet to process.
1024  */
1025 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1026                                        bool retry_busy)
1027 {
1028         unsigned long i, rc, new_idx;
1029         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1030
1031         if (idx < 2) {
1032                 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1033                 return 0;
1034         }
1035 again:
1036         new_idx = 0;
1037         if (idx > PLPAR_HCALL9_BUFSIZE) {
1038                 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1039                 idx = PLPAR_HCALL9_BUFSIZE;
1040         } else if (idx < PLPAR_HCALL9_BUFSIZE)
1041                 param[idx] = HBR_END;
1042
1043         rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1044                           param[0], /* AVA */
1045                           param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1046                           param[5],  param[6],  param[7],  param[8]);
1047         if (rc == H_SUCCESS)
1048                 return 0;
1049
1050         BUG_ON(rc != H_PARTIAL);
1051
1052         /* Check that the unprocessed entries were 'not found' or 'busy' */
1053         for (i = 0; i < idx-1; i++) {
1054                 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1055
1056                 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1057                         param[++new_idx] = param[i+1];
1058                         continue;
1059                 }
1060
1061                 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1062                        && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1063         }
1064
1065         /*
1066          * If there were entries found busy, retry these entries if requested,
1067          * of if all the entries have to be retried.
1068          */
1069         if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1070                 idx = new_idx + 1;
1071                 goto again;
1072         }
1073
1074         return new_idx;
1075 }
1076
1077 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1078 /*
1079  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1080  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1081  */
1082 #define PPC64_HUGE_HPTE_BATCH 12
1083
1084 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1085                                       int count, int psize, int ssize)
1086 {
1087         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1088         unsigned long shift, current_vpgb, vpgb;
1089         int i, pix = 0;
1090
1091         shift = mmu_psize_defs[psize].shift;
1092
1093         for (i = 0; i < count; i++) {
1094                 /*
1095                  * Shifting 3 bits more on the right to get a
1096                  * 8 pages aligned virtual addresse.
1097                  */
1098                 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1099                 if (!pix || vpgb != current_vpgb) {
1100                         /*
1101                          * Need to start a new 8 pages block, flush
1102                          * the current one if needed.
1103                          */
1104                         if (pix)
1105                                 (void)call_block_remove(pix, param, true);
1106                         current_vpgb = vpgb;
1107                         param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1108                         pix = 1;
1109                 }
1110
1111                 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1112                 if (pix == PLPAR_HCALL9_BUFSIZE) {
1113                         pix = call_block_remove(pix, param, false);
1114                         /*
1115                          * pix = 0 means that all the entries were
1116                          * removed, we can start a new block.
1117                          * Otherwise, this means that there are entries
1118                          * to retry, and pix points to latest one, so
1119                          * we should increment it and try to continue
1120                          * the same block.
1121                          */
1122                         if (pix)
1123                                 pix++;
1124                 }
1125         }
1126         if (pix)
1127                 (void)call_block_remove(pix, param, true);
1128 }
1129
1130 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1131                                      int count, int psize, int ssize)
1132 {
1133         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1134         int i = 0, pix = 0, rc;
1135
1136         for (i = 0; i < count; i++) {
1137
1138                 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1139                         pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1140                                                      ssize, 0);
1141                 } else {
1142                         param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1143                         param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1144                         pix += 2;
1145                         if (pix == 8) {
1146                                 rc = plpar_hcall9(H_BULK_REMOVE, param,
1147                                                   param[0], param[1], param[2],
1148                                                   param[3], param[4], param[5],
1149                                                   param[6], param[7]);
1150                                 BUG_ON(rc != H_SUCCESS);
1151                                 pix = 0;
1152                         }
1153                 }
1154         }
1155         if (pix) {
1156                 param[pix] = HBR_END;
1157                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1158                                   param[2], param[3], param[4], param[5],
1159                                   param[6], param[7]);
1160                 BUG_ON(rc != H_SUCCESS);
1161         }
1162 }
1163
1164 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1165                                                       unsigned long *vpn,
