GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / powerpc / platforms / pseries / lpar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <asm/processor.h>
26 #include <asm/mmu.h>
27 #include <asm/page.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43 #include <asm/dtl.h>
44
45 #include "pseries.h"
46
47 /* Flag bits for H_BULK_REMOVE */
48 #define HBR_REQUEST     0x4000000000000000UL
49 #define HBR_RESPONSE    0x8000000000000000UL
50 #define HBR_END         0xc000000000000000UL
51 #define HBR_AVPN        0x0200000000000000UL
52 #define HBR_ANDCOND     0x0100000000000000UL
53
54
55 /* in hvCall.S */
56 EXPORT_SYMBOL(plpar_hcall);
57 EXPORT_SYMBOL(plpar_hcall9);
58 EXPORT_SYMBOL(plpar_hcall_norets);
59
60 /*
61  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
62  * page size is that page size.
63  *
64  * The first index is the segment base page size, the second one is the actual
65  * page size.
66  */
67 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
68
69 /*
70  * Due to the involved complexity, and that the current hypervisor is only
71  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
72  * buffer size to 8 size block.
73  */
74 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
75
76 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
77 static u8 dtl_mask = DTL_LOG_PREEMPT;
78 #else
79 static u8 dtl_mask;
80 #endif
81
82 void alloc_dtl_buffers(unsigned long *time_limit)
83 {
84         int cpu;
85         struct paca_struct *pp;
86         struct dtl_entry *dtl;
87
88         for_each_possible_cpu(cpu) {
89                 pp = paca_ptrs[cpu];
90                 if (pp->dispatch_log)
91                         continue;
92                 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
93                 if (!dtl) {
94                         pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
95                                 cpu);
96 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
97                         pr_warn("Stolen time statistics will be unreliable\n");
98 #endif
99                         break;
100                 }
101
102                 pp->dtl_ridx = 0;
103                 pp->dispatch_log = dtl;
104                 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
105                 pp->dtl_curr = dtl;
106
107                 if (time_limit && time_after(jiffies, *time_limit)) {
108                         cond_resched();
109                         *time_limit = jiffies + HZ;
110                 }
111         }
112 }
113
114 void register_dtl_buffer(int cpu)
115 {
116         long ret;
117         struct paca_struct *pp;
118         struct dtl_entry *dtl;
119         int hwcpu = get_hard_smp_processor_id(cpu);
120
121         pp = paca_ptrs[cpu];
122         dtl = pp->dispatch_log;
123         if (dtl && dtl_mask) {
124                 pp->dtl_ridx = 0;
125                 pp->dtl_curr = dtl;
126                 lppaca_of(cpu).dtl_idx = 0;
127
128                 /* hypervisor reads buffer length from this field */
129                 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
130                 ret = register_dtl(hwcpu, __pa(dtl));
131                 if (ret)
132                         pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
133                                cpu, hwcpu, ret);
134
135                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
136         }
137 }
138
139 #ifdef CONFIG_PPC_SPLPAR
140 struct dtl_worker {
141         struct delayed_work work;
142         int cpu;
143 };
144
145 struct vcpu_dispatch_data {
146         int last_disp_cpu;
147
148         int total_disp;
149
150         int same_cpu_disp;
151         int same_chip_disp;
152         int diff_chip_disp;
153         int far_chip_disp;
154
155         int numa_home_disp;
156         int numa_remote_disp;
157         int numa_far_disp;
158 };
159
160 /*
161  * This represents the number of cpus in the hypervisor. Since there is no
162  * architected way to discover the number of processors in the host, we
163  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
164  * is sufficient for our purposes. This will need to be tweaked if
165  * CONFIG_NR_CPUS is changed.
166  */
167 #define NR_CPUS_H       NR_CPUS
168
169 DEFINE_RWLOCK(dtl_access_lock);
170 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
171 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
172 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
173 static enum cpuhp_state dtl_worker_state;
174 static DEFINE_MUTEX(dtl_enable_mutex);
175 static int vcpudispatch_stats_on __read_mostly;
176 static int vcpudispatch_stats_freq = 50;
177 static __be32 *vcpu_associativity, *pcpu_associativity;
178
179
180 static void free_dtl_buffers(unsigned long *time_limit)
181 {
182 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
183         int cpu;
184         struct paca_struct *pp;
185
186         for_each_possible_cpu(cpu) {
187                 pp = paca_ptrs[cpu];
188                 if (!pp->dispatch_log)
189                         continue;
190                 kmem_cache_free(dtl_cache, pp->dispatch_log);
191                 pp->dtl_ridx = 0;
192                 pp->dispatch_log = 0;
193                 pp->dispatch_log_end = 0;
194                 pp->dtl_curr = 0;
195
196                 if (time_limit && time_after(jiffies, *time_limit)) {
197                         cond_resched();
198                         *time_limit = jiffies + HZ;
199                 }
200         }
201 #endif
202 }
203
204 static int init_cpu_associativity(void)
205 {
206         vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
207                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
208         pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
209                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
210
211         if (!vcpu_associativity || !pcpu_associativity) {
212                 pr_err("error allocating memory for associativity information\n");
213                 return -ENOMEM;
214         }
215
216         return 0;
217 }
218
219 static void destroy_cpu_associativity(void)
220 {
221         kfree(vcpu_associativity);
222         kfree(pcpu_associativity);
223         vcpu_associativity = pcpu_associativity = 0;
224 }
225
226 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
227 {
228         __be32 *assoc;
229         int rc = 0;
230
231         assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
232         if (!assoc[0]) {
233                 rc = hcall_vphn(cpu, flag, &assoc[0]);
234                 if (rc)
235                         return NULL;
236         }
237
238         return assoc;
239 }
240
241 static __be32 *get_pcpu_associativity(int cpu)
242 {
243         return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
244 }
245
246 static __be32 *get_vcpu_associativity(int cpu)
247 {
248         return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
249 }
250
251 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
252 {
253         __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
254
255         if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
256                 return -EINVAL;
257
258         last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
259         cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
260
261         if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
262                 return -EIO;
263
264         return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
265 }
266
267 static int cpu_home_node_dispatch_distance(int disp_cpu)
268 {
269         __be32 *disp_cpu_assoc, *vcpu_assoc;
270         int vcpu_id = smp_processor_id();
271
272         if (disp_cpu >= NR_CPUS_H) {
273                 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
274                                                 disp_cpu, NR_CPUS_H);
275                 return -EINVAL;
276         }
277
278         disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
279         vcpu_assoc = get_vcpu_associativity(vcpu_id);
280
281         if (!disp_cpu_assoc || !vcpu_assoc)
282                 return -EIO;
283
284         return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
285 }
286
287 static void update_vcpu_disp_stat(int disp_cpu)
288 {
289         struct vcpu_dispatch_data *disp;
290         int distance;
291
292         disp = this_cpu_ptr(&vcpu_disp_data);
293         if (disp->last_disp_cpu == -1) {
294                 disp->last_disp_cpu = disp_cpu;
295                 return;
296         }
297
298         disp->total_disp++;
299
300         if (disp->last_disp_cpu == disp_cpu ||
301                 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
302                                         cpu_first_thread_sibling(disp_cpu)))
