2 * Support PCI/PCIe on PowerNV platforms
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
30 #include <asm/sections.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
38 #include <asm/iommu.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
46 #include <misc/cxl-base.h>
51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
56 #define POWERNV_IOMMU_MAX_LEVELS 5
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
73 if (pe->flags & PNV_IODA_PE_DEV)
74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 sprintf(pfix, "%04x:%02x ",
77 pci_domain_nr(pe->pbus), pe->pbus->number);
79 else if (pe->flags & PNV_IODA_PE_VF)
80 sprintf(pfix, "%04x:%02x:%2x.%d",
81 pci_domain_nr(pe->parent_dev->bus),
82 (pe->rid & 0xff00) >> 8,
83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
86 printk("%spci %s: [PE# %.3d] %pV",
87 level, pfix, pe->pe_number, &vaf);
92 static bool pnv_iommu_bypass_disabled __read_mostly;
94 static int __init iommu_setup(char *str)
100 if (!strncmp(str, "nobypass", 8)) {
101 pnv_iommu_bypass_disabled = true;
102 pr_info("PowerNV: IOMMU bypass window disabled.\n");
105 str += strcspn(str, ",");
112 early_param("iommu", iommu_setup);
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
117 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 * allocation code sometimes decides to put a 64-bit prefetchable
119 * BAR in the 32-bit window, so we have to compare the addresses.
121 * For simplicity we only test resource start.
123 return (r->start >= phb->ioda.m64_base &&
124 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
129 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
131 return (resource_flags & flags) == flags;
134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
138 phb->ioda.pe_array[pe_no].phb = phb;
139 phb->ioda.pe_array[pe_no].pe_number = pe_no;
142 * Clear the PE frozen state as it might be put into frozen state
143 * in the last PCI remove path. It's not harmful to do so when the
144 * PE is already in unfrozen state.
146 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
147 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149 pr_warn("%s: Error %lld unfreezing PHB#%d-PE#%d\n",
150 __func__, rc, phb->hose->global_number, pe_no);
152 return &phb->ioda.pe_array[pe_no];
155 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
157 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158 pr_warn("%s: Invalid PE %d on PHB#%x\n",
159 __func__, pe_no, phb->hose->global_number);
163 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164 pr_debug("%s: PE %d was reserved on PHB#%x\n",
165 __func__, pe_no, phb->hose->global_number);
167 pnv_ioda_init_pe(phb, pe_no);
170 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
174 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
175 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
176 return pnv_ioda_init_pe(phb, pe);
182 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
184 struct pnv_phb *phb = pe->phb;
185 unsigned int pe_num = pe->pe_number;
189 memset(pe, 0, sizeof(struct pnv_ioda_pe));
190 clear_bit(pe_num, phb->ioda.pe_alloc);
193 /* The default M64 BAR is shared by all PEs */
194 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
200 /* Configure the default M64 BAR */
201 rc = opal_pci_set_phb_mem_window(phb->opal_id,
202 OPAL_M64_WINDOW_TYPE,
203 phb->ioda.m64_bar_idx,
207 if (rc != OPAL_SUCCESS) {
208 desc = "configuring";
212 /* Enable the default M64 BAR */
213 rc = opal_pci_phb_mmio_enable(phb->opal_id,
214 OPAL_M64_WINDOW_TYPE,
215 phb->ioda.m64_bar_idx,
216 OPAL_ENABLE_M64_SPLIT);
217 if (rc != OPAL_SUCCESS) {
223 * Exclude the segments for reserved and root bus PE, which
224 * are first or last two PEs.