1166                                                       int count, int psize,
1167                                                       int ssize)
1168 {
1169         unsigned long flags = 0;
1170         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1171
1172         if (lock_tlbie)
1173                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1174
1175         /* Assuming THP size is 16M */
1176         if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1177                 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1178         else
1179                 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1180
1181         if (lock_tlbie)
1182                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1183 }
1184
1185 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1186                                              unsigned long addr,
1187                                              unsigned char *hpte_slot_array,
1188                                              int psize, int ssize, int local)
1189 {
1190         int i, index = 0;
1191         unsigned long s_addr = addr;
1192         unsigned int max_hpte_count, valid;
1193         unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1194         unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1195         unsigned long shift, hidx, vpn = 0, hash, slot;
1196
1197         shift = mmu_psize_defs[psize].shift;
1198         max_hpte_count = 1U << (PMD_SHIFT - shift);
1199
1200         for (i = 0; i < max_hpte_count; i++) {
1201                 valid = hpte_valid(hpte_slot_array, i);
1202                 if (!valid)
1203                         continue;
1204                 hidx =  hpte_hash_index(hpte_slot_array, i);
1205
1206                 /* get the vpn */
1207                 addr = s_addr + (i * (1ul << shift));
1208                 vpn = hpt_vpn(addr, vsid, ssize);
1209                 hash = hpt_hash(vpn, shift, ssize);
1210                 if (hidx & _PTEIDX_SECONDARY)
1211                         hash = ~hash;
1212
1213                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1214                 slot += hidx & _PTEIDX_GROUP_IX;
1215
1216                 slot_array[index] = slot;
1217                 vpn_array[index] = vpn;
1218                 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1219                         /*
1220                          * Now do a bluk invalidate
1221                          */
1222                         __pSeries_lpar_hugepage_invalidate(slot_array,
1223                                                            vpn_array,
1224                                                            PPC64_HUGE_HPTE_BATCH,
1225                                                            psize, ssize);
1226                         index = 0;
1227                 } else
1228                         index++;
1229         }
1230         if (index)
1231                 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1232                                                    index, psize, ssize);
1233 }
1234 #else
1235 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1236                                              unsigned long addr,
1237                                              unsigned char *hpte_slot_array,
1238                                              int psize, int ssize, int local)
1239 {
1240         WARN(1, "%s called without THP support\n", __func__);
1241 }
1242 #endif
1243
1244 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1245                                           int psize, int ssize)
1246 {
1247         unsigned long vpn;
1248         unsigned long slot, vsid;
1249
1250         vsid = get_kernel_vsid(ea, ssize);
1251         vpn = hpt_vpn(ea, vsid, ssize);
1252
1253         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1254         if (slot == -1)
1255                 return -ENOENT;
1256
1257         /*
1258          * lpar doesn't use the passed actual page size
1259          */
1260         pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1261         return 0;
1262 }
1263
1264
1265 static inline unsigned long compute_slot(real_pte_t pte,
1266                                          unsigned long vpn,
1267                                          unsigned long index,
1268                                          unsigned long shift,
1269                                          int ssize)
1270 {
1271         unsigned long slot, hash, hidx;
1272
1273         hash = hpt_hash(vpn, shift, ssize);
1274         hidx = __rpte_to_hidx(pte, index);
1275         if (hidx & _PTEIDX_SECONDARY)
1276                 hash = ~hash;
1277         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1278         slot += hidx & _PTEIDX_GROUP_IX;
1279         return slot;
1280 }
1281
1282 /**
1283  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1284  * "all within the same naturally aligned 8 page virtual address block".
1285  */
1286 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1287                             unsigned long *param)
1288 {
1289         unsigned long vpn;
1290         unsigned long i, pix = 0;
1291         unsigned long index, shift, slot, current_vpgb, vpgb;
1292         real_pte_t pte;
1293         int psize, ssize;
1294
1295         psize = batch->psize;
1296         ssize = batch->ssize;
1297
1298         for (i = 0; i < number; i++) {
1299                 vpn = batch->vpn[i];
1300                 pte = batch->pte[i];
1301                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1302                         /*
1303                          * Shifting 3 bits more on the right to get a
1304                          * 8 pages aligned virtual addresse.
1305                          */
1306                         vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1307                         if (!pix || vpgb != current_vpgb) {
1308                                 /*
1309                                  * Need to start a new 8 pages block, flush
1310                                  * the current one if needed.