303                 disp->same_cpu_disp++;
304         else {
305                 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
306                                                                 disp_cpu);
307                 if (distance < 0)
308                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
309                                         smp_processor_id());
310                 else {
311                         switch (distance) {
312                         case 0:
313                                 disp->same_chip_disp++;
314                                 break;
315                         case 1:
316                                 disp->diff_chip_disp++;
317                                 break;
318                         case 2:
319                                 disp->far_chip_disp++;
320                                 break;
321                         default:
322                                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
323                                                  smp_processor_id(),
324                                                  disp->last_disp_cpu,
325                                                  disp_cpu,
326                                                  distance);
327                         }
328                 }
329         }
330
331         distance = cpu_home_node_dispatch_distance(disp_cpu);
332         if (distance < 0)
333                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
334                                 smp_processor_id());
335         else {
336                 switch (distance) {
337                 case 0:
338                         disp->numa_home_disp++;
339                         break;
340                 case 1:
341                         disp->numa_remote_disp++;
342                         break;
343                 case 2:
344                         disp->numa_far_disp++;
345                         break;
346                 default:
347                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
348                                                  smp_processor_id(),
349                                                  disp_cpu,
350                                                  distance);
351                 }
352         }
353
354         disp->last_disp_cpu = disp_cpu;
355 }
356
357 static void process_dtl_buffer(struct work_struct *work)
358 {
359         struct dtl_entry dtle;
360         u64 i = __this_cpu_read(dtl_entry_ridx);
361         struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
362         struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
363         struct lppaca *vpa = local_paca->lppaca_ptr;
364         struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
365
366         if (!local_paca->dispatch_log)
367                 return;
368
369         /* if we have been migrated away, we cancel ourself */
370         if (d->cpu != smp_processor_id()) {
371                 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
372                                                 smp_processor_id());
373                 return;
374         }
375
376         if (i == be64_to_cpu(vpa->dtl_idx))
377                 goto out;
378
379         while (i < be64_to_cpu(vpa->dtl_idx)) {
380                 dtle = *dtl;
381                 barrier();
382                 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
383                         /* buffer has overflowed */
384                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
385                                 d->cpu,
386                                 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
387                         i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
388                         dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
389                         continue;
390                 }
391                 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
392                 ++i;
393                 ++dtl;
394                 if (dtl == dtl_end)
395                         dtl = local_paca->dispatch_log;
396         }
397
398         __this_cpu_write(dtl_entry_ridx, i);
399
400 out:
401         schedule_delayed_work_on(d->cpu, to_delayed_work(work),
402                                         HZ / vcpudispatch_stats_freq);
403 }
404
405 static int dtl_worker_online(unsigned int cpu)
406 {
407         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
408
409         memset(d, 0, sizeof(*d));
410         INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
411         d->cpu = cpu;
412
413 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
414         per_cpu(dtl_entry_ridx, cpu) = 0;
415         register_dtl_buffer(cpu);
416 #else
417         per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
418 #endif
419
420         schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
421         return 0;
422 }
423
424 static int dtl_worker_offline(unsigned int cpu)
425 {
426         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
427
428         cancel_delayed_work_sync(&d->work);
429
430 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431         unregister_dtl(get_hard_smp_processor_id(cpu));
432 #endif
433
434         return 0;
435 }
436
437 static void set_global_dtl_mask(u8 mask)
438 {
439         int cpu;
440
441         dtl_mask = mask;
442         for_each_present_cpu(cpu)
443                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
444 }
445
446 static void reset_global_dtl_mask(void)
447 {
448         int cpu;
449
450 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
451         dtl_mask = DTL_LOG_PREEMPT;
452 #else
453         dtl_mask = 0;
454 #endif
455         for_each_present_cpu(cpu)
456                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
457 }
458
459 static int dtl_worker_enable(unsigned long *time_limit)
460 {
461         int rc = 0, state;
462
463         if (!write_trylock(&dtl_access_lock)) {
464                 rc = -EBUSY;
465                 goto out;
466         }
467
468         set_global_dtl_mask(DTL_LOG_ALL);
469
470         /* Setup dtl buffers and register those */
471         alloc_dtl_buffers(time_limit);
472
473         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
474                                         dtl_worker_online, dtl_worker_offline);
475         if (state < 0) {
476                 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
477                 free_dtl_buffers(time_limit);
478                 reset_global_dtl_mask();
479                 write_unlock(&dtl_access_lock);
480                 rc = -EINVAL;
481                 goto out;
482         }
483         dtl_worker_state = state;
484
485 out:
486         return rc;
487 }
488
489 static void dtl_worker_disable(unsigned long *time_limit)
490 {
491         cpuhp_remove_state(dtl_worker_state);
492         free_dtl_buffers(time_limit);
493         reset_global_dtl_mask();
494         write_unlock(&dtl_access_lock);
495 }
496
497 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
498                 size_t count, loff_t *ppos)
499 {
500         unsigned long time_limit = jiffies + HZ;
501         struct vcpu_dispatch_data *disp;
502         int rc, cmd, cpu;
503         char buf[16];
504
505         if (count > 15)
506                 return -EINVAL;
507
508         if (copy_from_user(buf, p, count))
509                 return -EFAULT;
510
511         buf[count] = 0;
512         rc = kstrtoint(buf, 0, &cmd);
513         if (rc || cmd < 0 || cmd > 1) {
514                 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
515                 return rc ? rc : -EINVAL;
516         }
517
518         mutex_lock(&dtl_enable_mutex);
519
520         if ((cmd == 0 && !vcpudispatch_stats_on) ||
521                         (cmd == 1 && vcpudispatch_stats_on))
522                 goto out;
523
524         if (cmd) {
525                 rc = init_cpu_associativity();
526                 if (rc) {
527                         destroy_cpu_associativity();
528                         goto out;
529                 }
530
531                 for_each_possible_cpu(cpu) {
532                         disp = per_cpu_ptr(&vcpu_disp_data, cpu);
533                         memset(disp, 0, sizeof(*disp));
534                         disp->last_disp_cpu = -1;
535                 }
536
537                 rc = dtl_worker_enable(&time_limit);
538                 if (rc) {
539                         destroy_cpu_associativity();
540                         goto out;
541                 }
542         } else {
543                 dtl_worker_disable(&time_limit);
544                 destroy_cpu_associativity();
545         }
546
547         vcpudispatch_stats_on = cmd;
548
549 out:
550         mutex_unlock(&dtl_enable_mutex);
551         if (rc)
552                 return rc;
553         return count;
554 }
555
556 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
557 {
558         int cpu;
559         struct vcpu_dispatch_data *disp;
560
561         if (!vcpudispatch_stats_on) {
562                 seq_puts(p, "off\n");
563                 return 0;
564         }
565
566         for_each_online_cpu(cpu) {
567                 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
568                 seq_printf(p, "cpu%d", cpu);
569                 seq_put_decimal_ull(p, " ", disp->total_disp);
570                 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
571                 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
572                 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
573                 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
574                 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
575                 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
576                 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
577                 seq_puts(p, "\n");
578         }
579
580         return 0;
581 }
582
583 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
584 {
585         return single_open(file, vcpudispatch_stats_display, NULL);
586 }
587
588 static const struct proc_ops vcpudispatch_stats_proc_ops = {
589         .proc_open      = vcpudispatch_stats_open,
590         .proc_read      = seq_read,
591         .proc_write     = vcpudispatch_stats_write,
592         .proc_lseek     = seq_lseek,
593         .proc_release   = single_release,
594 };
595
596 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
597                 const char __user *p, size_t count, loff_t *ppos)
598 {
599         int rc, freq;
600         char buf[16];
601
602         if (count > 15)
603                 return -EINVAL;
604
605         if (copy_from_user(buf, p, count))
606                 return -EFAULT;
607
608         buf[count] = 0;
609         rc = kstrtoint(buf, 0, &freq);
610         if (rc || freq < 1 || freq > HZ) {
611                 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
612                                 HZ);
613                 return rc ? rc : -EINVAL;
614         }
615
616         vcpudispatch_stats_freq = freq;
617
618         return count;
619 }
620
621 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
622 {
623         seq_printf(p, "%d\n", vcpudispatch_stats_freq);
624         return 0;
625 }
626
627 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
628 {
629         return single_open(file, vcpudispatch_stats_freq_display, NULL);
630 }
631
632 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
633         .proc_open      = vcpudispatch_stats_freq_open,
634         .proc_read      = seq_read,
635         .proc_write     = vcpudispatch_stats_freq_write,
636         .proc_lseek     = seq_lseek,
637         .proc_release   = single_release,
638 };
639
640 static int __init vcpudispatch_stats_procfs_init(void)
641 {
642         if (!lppaca_shared_proc())
643                 return 0;
644
645         if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
646                                         &vcpudispatch_stats_proc_ops))
647                 pr_err("vcpudispatch_stats: error creating procfs file\n");
648         else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
649                                         &vcpudispatch_stats_freq_proc_ops))
650                 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
651
652         return 0;
653 }
654
655 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
656 #endif /* CONFIG_PPC_SPLPAR */
657
658 void vpa_init(int cpu)
659 {
660         int hwcpu = get_hard_smp_processor_id(cpu);
661         unsigned long addr;
662         long ret;
663
664         /*
665          * The spec says it "may be problematic" if CPU x registers the VPA of
666          * CPU y. We should never do that, but wail if we ever do.
667          */
668         WARN_ON(cpu != smp_processor_id());
669
670         if (cpu_has_feature(CPU_FTR_ALTIVEC))
671                 lppaca_of(cpu).vmxregs_in_use = 1;
672
673         if (cpu_has_feature(CPU_FTR_ARCH_207S))
674                 lppaca_of(cpu).ebb_regs_in_use = 1;
675
676         addr = __pa(&lppaca_of(cpu));
677         ret = register_vpa(hwcpu, addr);
678
679         if (ret) {
680                 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
681                        "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
682                 return;
683         }
684
685 #ifdef CONFIG_PPC_BOOK3S_64
686         /*
687          * PAPR says this feature is SLB-Buffer but firmware never
688          * reports that.  All SPLPAR support SLB shadow buffer.
689          */
690         if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
691                 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
692                 ret = register_slb_shadow(hwcpu, addr);
693                 if (ret)
694                         pr_err("WARNING: SLB shadow buffer registration for "
695                                "cpu %d (hw %d) of area %lx failed with %ld\n",
696                                cpu, hwcpu, addr, ret);
697         }
698 #endif /* CONFIG_PPC_BOOK3S_64 */
699
700         /*
701          * Register dispatch trace log, if one has been allocated.
702          */
703         register_dtl_buffer(cpu);
704 }
705
706 #ifdef CONFIG_PPC_BOOK3S_64
707
708 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
709                                      unsigned long vpn, unsigned long pa,
710                                      unsigned long rflags, unsigned long vflags,
711                                      int psize, int apsize, int ssize)
712 {
713         unsigned long lpar_rc;
714         unsigned long flags;
715         unsigned long slot;
716         unsigned long hpte_v, hpte_r;
717
718         if (!(vflags & HPTE_V_BOLTED))
719                 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
720                          "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
721                          hpte_group, vpn,  pa, rflags, vflags, psize);
722
723         hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
724         hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
725
726         if (!(vflags & HPTE_V_BOLTED))
727                 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
728
729         /* Now fill in the actual HPTE */
730         /* Set CEC cookie to 0         */
731         /* Zero page = 0               */
732         /* I-cache Invalidate = 0      */
733         /* I-cache synchronize = 0     */
734         /* Exact = 0                   */
735         flags = 0;
736
737         if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
738                 flags |= H_COALESCE_CAND;
739
740         lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
741         if (unlikely(lpar_rc == H_PTEG_FULL)) {
742                 pr_devel("Hash table group is full\n");
743                 return -1;
744         }
745
746         /*
747          * Since we try and ioremap PHBs we don't own, the pte insert
748          * will fail. However we must catch the failure in hash_page
749          * or we will loop forever, so return -2 in this case.
750          */
751         if (unlikely(lpar_rc != H_SUCCESS)) {
752                 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
753                 return -2;
754         }
755         if (!(vflags & HPTE_V_BOLTED))
756                 pr_devel(" -> slot: %lu\n", slot & 7);
757
758         /* Because of iSeries, we have to pass down the secondary
759          * bucket bit here as well
760          */
761         return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
762 }
763
764 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
765
766 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
767 {
768         unsigned long slot_offset;
769         unsigned long lpar_rc;
770         int i;
771         unsigned long dummy1, dummy2;
772
773         /* pick a random slot to start at */
774         slot_offset = mftb() & 0x7;
775
776         for (i = 0; i < HPTES_PER_GROUP; i++) {
777
778                 /* don't remove a bolted entry */
779                 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
780                                            HPTE_V_BOLTED, &dummy1, &dummy2);
781                 if (lpar_rc == H_SUCCESS)
782                         return i;
783
784                 /*
785                  * The test for adjunct partition is performed before the
786                  * ANDCOND test.  H_RESOURCE may be returned, so we need to
787                  * check for that as well.