226 r = &phb->hose->mem_resources[1];
227 if (phb->ioda.reserved_pe_idx == 0)
228 r->start += (2 * phb->ioda.m64_segsize);
229 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230 r->end -= (2 * phb->ioda.m64_segsize);
232 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
233 phb->ioda.reserved_pe_idx);
238 pr_warn(" Failure %lld %s M64 BAR#%d\n",
239 rc, desc, phb->ioda.m64_bar_idx);
240 opal_pci_phb_mmio_enable(phb->opal_id,
241 OPAL_M64_WINDOW_TYPE,
242 phb->ioda.m64_bar_idx,
247 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248 unsigned long *pe_bitmap)
250 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
251 struct pnv_phb *phb = hose->private_data;
253 resource_size_t base, sgsz, start, end;
256 base = phb->ioda.m64_base;
257 sgsz = phb->ioda.m64_segsize;
258 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
259 r = &pdev->resource[i];
260 if (!r->parent || !pnv_pci_is_m64(phb, r))
263 start = _ALIGN_DOWN(r->start - base, sgsz);
264 end = _ALIGN_UP(r->end - base, sgsz);
265 for (segno = start / sgsz; segno < end / sgsz; segno++) {
267 set_bit(segno, pe_bitmap);
269 pnv_ioda_reserve_pe(phb, segno);
274 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
280 * There are 16 M64 BARs, each of which has 8 segments. So
281 * there are as many M64 segments as the maximum number of
284 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
285 unsigned long base, segsz = phb->ioda.m64_segsize;
288 base = phb->ioda.m64_base +
289 index * PNV_IODA1_M64_SEGS * segsz;
290 rc = opal_pci_set_phb_mem_window(phb->opal_id,
291 OPAL_M64_WINDOW_TYPE, index, base, 0,
292 PNV_IODA1_M64_SEGS * segsz);
293 if (rc != OPAL_SUCCESS) {
294 pr_warn(" Error %lld setting M64 PHB#%d-BAR#%d\n",
295 rc, phb->hose->global_number, index);
299 rc = opal_pci_phb_mmio_enable(phb->opal_id,
300 OPAL_M64_WINDOW_TYPE, index,
301 OPAL_ENABLE_M64_SPLIT);
302 if (rc != OPAL_SUCCESS) {
303 pr_warn(" Error %lld enabling M64 PHB#%d-BAR#%d\n",
304 rc, phb->hose->global_number, index);
310 * Exclude the segments for reserved and root bus PE, which
311 * are first or last two PEs.
313 r = &phb->hose->mem_resources[1];
314 if (phb->ioda.reserved_pe_idx == 0)
315 r->start += (2 * phb->ioda.m64_segsize);
316 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317 r->end -= (2 * phb->ioda.m64_segsize);
319 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
320 phb->ioda.reserved_pe_idx, phb->hose->global_number);
325 for ( ; index >= 0; index--)
326 opal_pci_phb_mmio_enable(phb->opal_id,
327 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
332 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
333 unsigned long *pe_bitmap,
336 struct pci_dev *pdev;
338 list_for_each_entry(pdev, &bus->devices, bus_list) {
339 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
341 if (all && pdev->subordinate)
342 pnv_ioda_reserve_m64_pe(pdev->subordinate,
347 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
349 struct pci_controller *hose = pci_bus_to_host(bus);
350 struct pnv_phb *phb = hose->private_data;
351 struct pnv_ioda_pe *master_pe, *pe;
352 unsigned long size, *pe_alloc;
355 /* Root bus shouldn't use M64 */
356 if (pci_is_root_bus(bus))
359 /* Allocate bitmap */
360 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361 pe_alloc = kzalloc(size, GFP_KERNEL);
363 pr_warn("%s: Out of memory !\n",
368 /* Figure out reserved PE numbers by the PE */
369 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
372 * the current bus might not own M64 window and that's all
373 * contributed by its child buses. For the case, we needn't
374 * pick M64 dependent PE#.
376 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
382 * Figure out the master PE and put all slave PEs to master
383 * PE's list to form compound PE.
387 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
388 phb->ioda.total_pe_num) {
389 pe = &phb->ioda.pe_array[i];
391 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
393 pe->flags |= PNV_IODA_PE_MASTER;
394 INIT_LIST_HEAD(&pe->slaves);
397 pe->flags |= PNV_IODA_PE_SLAVE;
398 pe->master = master_pe;
399 list_add_tail(&pe->list, &master_pe->slaves);
403 * P7IOC supports M64DT, which helps mapping M64 segment
404 * to one particular PE#. However, PHB3 has fixed mapping
405 * between M64 segment and PE#. In order to have same logic
406 * for P7IOC and PHB3, we enforce fixed mapping between M64
407 * segment and PE# on P7IOC.