1311                                  */
1312                                 if (pix)
1313                                         (void)call_block_remove(pix, param,
1314                                                                 true);
1315                                 current_vpgb = vpgb;
1316                                 param[0] = hpte_encode_avpn(vpn, psize,
1317                                                             ssize);
1318                                 pix = 1;
1319                         }
1320
1321                         slot = compute_slot(pte, vpn, index, shift, ssize);
1322                         param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1323
1324                         if (pix == PLPAR_HCALL9_BUFSIZE) {
1325                                 pix = call_block_remove(pix, param, false);
1326                                 /*
1327                                  * pix = 0 means that all the entries were
1328                                  * removed, we can start a new block.
1329                                  * Otherwise, this means that there are entries
1330                                  * to retry, and pix points to latest one, so
1331                                  * we should increment it and try to continue
1332                                  * the same block.
1333                                  */
1334                                 if (pix)
1335                                         pix++;
1336                         }
1337                 } pte_iterate_hashed_end();
1338         }
1339
1340         if (pix)
1341                 (void)call_block_remove(pix, param, true);
1342 }
1343
1344 /*
1345  * TLB Block Invalidate Characteristics
1346  *
1347  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1348  * is able to process for each couple segment base page size, actual page size.
1349  *
1350  * The ibm,get-system-parameter properties is returning a buffer with the
1351  * following layout:
1352  *
1353  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1354  * -----------------
1355  * TLB Block Invalidate Specifiers:
1356  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1357  * [ 1 byte Number of page sizes (N) that are supported for the specified
1358  *          TLB invalidate block size ]
1359  * [ 1 byte Encoded segment base page size and actual page size
1360  *          MSB=0 means 4k segment base page size and actual page size
1361  *          MSB=1 the penc value in mmu_psize_def ]
1362  * ...
1363  * -----------------
1364  * Next TLB Block Invalidate Specifiers...
1365  * -----------------
1366  * [ 0 ]
1367  */
1368 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1369                                         unsigned int block_size)
1370 {
1371         if (block_size > hblkrm_size[bpsize][psize])
1372                 hblkrm_size[bpsize][psize] = block_size;
1373 }
1374
1375 /*
1376  * Decode the Encoded segment base page size and actual page size.
1377  * PAPR specifies:
1378  *   - bit 7 is the L bit
1379  *   - bits 0-5 are the penc value
1380  * If the L bit is 0, this means 4K segment base page size and actual page size
1381  * otherwise the penc value should be read.
1382  */
1383 #define HBLKRM_L_MASK           0x80
1384 #define HBLKRM_PENC_MASK        0x3f
1385 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1386                                               unsigned int block_size)
1387 {
1388         unsigned int bpsize, psize;
1389
1390         /* First, check the L bit, if not set, this means 4K */
1391         if ((lp & HBLKRM_L_MASK) == 0) {
1392                 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1393                 return;
1394         }
1395
1396         lp &= HBLKRM_PENC_MASK;
1397         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1398                 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1399
1400                 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1401                         if (def->penc[psize] == lp) {
1402                                 set_hblkrm_bloc_size(bpsize, psize, block_size);
1403                                 return;
1404                         }
1405                 }
1406         }
1407 }
1408
1409 #define SPLPAR_TLB_BIC_TOKEN            50
1410
1411 /*
1412  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1413  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1414  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1415  * (128 bytes) for the buffer to get plenty of space.
1416  */
1417 #define SPLPAR_TLB_BIC_MAXLENGTH        128
1418
1419 void __init pseries_lpar_read_hblkrm_characteristics(void)
1420 {
1421         const s32 token = rtas_token("ibm,get-system-parameter");
1422         unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1423         int call_status, len, idx, bpsize;
1424
1425         if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1426                 return;
1427
1428         do {
1429                 spin_lock(&rtas_data_buf_lock);
1430                 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1431                 call_status = rtas_call(token, 3, 1, NULL, SPLPAR_TLB_BIC_TOKEN,
1432                                         __pa(rtas_data_buf), RTAS_DATA_BUF_SIZE);
1433                 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1434                 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1435                 spin_unlock(&rtas_data_buf_lock);
1436         } while (rtas_busy_delay(call_status));
1437
1438         if (call_status != 0) {
1439                 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1440                         __FILE__, __func__, call_status);
1441                 return;
1442         }
1443
1444         /*
1445          * The first two (2) bytes of the data in the buffer are the length of
1446          * the returned data, not counting these first two (2) bytes.