788                  */
789                 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
790
791                 slot_offset++;
792                 slot_offset &= 0x7;
793         }
794
795         return -1;
796 }
797
798 static void manual_hpte_clear_all(void)
799 {
800         unsigned long size_bytes = 1UL << ppc64_pft_size;
801         unsigned long hpte_count = size_bytes >> 4;
802         struct {
803                 unsigned long pteh;
804                 unsigned long ptel;
805         } ptes[4];
806         long lpar_rc;
807         unsigned long i, j;
808
809         /* Read in batches of 4,
810          * invalidate only valid entries not in the VRMA
811          * hpte_count will be a multiple of 4
812          */
813         for (i = 0; i < hpte_count; i += 4) {
814                 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
815                 if (lpar_rc != H_SUCCESS) {
816                         pr_info("Failed to read hash page table at %ld err %ld\n",
817                                 i, lpar_rc);
818                         continue;
819                 }
820                 for (j = 0; j < 4; j++){
821                         if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
822                                 HPTE_V_VRMA_MASK)
823                                 continue;
824                         if (ptes[j].pteh & HPTE_V_VALID)
825                                 plpar_pte_remove_raw(0, i + j, 0,
826                                         &(ptes[j].pteh), &(ptes[j].ptel));
827                 }
828         }
829 }
830
831 static int hcall_hpte_clear_all(void)
832 {
833         int rc;
834
835         do {
836                 rc = plpar_hcall_norets(H_CLEAR_HPT);
837         } while (rc == H_CONTINUE);
838
839         return rc;
840 }
841
842 static void pseries_hpte_clear_all(void)
843 {
844         int rc;
845
846         rc = hcall_hpte_clear_all();
847         if (rc != H_SUCCESS)
848                 manual_hpte_clear_all();
849
850 #ifdef __LITTLE_ENDIAN__
851         /*
852          * Reset exceptions to big endian.
853          *
854          * FIXME this is a hack for kexec, we need to reset the exception
855          * endian before starting the new kernel and this is a convenient place
856          * to do it.
857          *
858          * This is also called on boot when a fadump happens. In that case we
859          * must not change the exception endian mode.
860          */
861         if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
862                 pseries_big_endian_exceptions();
863 #endif
864 }
865
866 /*
867  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
868  * the low 3 bits of flags happen to line up.  So no transform is needed.
869  * We can probably optimize here and assume the high bits of newpp are
870  * already zero.  For now I am paranoid.
871  */
872 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
873                                        unsigned long newpp,
874                                        unsigned long vpn,
875                                        int psize, int apsize,
876                                        int ssize, unsigned long inv_flags)
877 {
878         unsigned long lpar_rc;
879         unsigned long flags;
880         unsigned long want_v;
881
882         want_v = hpte_encode_avpn(vpn, psize, ssize);
883
884         flags = (newpp & 7) | H_AVPN;
885         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
886                 /* Move pp0 into bit 8 (IBM 55) */
887                 flags |= (newpp & HPTE_R_PP0) >> 55;
888
889         pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
890                  want_v, slot, flags, psize);
891
892         lpar_rc = plpar_pte_protect(flags, slot, want_v);
893
894         if (lpar_rc == H_NOT_FOUND) {
895                 pr_devel("not found !\n");
896                 return -1;
897         }
898
899         pr_devel("ok\n");
900
901         BUG_ON(lpar_rc != H_SUCCESS);
902
903         return 0;
904 }
905
906 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
907 {
908         long lpar_rc;
909         unsigned long i, j;
910         struct {
911                 unsigned long pteh;
912                 unsigned long ptel;
913         } ptes[4];
914
915         for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
916
917                 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
918                 if (lpar_rc != H_SUCCESS) {
919                         pr_info("Failed to read hash page table at %ld err %ld\n",
920                                 hpte_group, lpar_rc);
921                         continue;
922                 }
923
924                 for (j = 0; j < 4; j++) {
925                         if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
926                             (ptes[j].pteh & HPTE_V_VALID))
927                                 return i + j;
928                 }
929         }
930
931         return -1;
932 }
933
934 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
935 {
936         long slot;
937         unsigned long hash;
938         unsigned long want_v;
939         unsigned long hpte_group;
940
941         hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
942         want_v = hpte_encode_avpn(vpn, psize, ssize);
943
944         /*
945          * We try to keep bolted entries always in primary hash
946          * But in some case we can find them in secondary too.
947          */
948         hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
949         slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
950         if (slot < 0) {
951                 /* Try in secondary */
952                 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
953                 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
954                 if (slot < 0)
955                         return -1;
956         }
957         return hpte_group + slot;
958 }
959
960 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
961                                              unsigned long ea,
962                                              int psize, int ssize)
963 {
964         unsigned long vpn;
965         unsigned long lpar_rc, slot, vsid, flags;
966
967         vsid = get_kernel_vsid(ea, ssize);
968         vpn = hpt_vpn(ea, vsid, ssize);
969
970         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
971         BUG_ON(slot == -1);
972
973         flags = newpp & 7;
974         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
975                 /* Move pp0 into bit 8 (IBM 55) */
976                 flags |= (newpp & HPTE_R_PP0) >> 55;
977
978         lpar_rc = plpar_pte_protect(flags, slot, 0);
979
980         BUG_ON(lpar_rc != H_SUCCESS);
981 }
982
983 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
984                                          int psize, int apsize,
985                                          int ssize, int local)
986 {
987         unsigned long want_v;
988         unsigned long lpar_rc;
989         unsigned long dummy1, dummy2;
990
991         pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
992                  slot, vpn, psize, local);
993
994         want_v = hpte_encode_avpn(vpn, psize, ssize);
995         lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
996         if (lpar_rc == H_NOT_FOUND)
997                 return;
998
999         BUG_ON(lpar_rc != H_SUCCESS);
1000 }
1001
1002
1003 /*
1004  * As defined in the PAPR's section 14.5.4.1.8
1005  * The control mask doesn't include the returned reference and change bit from
1006  * the processed PTE.
1007  */
1008 #define HBLKR_AVPN              0x0100000000000000UL
1009 #define HBLKR_CTRL_MASK         0xf800000000000000UL
1010 #define HBLKR_CTRL_SUCCESS      0x8000000000000000UL
1011 #define HBLKR_CTRL_ERRNOTFOUND  0x8800000000000000UL
1012 #define HBLKR_CTRL_ERRBUSY      0xa000000000000000UL
1013
1014 /*
1015  * Returned true if we are supporting this block size for the specified segment
1016  * base page size and actual page size.
1017  *
1018  * Currently, we only support 8 size block.
1019  */
1020 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1021 {
1022         return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1023 }
1024
1025 /**
1026  * H_BLOCK_REMOVE caller.
1027  * @idx should point to the latest @param entry set with a PTEX.
1028  * If PTE cannot be processed because another CPUs has already locked that
1029  * group, those entries are put back in @param starting at index 1.
1030  * If entries has to be retried and @retry_busy is set to true, these entries
1031  * are retried until success. If @retry_busy is set to false, the returned
1032  * is the number of entries yet to process.
1033  */
1034 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1035                                        bool retry_busy)
1036 {
1037         unsigned long i, rc, new_idx;
1038         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1039
1040         if (idx < 2) {
1041                 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1042                 return 0;
1043         }
1044 again:
1045         new_idx = 0;
1046         if (idx > PLPAR_HCALL9_BUFSIZE) {
1047                 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1048                 idx = PLPAR_HCALL9_BUFSIZE;
1049         } else if (idx < PLPAR_HCALL9_BUFSIZE)
1050                 param[idx] = HBR_END;
1051
1052         rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1053                           param[0], /* AVA */
1054                           param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1055                           param[5],  param[6],  param[7],  param[8]);
1056         if (rc == H_SUCCESS)
1057                 return 0;
1058
1059         BUG_ON(rc != H_PARTIAL);
1060
1061         /* Check that the unprocessed entries were 'not found' or 'busy' */
1062         for (i = 0; i < idx-1; i++) {
1063                 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1064
1065                 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1066                         param[++new_idx] = param[i+1];
1067                         continue;
1068                 }
1069
1070                 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1071                        && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1072         }
1073
1074         /*
1075          * If there were entries found busy, retry these entries if requested,
1076          * of if all the entries have to be retried.