409 if (phb->type == PNV_PHB_IODA1) {
412 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
413 pe->pe_number, OPAL_M64_WINDOW_TYPE,
414 pe->pe_number / PNV_IODA1_M64_SEGS,
415 pe->pe_number % PNV_IODA1_M64_SEGS);
416 if (rc != OPAL_SUCCESS)
417 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
418 __func__, rc, phb->hose->global_number,
427 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
429 struct pci_controller *hose = phb->hose;
430 struct device_node *dn = hose->dn;
431 struct resource *res;
436 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437 pr_info(" Not support M64 window\n");
441 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442 pr_info(" Firmware too old to support M64 window\n");
446 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
448 pr_info(" No <ibm,opal-m64-window> on %s\n",
454 * Find the available M64 BAR range and pickup the last one for
455 * covering the whole 64-bits space. We support only one range.
457 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
459 /* In absence of the property, assume 0..15 */
463 /* We only support 64 bits in our allocator */
464 if (m64_range[1] > 63) {
465 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
466 __func__, m64_range[1], phb->hose->global_number);
469 /* Empty range, no m64 */
470 if (m64_range[1] <= m64_range[0]) {
471 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
472 __func__, phb->hose->global_number);
476 /* Configure M64 informations */
477 res = &hose->mem_resources[1];
478 res->name = dn->full_name;
479 res->start = of_translate_address(dn, r + 2);
480 res->end = res->start + of_read_number(r + 4, 2) - 1;
481 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
482 pci_addr = of_read_number(r, 2);
483 hose->mem_offset[1] = res->start - pci_addr;
485 phb->ioda.m64_size = resource_size(res);
486 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487 phb->ioda.m64_base = pci_addr;
489 /* This lines up nicely with the display from processing OF ranges */
490 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
491 res->start, res->end, pci_addr, m64_range[0],
492 m64_range[0] + m64_range[1] - 1);
494 /* Mark all M64 used up by default */
495 phb->ioda.m64_bar_alloc = (unsigned long)-1;
497 /* Use last M64 BAR to cover M64 window */
499 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
501 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
503 /* Mark remaining ones free */
504 for (i = m64_range[0]; i < m64_range[1]; i++)
505 clear_bit(i, &phb->ioda.m64_bar_alloc);
508 * Setup init functions for M64 based on IODA version, IODA3 uses
511 if (phb->type == PNV_PHB_IODA1)
512 phb->init_m64 = pnv_ioda1_init_m64;
514 phb->init_m64 = pnv_ioda2_init_m64;
515 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
516 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
519 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
521 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
522 struct pnv_ioda_pe *slave;
525 /* Fetch master PE */
526 if (pe->flags & PNV_IODA_PE_SLAVE) {
528 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
531 pe_no = pe->pe_number;
534 /* Freeze master PE */
535 rc = opal_pci_eeh_freeze_set(phb->opal_id,
537 OPAL_EEH_ACTION_SET_FREEZE_ALL);
538 if (rc != OPAL_SUCCESS) {
539 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
540 __func__, rc, phb->hose->global_number, pe_no);
544 /* Freeze slave PEs */
545 if (!(pe->flags & PNV_IODA_PE_MASTER))
548 list_for_each_entry(slave, &pe->slaves, list) {
549 rc = opal_pci_eeh_freeze_set(phb->opal_id,
551 OPAL_EEH_ACTION_SET_FREEZE_ALL);
552 if (rc != OPAL_SUCCESS)
553 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
554 __func__, rc, phb->hose->global_number,
559 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
561 struct pnv_ioda_pe *pe, *slave;
565 pe = &phb->ioda.pe_array[pe_no];
566 if (pe->flags & PNV_IODA_PE_SLAVE) {
568 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
569 pe_no = pe->pe_number;
572 /* Clear frozen state for master PE */
573 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
574 if (rc != OPAL_SUCCESS) {
575 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
576 __func__, rc, opt, phb->hose->global_number, pe_no);
580 if (!(pe->flags & PNV_IODA_PE_MASTER))
583 /* Clear frozen state for slave PEs */
584 list_for_each_entry(slave, &pe->slaves, list) {
585 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
588 if (rc != OPAL_SUCCESS) {
589 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
590 __func__, rc, opt, phb->hose->global_number,
599 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
601 struct pnv_ioda_pe *slave, *pe;
602 u8 fstate = 0, state;
606 /* Sanity check on PE number */
607 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
608 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
611 * Fetch the master PE and the PE instance might be
612 * not initialized yet.