1447          */
1448         len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1449         if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1450                 pr_warn("%s too large returned buffer %d", __func__, len);
1451                 return;
1452         }
1453
1454         idx = 2;
1455         while (idx < len) {
1456                 u8 block_shift = local_buffer[idx++];
1457                 u32 block_size;
1458                 unsigned int npsize;
1459
1460                 if (!block_shift)
1461                         break;
1462
1463                 block_size = 1 << block_shift;
1464
1465                 for (npsize = local_buffer[idx++];
1466                      npsize > 0 && idx < len; npsize--)
1467                         check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1468                                             block_size);
1469         }
1470
1471         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1472                 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1473                         if (hblkrm_size[bpsize][idx])
1474                                 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1475                                         bpsize, idx, hblkrm_size[bpsize][idx]);
1476 }
1477
1478 /*
1479  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1480  * lock.
1481  */
1482 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1483 {
1484         unsigned long vpn;
1485         unsigned long i, pix, rc;
1486         unsigned long flags = 0;
1487         struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1488         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1489         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1490         unsigned long index, shift, slot;
1491         real_pte_t pte;
1492         int psize, ssize;
1493
1494         if (lock_tlbie)
1495                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1496
1497         if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1498                 do_block_remove(number, batch, param);
1499                 goto out;
1500         }
1501
1502         psize = batch->psize;
1503         ssize = batch->ssize;
1504         pix = 0;
1505         for (i = 0; i < number; i++) {
1506                 vpn = batch->vpn[i];
1507                 pte = batch->pte[i];
1508                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1509                         slot = compute_slot(pte, vpn, index, shift, ssize);
1510                         if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1511                                 /*
1512                                  * lpar doesn't use the passed actual page size
1513                                  */
1514                                 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1515                                                              0, ssize, local);
1516                         } else {
1517                                 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1518                                 param[pix+1] = hpte_encode_avpn(vpn, psize,
1519                                                                 ssize);
1520                                 pix += 2;
1521                                 if (pix == 8) {
1522                                         rc = plpar_hcall9(H_BULK_REMOVE, param,
1523                                                 param[0], param[1], param[2],
1524                                                 param[3], param[4], param[5],
1525                                                 param[6], param[7]);
1526                                         BUG_ON(rc != H_SUCCESS);
1527                                         pix = 0;
1528                                 }
1529                         }
1530                 } pte_iterate_hashed_end();
1531         }
1532         if (pix) {
1533                 param[pix] = HBR_END;
1534                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1535                                   param[2], param[3], param[4], param[5],
1536                                   param[6], param[7]);
1537                 BUG_ON(rc != H_SUCCESS);
1538         }
1539
1540 out:
1541         if (lock_tlbie)
1542                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1543 }
1544
1545 static int __init disable_bulk_remove(char *str)
1546 {
1547         if (strcmp(str, "off") == 0 &&
1548             firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1549                 pr_info("Disabling BULK_REMOVE firmware feature");
1550                 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1551         }
1552         return 1;
1553 }
1554
1555 __setup("bulk_remove=", disable_bulk_remove);
1556
1557 #define HPT_RESIZE_TIMEOUT      10000 /* ms */
1558
1559 struct hpt_resize_state {
1560         unsigned long shift;
1561         int commit_rc;
1562 };
1563
1564 static int pseries_lpar_resize_hpt_commit(void *data)
1565 {
1566         struct hpt_resize_state *state = data;
1567
1568         state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1569         if (state->commit_rc != H_SUCCESS)
1570                 return -EIO;
1571
1572         /* Hypervisor has transitioned the HTAB, update our globals */
1573         ppc64_pft_size = state->shift;
1574         htab_size_bytes = 1UL << ppc64_pft_size;
1575         htab_hash_mask = (htab_size_bytes >> 7) - 1;
1576
1577         return 0;
1578 }
1579
1580 /*
1581  * Must be called in process context. The caller must hold the
1582  * cpus_lock.