1077          */
1078         if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1079                 idx = new_idx + 1;
1080                 goto again;
1081         }
1082
1083         return new_idx;
1084 }
1085
1086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1087 /*
1088  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1089  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1090  */
1091 #define PPC64_HUGE_HPTE_BATCH 12
1092
1093 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1094                                       int count, int psize, int ssize)
1095 {
1096         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1097         unsigned long shift, current_vpgb, vpgb;
1098         int i, pix = 0;
1099
1100         shift = mmu_psize_defs[psize].shift;
1101
1102         for (i = 0; i < count; i++) {
1103                 /*
1104                  * Shifting 3 bits more on the right to get a
1105                  * 8 pages aligned virtual addresse.
1106                  */
1107                 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1108                 if (!pix || vpgb != current_vpgb) {
1109                         /*
1110                          * Need to start a new 8 pages block, flush
1111                          * the current one if needed.
1112                          */
1113                         if (pix)
1114                                 (void)call_block_remove(pix, param, true);
1115                         current_vpgb = vpgb;
1116                         param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1117                         pix = 1;
1118                 }
1119
1120                 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1121                 if (pix == PLPAR_HCALL9_BUFSIZE) {
1122                         pix = call_block_remove(pix, param, false);
1123                         /*
1124                          * pix = 0 means that all the entries were
1125                          * removed, we can start a new block.
1126                          * Otherwise, this means that there are entries
1127                          * to retry, and pix points to latest one, so
1128                          * we should increment it and try to continue
1129                          * the same block.
1130                          */
1131                         if (pix)
1132                                 pix++;
1133                 }
1134         }
1135         if (pix)
1136                 (void)call_block_remove(pix, param, true);
1137 }
1138
1139 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1140                                      int count, int psize, int ssize)
1141 {
1142         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1143         int i = 0, pix = 0, rc;
1144
1145         for (i = 0; i < count; i++) {
1146
1147                 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1148                         pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1149                                                      ssize, 0);
1150                 } else {
1151                         param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1152                         param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1153                         pix += 2;
1154                         if (pix == 8) {
1155                                 rc = plpar_hcall9(H_BULK_REMOVE, param,
1156                                                   param[0], param[1], param[2],
1157                                                   param[3], param[4], param[5],
1158                                                   param[6], param[7]);
1159                                 BUG_ON(rc != H_SUCCESS);
1160                                 pix = 0;
1161                         }
1162                 }
1163         }
1164         if (pix) {
1165                 param[pix] = HBR_END;
1166                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1167                                   param[2], param[3], param[4], param[5],
1168                                   param[6], param[7]);
1169                 BUG_ON(rc != H_SUCCESS);
1170         }
1171 }
1172
1173 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1174                                                       unsigned long *vpn,
1175                                                       int count, int psize,
1176                                                       int ssize)
1177 {
1178         unsigned long flags = 0;
1179         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1180
1181         if (lock_tlbie)
1182                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1183
1184         /* Assuming THP size is 16M */
1185         if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1186                 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1187         else
1188                 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1189
1190         if (lock_tlbie)
1191                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1192 }
1193
1194 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1195                                              unsigned long addr,
1196                                              unsigned char *hpte_slot_array,
1197                                              int psize, int ssize, int local)
1198 {
1199         int i, index = 0;
1200         unsigned long s_addr = addr;
1201         unsigned int max_hpte_count, valid;
1202         unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1203         unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1204         unsigned long shift, hidx, vpn = 0, hash, slot;
1205
1206         shift = mmu_psize_defs[psize].shift;
1207         max_hpte_count = 1U << (PMD_SHIFT - shift);
1208
1209         for (i = 0; i < max_hpte_count; i++) {
1210                 valid = hpte_valid(hpte_slot_array, i);
1211                 if (!valid)
1212                         continue;
1213                 hidx =  hpte_hash_index(hpte_slot_array, i);
1214
1215                 /* get the vpn */
1216                 addr = s_addr + (i * (1ul << shift));
1217                 vpn = hpt_vpn(addr, vsid, ssize);
1218                 hash = hpt_hash(vpn, shift, ssize);
1219                 if (hidx & _PTEIDX_SECONDARY)
1220                         hash = ~hash;
1221
1222                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1223                 slot += hidx & _PTEIDX_GROUP_IX;
1224
1225                 slot_array[index] = slot;
1226                 vpn_array[index] = vpn;
1227                 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1228                         /*
1229                          * Now do a bluk invalidate
1230                          */
1231                         __pSeries_lpar_hugepage_invalidate(slot_array,
1232                                                            vpn_array,
1233                                                            PPC64_HUGE_HPTE_BATCH,
1234                                                            psize, ssize);
1235                         index = 0;
1236                 } else
1237                         index++;
1238         }
1239         if (index)
1240                 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1241                                                    index, psize, ssize);
1242 }
1243 #else
1244 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1245                                              unsigned long addr,
1246                                              unsigned char *hpte_slot_array,
1247                                              int psize, int ssize, int local)
1248 {
1249         WARN(1, "%s called without THP support\n", __func__);
1250 }
1251 #endif
1252
1253 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1254                                           int psize, int ssize)
1255 {
1256         unsigned long vpn;
1257         unsigned long slot, vsid;
1258
1259         vsid = get_kernel_vsid(ea, ssize);
1260         vpn = hpt_vpn(ea, vsid, ssize);
1261
1262         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1263         if (slot == -1)
1264                 return -ENOENT;
1265
1266         /*
1267          * lpar doesn't use the passed actual page size
1268          */
1269         pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1270         return 0;
1271 }
1272
1273
1274 static inline unsigned long compute_slot(real_pte_t pte,
1275                                          unsigned long vpn,
1276                                          unsigned long index,
1277                                          unsigned long shift,
1278                                          int ssize)
1279 {
1280         unsigned long slot, hash, hidx;
1281
1282         hash = hpt_hash(vpn, shift, ssize);
1283         hidx = __rpte_to_hidx(pte, index);
1284         if (hidx & _PTEIDX_SECONDARY)
1285                 hash = ~hash;
1286         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1287         slot += hidx & _PTEIDX_GROUP_IX;
1288         return slot;
1289 }
1290
1291 /**
1292  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1293  * "all within the same naturally aligned 8 page virtual address block".
1294  */
1295 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1296                             unsigned long *param)
1297 {
1298         unsigned long vpn;
1299         unsigned long i, pix = 0;
1300         unsigned long index, shift, slot, current_vpgb, vpgb;
1301         real_pte_t pte;
1302         int psize, ssize;
1303
1304         psize = batch->psize;
1305         ssize = batch->ssize;
1306
1307         for (i = 0; i < number; i++) {
1308                 vpn = batch->vpn[i];
1309                 pte = batch->pte[i];
1310                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1311                         /*
1312                          * Shifting 3 bits more on the right to get a
1313                          * 8 pages aligned virtual addresse.