614 pe = &phb->ioda.pe_array[pe_no];
615 if (pe->flags & PNV_IODA_PE_SLAVE) {
617 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
618 pe_no = pe->pe_number;
621 /* Check the master PE */
622 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
623 &state, &pcierr, NULL);
624 if (rc != OPAL_SUCCESS) {
625 pr_warn("%s: Failure %lld getting "
626 "PHB#%x-PE#%x state\n",
628 phb->hose->global_number, pe_no);
629 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
632 /* Check the slave PE */
633 if (!(pe->flags & PNV_IODA_PE_MASTER))
636 list_for_each_entry(slave, &pe->slaves, list) {
637 rc = opal_pci_eeh_freeze_status(phb->opal_id,
642 if (rc != OPAL_SUCCESS) {
643 pr_warn("%s: Failure %lld getting "
644 "PHB#%x-PE#%x state\n",
646 phb->hose->global_number, slave->pe_number);
647 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
651 * Override the result based on the ascending
661 /* Currently those 2 are only used when MSIs are enabled, this will change
662 * but in the meantime, we need to protect them to avoid warnings
664 #ifdef CONFIG_PCI_MSI
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
667 struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 struct pnv_phb *phb = hose->private_data;
669 struct pci_dn *pdn = pci_get_pdn(dev);
673 if (pdn->pe_number == IODA_INVALID_PE)
675 return &phb->ioda.pe_array[pdn->pe_number];
677 #endif /* CONFIG_PCI_MSI */
679 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
680 struct pnv_ioda_pe *parent,
681 struct pnv_ioda_pe *child,
684 const char *desc = is_add ? "adding" : "removing";
685 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
686 OPAL_REMOVE_PE_FROM_DOMAIN;
687 struct pnv_ioda_pe *slave;
690 /* Parent PE affects child PE */
691 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
692 child->pe_number, op);
693 if (rc != OPAL_SUCCESS) {
694 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
699 if (!(child->flags & PNV_IODA_PE_MASTER))
702 /* Compound case: parent PE affects slave PEs */
703 list_for_each_entry(slave, &child->slaves, list) {
704 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705 slave->pe_number, op);
706 if (rc != OPAL_SUCCESS) {
707 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
716 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
717 struct pnv_ioda_pe *pe,
720 struct pnv_ioda_pe *slave;
721 struct pci_dev *pdev = NULL;
725 * Clear PE frozen state. If it's master PE, we need
726 * clear slave PE frozen state as well.