1583  */
1584 static int pseries_lpar_resize_hpt(unsigned long shift)
1585 {
1586         struct hpt_resize_state state = {
1587                 .shift = shift,
1588                 .commit_rc = H_FUNCTION,
1589         };
1590         unsigned int delay, total_delay = 0;
1591         int rc;
1592         ktime_t t0, t1, t2;
1593
1594         might_sleep();
1595
1596         if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1597                 return -ENODEV;
1598
1599         pr_info("Attempting to resize HPT to shift %lu\n", shift);
1600
1601         t0 = ktime_get();
1602
1603         rc = plpar_resize_hpt_prepare(0, shift);
1604         while (H_IS_LONG_BUSY(rc)) {
1605                 delay = get_longbusy_msecs(rc);
1606                 total_delay += delay;
1607                 if (total_delay > HPT_RESIZE_TIMEOUT) {
1608                         /* prepare with shift==0 cancels an in-progress resize */
1609                         rc = plpar_resize_hpt_prepare(0, 0);
1610                         if (rc != H_SUCCESS)
1611                                 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1612                                        rc);
1613                         return -ETIMEDOUT;
1614                 }
1615                 msleep(delay);
1616                 rc = plpar_resize_hpt_prepare(0, shift);
1617         };
1618
1619         switch (rc) {
1620         case H_SUCCESS:
1621                 /* Continue on */
1622                 break;
1623
1624         case H_PARAMETER:
1625                 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1626                 return -EINVAL;
1627         case H_RESOURCE:
1628                 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1629                 return -EPERM;
1630         default:
1631                 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1632                 return -EIO;
1633         }
1634
1635         t1 = ktime_get();
1636
1637         rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1638                                      &state, NULL);
1639
1640         t2 = ktime_get();
1641
1642         if (rc != 0) {
1643                 switch (state.commit_rc) {
1644                 case H_PTEG_FULL:
1645                         return -ENOSPC;
1646
1647                 default:
1648                         pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1649                                 state.commit_rc);
1650                         return -EIO;
1651                 };
1652         }
1653
1654         pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1655                 shift, (long long) ktime_ms_delta(t1, t0),
1656                 (long long) ktime_ms_delta(t2, t1));
1657
1658         return 0;
1659 }
1660
1661 static int pseries_lpar_register_process_table(unsigned long base,
1662                         unsigned long page_size, unsigned long table_size)
1663 {
1664         long rc;
1665         unsigned long flags = 0;
1666
1667         if (table_size)
1668                 flags |= PROC_TABLE_NEW;
1669         if (radix_enabled())
1670                 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
1671         else
1672                 flags |= PROC_TABLE_HPT_SLB;
1673         for (;;) {
1674                 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1675                                         page_size, table_size);
1676                 if (!H_IS_LONG_BUSY(rc))
1677                         break;
1678                 mdelay(get_longbusy_msecs(rc));
1679         }
1680         if (rc != H_SUCCESS) {
1681                 pr_err("Failed to register process table (rc=%ld)\n", rc);
1682                 BUG();
1683         }
1684         return rc;
1685 }
1686
1687 void __init hpte_init_pseries(void)
1688 {
1689         mmu_hash_ops.hpte_invalidate     = pSeries_lpar_hpte_invalidate;
1690         mmu_hash_ops.hpte_updatepp       = pSeries_lpar_hpte_updatepp;
1691         mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1692         mmu_hash_ops.hpte_insert         = pSeries_lpar_hpte_insert;
1693         mmu_hash_ops.hpte_remove         = pSeries_lpar_hpte_remove;
1694         mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1695         mmu_hash_ops.flush_hash_range    = pSeries_lpar_flush_hash_range;
1696         mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1697         mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1698
1699         if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1700                 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1701
1702         /*
1703          * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1704          * to inform the hypervisor that we wish to use the HPT.