1314                          */
1315                         vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1316                         if (!pix || vpgb != current_vpgb) {
1317                                 /*
1318                                  * Need to start a new 8 pages block, flush
1319                                  * the current one if needed.
1320                                  */
1321                                 if (pix)
1322                                         (void)call_block_remove(pix, param,
1323                                                                 true);
1324                                 current_vpgb = vpgb;
1325                                 param[0] = hpte_encode_avpn(vpn, psize,
1326                                                             ssize);
1327                                 pix = 1;
1328                         }
1329
1330                         slot = compute_slot(pte, vpn, index, shift, ssize);
1331                         param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1332
1333                         if (pix == PLPAR_HCALL9_BUFSIZE) {
1334                                 pix = call_block_remove(pix, param, false);
1335                                 /*
1336                                  * pix = 0 means that all the entries were
1337                                  * removed, we can start a new block.
1338                                  * Otherwise, this means that there are entries
1339                                  * to retry, and pix points to latest one, so
1340                                  * we should increment it and try to continue
1341                                  * the same block.
1342                                  */
1343                                 if (pix)
1344                                         pix++;
1345                         }
1346                 } pte_iterate_hashed_end();
1347         }
1348
1349         if (pix)
1350                 (void)call_block_remove(pix, param, true);
1351 }
1352
1353 /*
1354  * TLB Block Invalidate Characteristics
1355  *
1356  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1357  * is able to process for each couple segment base page size, actual page size.
1358  *
1359  * The ibm,get-system-parameter properties is returning a buffer with the
1360  * following layout:
1361  *
1362  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1363  * -----------------
1364  * TLB Block Invalidate Specifiers:
1365  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1366  * [ 1 byte Number of page sizes (N) that are supported for the specified
1367  *          TLB invalidate block size ]
1368  * [ 1 byte Encoded segment base page size and actual page size
1369  *          MSB=0 means 4k segment base page size and actual page size
1370  *          MSB=1 the penc value in mmu_psize_def ]
1371  * ...
1372  * -----------------
1373  * Next TLB Block Invalidate Specifiers...
1374  * -----------------
1375  * [ 0 ]
1376  */
1377 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1378                                         unsigned int block_size)
1379 {
1380         if (block_size > hblkrm_size[bpsize][psize])
1381                 hblkrm_size[bpsize][psize] = block_size;
1382 }
1383
1384 /*
1385  * Decode the Encoded segment base page size and actual page size.
1386  * PAPR specifies:
1387  *   - bit 7 is the L bit
1388  *   - bits 0-5 are the penc value
1389  * If the L bit is 0, this means 4K segment base page size and actual page size
1390  * otherwise the penc value should be read.
1391  */
1392 #define HBLKRM_L_MASK           0x80
1393 #define HBLKRM_PENC_MASK        0x3f
1394 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1395                                               unsigned int block_size)
1396 {
1397         unsigned int bpsize, psize;
1398
1399         /* First, check the L bit, if not set, this means 4K */
1400         if ((lp & HBLKRM_L_MASK) == 0) {
1401                 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1402                 return;
1403         }
1404
1405         lp &= HBLKRM_PENC_MASK;
1406         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1407                 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1408
1409                 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1410                         if (def->penc[psize] == lp) {
1411                                 set_hblkrm_bloc_size(bpsize, psize, block_size);
1412                                 return;
1413                         }
1414                 }
1415         }
1416 }
1417
1418 #define SPLPAR_TLB_BIC_TOKEN            50
1419
1420 /*
1421  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1422  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1423  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1424  * (128 bytes) for the buffer to get plenty of space.
1425  */
1426 #define SPLPAR_TLB_BIC_MAXLENGTH        128
1427
1428 void __init pseries_lpar_read_hblkrm_characteristics(void)
1429 {
1430         const s32 token = rtas_token("ibm,get-system-parameter");
1431         unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1432         int call_status, len, idx, bpsize;
1433
1434         if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1435                 return;
1436
1437         do {
1438                 spin_lock(&rtas_data_buf_lock);
1439                 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1440                 call_status = rtas_call(token, 3, 1, NULL, SPLPAR_TLB_BIC_TOKEN,
1441                                         __pa(rtas_data_buf), RTAS_DATA_BUF_SIZE);
1442                 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1443                 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1444                 spin_unlock(&rtas_data_buf_lock);
1445         } while (rtas_busy_delay(call_status));
1446
1447         if (call_status != 0) {
1448                 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1449                         __FILE__, __func__, call_status);
1450                 return;
1451         }
1452
1453         /*
1454          * The first two (2) bytes of the data in the buffer are the length of
1455          * the returned data, not counting these first two (2) bytes.
1456          */
1457         len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1458         if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1459                 pr_warn("%s too large returned buffer %d", __func__, len);
1460                 return;
1461         }
1462
1463         idx = 2;
1464         while (idx < len) {
1465                 u8 block_shift = local_buffer[idx++];
1466                 u32 block_size;
1467                 unsigned int npsize;
1468
1469                 if (!block_shift)
1470                         break;
1471
1472                 block_size = 1 << block_shift;
1473
1474                 for (npsize = local_buffer[idx++];
1475                      npsize > 0 && idx < len; npsize--)
1476                         check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1477                                             block_size);
1478         }
1479
1480         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1481                 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1482                         if (hblkrm_size[bpsize][idx])
1483                                 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1484                                         bpsize, idx, hblkrm_size[bpsize][idx]);
1485 }
1486
1487 /*
1488  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1489  * lock.