1705          */
1706         if (cpu_has_feature(CPU_FTR_ARCH_300))
1707                 pseries_lpar_register_process_table(0, 0, 0);
1708 }
1709
1710 void radix_init_pseries(void)
1711 {
1712         pr_info("Using radix MMU under hypervisor\n");
1713
1714         pseries_lpar_register_process_table(__pa(process_tb),
1715                                                 0, PRTB_SIZE_SHIFT - 12);
1716 }
1717
1718 #ifdef CONFIG_PPC_SMLPAR
1719 #define CMO_FREE_HINT_DEFAULT 1
1720 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1721
1722 static int __init cmo_free_hint(char *str)
1723 {
1724         char *parm;
1725         parm = strstrip(str);
1726
1727         if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1728                 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1729                 cmo_free_hint_flag = 0;
1730                 return 1;
1731         }
1732
1733         cmo_free_hint_flag = 1;
1734         pr_info("%s: CMO free page hinting is active.\n", __func__);
1735
1736         if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1737                 return 1;
1738
1739         return 0;
1740 }
1741
1742 __setup("cmo_free_hint=", cmo_free_hint);
1743
1744 static void pSeries_set_page_state(struct page *page, int order,
1745                                    unsigned long state)
1746 {
1747         int i, j;
1748         unsigned long cmo_page_sz, addr;
1749
1750         cmo_page_sz = cmo_get_page_size();
1751         addr = __pa((unsigned long)page_address(page));
1752
1753         for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1754                 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1755                         plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1756         }
1757 }
1758
1759 void arch_free_page(struct page *page, int order)
1760 {
1761         if (radix_enabled())
1762                 return;
1763         if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1764                 return;
1765
1766         pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1767 }
1768 EXPORT_SYMBOL(arch_free_page);
1769
1770 #endif /* CONFIG_PPC_SMLPAR */
1771 #endif /* CONFIG_PPC_BOOK3S_64 */
1772
1773 #ifdef CONFIG_TRACEPOINTS
1774 #ifdef CONFIG_JUMP_LABEL
1775 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1776
1777 int hcall_tracepoint_regfunc(void)
1778 {
1779         static_key_slow_inc(&hcall_tracepoint_key);
1780         return 0;
1781 }
1782
1783 void hcall_tracepoint_unregfunc(void)
1784 {
1785         static_key_slow_dec(&hcall_tracepoint_key);
1786 }
1787 #else
1788 /*
1789  * We optimise our hcall path by placing hcall_tracepoint_refcount
1790  * directly in the TOC so we can check if the hcall tracepoints are
1791  * enabled via a single load.
1792  */
1793
1794 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1795 extern long hcall_tracepoint_refcount;
1796
1797 int hcall_tracepoint_regfunc(void)
1798 {
1799         hcall_tracepoint_refcount++;
1800         return 0;
1801 }
1802
1803 void hcall_tracepoint_unregfunc(void)
1804 {
1805         hcall_tracepoint_refcount--;
1806 }
1807 #endif
1808
1809 /*
1810  * Since the tracing code might execute hcalls we need to guard against
1811  * recursion. One example of this are spinlocks calling H_YIELD on
1812  * shared processor partitions.
1813  */
1814 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1815
1816
1817 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1818 {
1819         unsigned long flags;
1820         unsigned int *depth;
1821
1822         /*
1823          * We cannot call tracepoints inside RCU idle regions which
1824          * means we must not trace H_CEDE.
1825          */
1826         if (opcode == H_CEDE)
1827                 return;
1828
1829         local_irq_save(flags);
1830
1831         depth = this_cpu_ptr(&hcall_trace_depth);
1832
1833         if (*depth)
1834                 goto out;
1835
1836         (*depth)++;
1837         preempt_disable();
1838         trace_hcall_entry(opcode, args);
1839         (*depth)--;
1840
1841 out:
1842         local_irq_restore(flags);
1843 }
1844
1845 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1846 {
1847         unsigned long flags;
1848         unsigned int *depth;
1849
1850         if (opcode == H_CEDE)
1851                 return;
1852
1853         local_irq_save(flags);
1854
1855         depth = this_cpu_ptr(&hcall_trace_depth);
1856
1857         if (*depth)
1858                 goto out;
1859
1860         (*depth)++;
1861         trace_hcall_exit(opcode, retval, retbuf);
1862         preempt_enable();
1863         (*depth)--;
1864
1865 out:
1866         local_irq_restore(flags);
1867 }
1868 #endif
1869
1870 /**
1871  * h_get_mpp
1872  * H_GET_MPP hcall returns info in 7 parms
1873  */
1874 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1875 {
1876         int rc;
1877         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1878
1879         rc = plpar_hcall9(H_GET_MPP, retbuf);
1880
1881         mpp_data->entitled_mem = retbuf[0];
1882         mpp_data->mapped_mem = retbuf[1];
1883
1884         mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1885         mpp_data->pool_num = retbuf[2] & 0xffff;
1886
1887         mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1888         mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1889         mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1890
1891         mpp_data->pool_size = retbuf[4];
1892         mpp_data->loan_request = retbuf[5];
1893         mpp_data->backing_mem = retbuf[6];
1894
1895         return rc;
1896 }
1897 EXPORT_SYMBOL(h_get_mpp);
1898
1899 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1900 {
1901         int rc;
1902         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1903
1904         rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1905
1906         mpp_x_data->coalesced_bytes = retbuf[0];
1907         mpp_x_data->pool_coalesced_bytes = retbuf[1];
1908         mpp_x_data->pool_purr_cycles = retbuf[2];
1909         mpp_x_data->pool_spurr_cycles = retbuf[3];
1910
1911         return rc;
1912 }
1913
1914 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1915 {
1916         unsigned long protovsid;
1917         unsigned long va_bits = VA_BITS;
1918         unsigned long modinv, vsid_modulus;
1919         unsigned long max_mod_inv, tmp_modinv;
1920
1921         if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1922                 va_bits = 65;
1923
1924         if (ssize == MMU_SEGSIZE_256M) {
1925                 modinv = VSID_MULINV_256M;
1926                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1927         } else {
1928                 modinv = VSID_MULINV_1T;
1929                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1930         }
1931
1932         /*
1933          * vsid outside our range.
1934          */
1935         if (vsid >= vsid_modulus)
1936                 return 0;
1937
1938         /*
1939          * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1940          * and vsid = (protovsid * x) % vsid_modulus, then we say:
1941          *   protovsid = (vsid * modinv) % vsid_modulus
1942          */
1943
1944         /* Check if (vsid * modinv) overflow (63 bits) */
1945         max_mod_inv = 0x7fffffffffffffffull / vsid;
1946         if (modinv < max_mod_inv)
1947                 return (vsid * modinv) % vsid_modulus;
1948
1949         tmp_modinv = modinv/max_mod_inv;
1950         modinv %= max_mod_inv;
1951
1952         protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1953         protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1954
1955         return protovsid;
1956 }
1957
1958 static int __init reserve_vrma_context_id(void)
1959 {
1960         unsigned long protovsid;
1961
1962         /*
1963          * Reserve context ids which map to reserved virtual addresses. For now
1964          * we only reserve the context id which maps to the VRMA VSID. We ignore
1965          * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1966          * enable adjunct support via the "ibm,client-architecture-support"
1967          * interface.
1968          */
1969         protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1970         hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1971         return 0;
1972 }
1973 machine_device_initcall(pseries, reserve_vrma_context_id);
1974
1975 #ifdef CONFIG_DEBUG_FS
1976 /* debugfs file interface for vpa data */
1977 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1978                               loff_t *pos)
1979 {
1980         int cpu = (long)filp->private_data;
1981         struct lppaca *lppaca = &lppaca_of(cpu);
1982
1983         return simple_read_from_buffer(buf, len, pos, lppaca,
1984                                 sizeof(struct lppaca));
1985 }
1986
1987 static const struct file_operations vpa_fops = {
1988         .open           = simple_open,
1989         .read           = vpa_file_read,
1990         .llseek         = default_llseek,
1991 };
1992
1993 static int __init vpa_debugfs_init(void)
1994 {
1995         char name[16];
1996         long i;
1997         struct dentry *vpa_dir;
1998
1999         if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2000                 return 0;
2001
2002         vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2003         if (!vpa_dir) {
2004                 pr_warn("%s: can't create vpa root dir\n", __func__);
2005                 return -ENOMEM;
2006         }
2007
2008         /* set up the per-cpu vpa file*/
2009         for_each_possible_cpu(i) {
2010                 struct dentry *d;
2011
2012                 sprintf(name, "cpu-%ld", i);
2013
2014                 d = debugfs_create_file(name, 0400, vpa_dir, (void *)i,
2015                                         &vpa_fops);
2016                 if (!d) {
2017                         pr_warn("%s: can't create per-cpu vpa file\n",
2018                                         __func__);
2019                         return -ENOMEM;
2020                 }
2021         }
2022
2023         return 0;
2024 }
2025 machine_arch_initcall(pseries, vpa_debugfs_init);
2026 #endif /* CONFIG_DEBUG_FS */