1490  */
1491 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1492 {
1493         unsigned long vpn;
1494         unsigned long i, pix, rc;
1495         unsigned long flags = 0;
1496         struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1497         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1498         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1499         unsigned long index, shift, slot;
1500         real_pte_t pte;
1501         int psize, ssize;
1502
1503         if (lock_tlbie)
1504                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1505
1506         if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1507                 do_block_remove(number, batch, param);
1508                 goto out;
1509         }
1510
1511         psize = batch->psize;
1512         ssize = batch->ssize;
1513         pix = 0;
1514         for (i = 0; i < number; i++) {
1515                 vpn = batch->vpn[i];
1516                 pte = batch->pte[i];
1517                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1518                         slot = compute_slot(pte, vpn, index, shift, ssize);
1519                         if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1520                                 /*
1521                                  * lpar doesn't use the passed actual page size
1522                                  */
1523                                 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1524                                                              0, ssize, local);
1525                         } else {
1526                                 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1527                                 param[pix+1] = hpte_encode_avpn(vpn, psize,
1528                                                                 ssize);
1529                                 pix += 2;
1530                                 if (pix == 8) {
1531                                         rc = plpar_hcall9(H_BULK_REMOVE, param,
1532                                                 param[0], param[1], param[2],
1533                                                 param[3], param[4], param[5],
1534                                                 param[6], param[7]);
1535                                         BUG_ON(rc != H_SUCCESS);
1536                                         pix = 0;
1537                                 }
1538                         }
1539                 } pte_iterate_hashed_end();
1540         }
1541         if (pix) {
1542                 param[pix] = HBR_END;
1543                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1544                                   param[2], param[3], param[4], param[5],
1545                                   param[6], param[7]);
1546                 BUG_ON(rc != H_SUCCESS);
1547         }
1548
1549 out:
1550         if (lock_tlbie)
1551                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1552 }
1553
1554 static int __init disable_bulk_remove(char *str)
1555 {
1556         if (strcmp(str, "off") == 0 &&
1557             firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1558                 pr_info("Disabling BULK_REMOVE firmware feature");
1559                 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1560         }
1561         return 1;
1562 }
1563
1564 __setup("bulk_remove=", disable_bulk_remove);
1565
1566 #define HPT_RESIZE_TIMEOUT      10000 /* ms */
1567
1568 struct hpt_resize_state {
1569         unsigned long shift;
1570         int commit_rc;
1571 };
1572
1573 static int pseries_lpar_resize_hpt_commit(void *data)
1574 {
1575         struct hpt_resize_state *state = data;
1576
1577         state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1578         if (state->commit_rc != H_SUCCESS)
1579                 return -EIO;
1580
1581         /* Hypervisor has transitioned the HTAB, update our globals */
1582         ppc64_pft_size = state->shift;
1583         htab_size_bytes = 1UL << ppc64_pft_size;
1584         htab_hash_mask = (htab_size_bytes >> 7) - 1;
1585
1586         return 0;
1587 }
1588
1589 /*
1590  * Must be called in process context. The caller must hold the
1591  * cpus_lock.
1592  */
1593 static int pseries_lpar_resize_hpt(unsigned long shift)
1594 {
1595         struct hpt_resize_state state = {
1596                 .shift = shift,
1597                 .commit_rc = H_FUNCTION,
1598         };
1599         unsigned int delay, total_delay = 0;
1600         int rc;
1601         ktime_t t0, t1, t2;
1602
1603         might_sleep();
1604
1605         if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1606                 return -ENODEV;
1607
1608         pr_info("Attempting to resize HPT to shift %lu\n", shift);
1609
1610         t0 = ktime_get();
1611
1612         rc = plpar_resize_hpt_prepare(0, shift);
1613         while (H_IS_LONG_BUSY(rc)) {
1614                 delay = get_longbusy_msecs(rc);
1615                 total_delay += delay;
1616                 if (total_delay > HPT_RESIZE_TIMEOUT) {
1617                         /* prepare with shift==0 cancels an in-progress resize */
1618                         rc = plpar_resize_hpt_prepare(0, 0);
1619                         if (rc != H_SUCCESS)
1620                                 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1621                                        rc);
1622                         return -ETIMEDOUT;
1623                 }
1624                 msleep(delay);
1625                 rc = plpar_resize_hpt_prepare(0, shift);
1626         };
1627
1628         switch (rc) {
1629         case H_SUCCESS:
1630                 /* Continue on */
1631                 break;
1632
1633         case H_PARAMETER:
1634                 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1635                 return -EINVAL;
1636         case H_RESOURCE:
1637                 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1638                 return -EPERM;
1639         default:
1640                 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1641                 return -EIO;
1642         }
1643
1644         t1 = ktime_get();
1645
1646         rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1647                                      &state, NULL);
1648
1649         t2 = ktime_get();
1650
1651         if (rc != 0) {
1652                 switch (state.commit_rc) {
1653                 case H_PTEG_FULL:
1654                         return -ENOSPC;
1655
1656                 default:
1657                         pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1658                                 state.commit_rc);
1659                         return -EIO;
1660                 };
1661         }
1662
1663         pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1664                 shift, (long long) ktime_ms_delta(t1, t0),
1665                 (long long) ktime_ms_delta(t2, t1));
1666
1667         return 0;
1668 }
1669
1670 static int pseries_lpar_register_process_table(unsigned long base,
1671                         unsigned long page_size, unsigned long table_size)
1672 {
1673         long rc;
1674         unsigned long flags = 0;
1675
1676         if (table_size)
1677                 flags |= PROC_TABLE_NEW;
1678         if (radix_enabled()) {
1679                 flags |= PROC_TABLE_RADIX;
1680                 if (mmu_has_feature(MMU_FTR_GTSE))
1681                         flags |= PROC_TABLE_GTSE;
1682         } else
1683                 flags |= PROC_TABLE_HPT_SLB;
1684         for (;;) {
1685                 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1686                                         page_size, table_size);
1687                 if (!H_IS_LONG_BUSY(rc))
1688                         break;
1689                 mdelay(get_longbusy_msecs(rc));
1690         }
1691         if (rc != H_SUCCESS) {
1692                 pr_err("Failed to register process table (rc=%ld)\n", rc);
1693                 BUG();
1694         }
1695         return rc;
1696 }
1697
1698 void __init hpte_init_pseries(void)
1699 {
1700         mmu_hash_ops.hpte_invalidate     = pSeries_lpar_hpte_invalidate;
1701         mmu_hash_ops.hpte_updatepp       = pSeries_lpar_hpte_updatepp;
1702         mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1703         mmu_hash_ops.hpte_insert         = pSeries_lpar_hpte_insert;
1704         mmu_hash_ops.hpte_remove         = pSeries_lpar_hpte_remove;
1705         mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1706         mmu_hash_ops.flush_hash_range    = pSeries_lpar_flush_hash_range;
1707         mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1708         mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1709
1710         if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1711                 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1712
1713         /*
1714          * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1715          * to inform the hypervisor that we wish to use the HPT.
1716          */
1717         if (cpu_has_feature(CPU_FTR_ARCH_300))
1718                 pseries_lpar_register_process_table(0, 0, 0);
1719 }
1720
1721 #ifdef CONFIG_PPC_RADIX_MMU
1722 void radix_init_pseries(void)
1723 {
1724         pr_info("Using radix MMU under hypervisor\n");
1725
1726         pseries_lpar_register_process_table(__pa(process_tb),
1727                                                 0, PRTB_SIZE_SHIFT - 12);
1728 }
1729 #endif
1730
1731 #ifdef CONFIG_PPC_SMLPAR
1732 #define CMO_FREE_HINT_DEFAULT 1
1733 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1734
1735 static int __init cmo_free_hint(char *str)
1736 {
1737         char *parm;
1738         parm = strstrip(str);
1739
1740         if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1741                 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1742                 cmo_free_hint_flag = 0;
1743                 return 1;
1744         }
1745
1746         cmo_free_hint_flag = 1;
1747         pr_info("%s: CMO free page hinting is active.\n", __func__);
1748
1749         if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1750                 return 1;
1751
1752         return 0;
1753 }
1754
1755 __setup("cmo_free_hint=", cmo_free_hint);
1756
1757 static void pSeries_set_page_state(struct page *page, int order,
1758                                    unsigned long state)
1759 {
1760         int i, j;
1761         unsigned long cmo_page_sz, addr;
1762
1763         cmo_page_sz = cmo_get_page_size();
1764         addr = __pa((unsigned long)page_address(page));
1765
1766         for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1767                 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1768                         plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1769         }
1770 }
1771
1772 void arch_free_page(struct page *page, int order)
1773 {
1774         if (radix_enabled())
1775                 return;
1776         if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1777                 return;
1778
1779         pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1780 }
1781 EXPORT_SYMBOL(arch_free_page);
1782
1783 #endif /* CONFIG_PPC_SMLPAR */
1784 #endif /* CONFIG_PPC_BOOK3S_64 */
1785
1786 #ifdef CONFIG_TRACEPOINTS
1787 #ifdef CONFIG_JUMP_LABEL
1788 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1789
1790 int hcall_tracepoint_regfunc(void)
1791 {
1792         static_key_slow_inc(&hcall_tracepoint_key);
1793         return 0;
1794 }
1795
1796 void hcall_tracepoint_unregfunc(void)
1797 {
1798         static_key_slow_dec(&hcall_tracepoint_key);
1799 }
1800 #else
1801 /*
1802  * We optimise our hcall path by placing hcall_tracepoint_refcount
1803  * directly in the TOC so we can check if the hcall tracepoints are
1804  * enabled via a single load.
1805  */
1806
1807 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1808 extern long hcall_tracepoint_refcount;
1809
1810 int hcall_tracepoint_regfunc(void)
1811 {
1812         hcall_tracepoint_refcount++;
1813         return 0;
1814 }
1815
1816 void hcall_tracepoint_unregfunc(void)
1817 {
1818         hcall_tracepoint_refcount--;
1819 }
1820 #endif
1821
1822 /*
1823  * Since the tracing code might execute hcalls we need to guard against
1824  * recursion.
1825  */
1826 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1827
1828
1829 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1830 {
1831         unsigned long flags;
1832         unsigned int *depth;
1833
1834         /*
1835          * We cannot call tracepoints inside RCU idle regions which
1836          * means we must not trace H_CEDE.
1837          */
1838         if (opcode == H_CEDE)
1839                 return;
1840
1841         local_irq_save(flags);
1842
1843         depth = this_cpu_ptr(&hcall_trace_depth);
1844
1845         if (*depth)
1846                 goto out;
1847
1848         (*depth)++;
1849         preempt_disable();
1850         trace_hcall_entry(opcode, args);
1851         (*depth)--;
1852
1853 out:
1854         local_irq_restore(flags);
1855 }
1856
1857 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1858 {
1859         unsigned long flags;
1860         unsigned int *depth;
1861
1862         if (opcode == H_CEDE)
1863                 return;
1864
1865         local_irq_save(flags);
1866
1867         depth = this_cpu_ptr(&hcall_trace_depth);
1868
1869         if (*depth)
1870                 goto out;
1871
1872         (*depth)++;
1873         trace_hcall_exit(opcode, retval, retbuf);
1874         preempt_enable();
1875         (*depth)--;
1876
1877 out:
1878         local_irq_restore(flags);
1879 }
1880 #endif
1881
1882 /**
1883  * h_get_mpp
1884  * H_GET_MPP hcall returns info in 7 parms
1885  */
1886 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1887 {
1888         int rc;
1889         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1890
1891         rc = plpar_hcall9(H_GET_MPP, retbuf);
1892
1893         mpp_data->entitled_mem = retbuf[0];
1894         mpp_data->mapped_mem = retbuf[1];
1895
1896         mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1897         mpp_data->pool_num = retbuf[2] & 0xffff;
1898
1899         mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1900         mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1901         mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1902
1903         mpp_data->pool_size = retbuf[4];
1904         mpp_data->loan_request = retbuf[5];
1905         mpp_data->backing_mem = retbuf[6];
1906
1907         return rc;
1908 }
1909 EXPORT_SYMBOL(h_get_mpp);
1910
1911 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1912 {
1913         int rc;
1914         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1915
1916         rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1917
1918         mpp_x_data->coalesced_bytes = retbuf[0];
1919         mpp_x_data->pool_coalesced_bytes = retbuf[1];
1920         mpp_x_data->pool_purr_cycles = retbuf[2];
1921         mpp_x_data->pool_spurr_cycles = retbuf[3];
1922
1923         return rc;
1924 }
1925
1926 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1927 {
1928         unsigned long protovsid;
1929         unsigned long va_bits = VA_BITS;
1930         unsigned long modinv, vsid_modulus;
1931         unsigned long max_mod_inv, tmp_modinv;
1932
1933         if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1934                 va_bits = 65;
1935
1936         if (ssize == MMU_SEGSIZE_256M) {
1937                 modinv = VSID_MULINV_256M;
1938                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1939         } else {
1940                 modinv = VSID_MULINV_1T;
1941                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1942         }
1943
1944         /*
1945          * vsid outside our range.
1946          */
1947         if (vsid >= vsid_modulus)
1948                 return 0;
1949
1950         /*
1951          * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1952          * and vsid = (protovsid * x) % vsid_modulus, then we say:
1953          *   protovsid = (vsid * modinv) % vsid_modulus
1954          */
1955
1956         /* Check if (vsid * modinv) overflow (63 bits) */
1957         max_mod_inv = 0x7fffffffffffffffull / vsid;
1958         if (modinv < max_mod_inv)
1959                 return (vsid * modinv) % vsid_modulus;
1960
1961         tmp_modinv = modinv/max_mod_inv;
1962         modinv %= max_mod_inv;
1963
1964         protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1965         protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1966
1967         return protovsid;
1968 }
1969
1970 static int __init reserve_vrma_context_id(void)
1971 {
1972         unsigned long protovsid;
1973
1974         /*
1975          * Reserve context ids which map to reserved virtual addresses. For now
1976          * we only reserve the context id which maps to the VRMA VSID. We ignore
1977          * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1978          * enable adjunct support via the "ibm,client-architecture-support"
1979          * interface.
1980          */
1981         protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1982         hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1983         return 0;
1984 }
1985 machine_device_initcall(pseries, reserve_vrma_context_id);
1986
1987 #ifdef CONFIG_DEBUG_FS
1988 /* debugfs file interface for vpa data */
1989 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1990                               loff_t *pos)
1991 {
1992         int cpu = (long)filp->private_data;
1993         struct lppaca *lppaca = &lppaca_of(cpu);
1994
1995         return simple_read_from_buffer(buf, len, pos, lppaca,
1996                                 sizeof(struct lppaca));
1997 }
1998
1999 static const struct file_operations vpa_fops = {
2000         .open           = simple_open,
2001         .read           = vpa_file_read,
2002         .llseek         = default_llseek,
2003 };
2004
2005 static int __init vpa_debugfs_init(void)
2006 {
2007         char name[16];
2008         long i;
2009         struct dentry *vpa_dir;
2010
2011         if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2012                 return 0;
2013
2014         vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2015
2016         /* set up the per-cpu vpa file*/
2017         for_each_possible_cpu(i) {
2018                 sprintf(name, "cpu-%ld", i);
2019                 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2020         }
2021
2022         return 0;
2023 }
2024 machine_arch_initcall(pseries, vpa_debugfs_init);
2025 #endif /* CONFIG_DEBUG_FS */