729 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
730 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
731 if (pe->flags & PNV_IODA_PE_MASTER) {
732 list_for_each_entry(slave, &pe->slaves, list)
733 opal_pci_eeh_freeze_clear(phb->opal_id,
735 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
740 * Associate PE in PELT. We need add the PE into the
741 * corresponding PELT-V as well. Otherwise, the error
742 * originated from the PE might contribute to other
745 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
749 /* For compound PEs, any one affects all of them */
750 if (pe->flags & PNV_IODA_PE_MASTER) {
751 list_for_each_entry(slave, &pe->slaves, list) {
752 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
758 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
759 pdev = pe->pbus->self;
760 else if (pe->flags & PNV_IODA_PE_DEV)
761 pdev = pe->pdev->bus->self;
762 #ifdef CONFIG_PCI_IOV
763 else if (pe->flags & PNV_IODA_PE_VF)
764 pdev = pe->parent_dev;
765 #endif /* CONFIG_PCI_IOV */
767 struct pci_dn *pdn = pci_get_pdn(pdev);
768 struct pnv_ioda_pe *parent;
770 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
771 parent = &phb->ioda.pe_array[pdn->pe_number];
772 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
777 pdev = pdev->bus->self;
783 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
785 struct pci_dev *parent;
786 uint8_t bcomp, dcomp, fcomp;
790 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
794 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
795 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
796 parent = pe->pbus->self;
797 if (pe->flags & PNV_IODA_PE_BUS_ALL)
798 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
803 case 1: bcomp = OpalPciBusAll; break;
804 case 2: bcomp = OpalPciBus7Bits; break;
805 case 4: bcomp = OpalPciBus6Bits; break;
806 case 8: bcomp = OpalPciBus5Bits; break;
807 case 16: bcomp = OpalPciBus4Bits; break;
808 case 32: bcomp = OpalPciBus3Bits; break;
810 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
812 /* Do an exact match only */
813 bcomp = OpalPciBusAll;
815 rid_end = pe->rid + (count << 8);
817 #ifdef CONFIG_PCI_IOV
818 if (pe->flags & PNV_IODA_PE_VF)
819 parent = pe->parent_dev;
822 parent = pe->pdev->bus->self;
823 bcomp = OpalPciBusAll;
824 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
825 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
826 rid_end = pe->rid + 1;
829 /* Clear the reverse map */
830 for (rid = pe->rid; rid < rid_end; rid++)
831 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
833 /* Release from all parents PELT-V */
835 struct pci_dn *pdn = pci_get_pdn(parent);
836 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
837 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
838 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
839 /* XXX What to do in case of error ? */
841 parent = parent->bus->self;
844 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
847 /* Disassociate PE in PELT */
848 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
849 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
851 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
852 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
853 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
855 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
859 #ifdef CONFIG_PCI_IOV
860 pe->parent_dev = NULL;
866 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
868 struct pci_dev *parent;
869 uint8_t bcomp, dcomp, fcomp;
870 long rc, rid_end, rid;
872 /* Bus validation ? */
876 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
877 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
878 parent = pe->pbus->self;
879 if (pe->flags & PNV_IODA_PE_BUS_ALL)
880 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
885 case 1: bcomp = OpalPciBusAll; break;
886 case 2: bcomp = OpalPciBus7Bits; break;
887 case 4: bcomp = OpalPciBus6Bits; break;
888 case 8: bcomp = OpalPciBus5Bits; break;
889 case 16: bcomp = OpalPciBus4Bits; break;
890 case 32: bcomp = OpalPciBus3Bits; break;
892 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
894 /* Do an exact match only */
895 bcomp = OpalPciBusAll;
897 rid_end = pe->rid + (count << 8);
899 #ifdef CONFIG_PCI_IOV
900 if (pe->flags & PNV_IODA_PE_VF)
901 parent = pe->parent_dev;
903 #endif /* CONFIG_PCI_IOV */
904 parent = pe->pdev->bus->self;
905 bcomp = OpalPciBusAll;
906 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
907 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
908 rid_end = pe->rid + 1;
912 * Associate PE in PELT. We need add the PE into the
913 * corresponding PELT-V as well. Otherwise, the error
914 * originated from the PE might contribute to other
917 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
918 bcomp, dcomp, fcomp, OPAL_MAP_PE);
920 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
925 * Configure PELTV. NPUs don't have a PELTV table so skip
926 * configuration on them.
928 if (phb->type != PNV_PHB_NPU)
929 pnv_ioda_set_peltv(phb, pe, true);
931 /* Setup reverse map */
932 for (rid = pe->rid; rid < rid_end; rid++)
933 phb->ioda.pe_rmap[rid] = pe->pe_number;
935 /* Setup one MVTs on IODA1 */
936 if (phb->type != PNV_PHB_IODA1) {
941 pe->mve_number = pe->pe_number;
942 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
943 if (rc != OPAL_SUCCESS) {
944 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
948 rc = opal_pci_set_mve_enable(phb->opal_id,
949 pe->mve_number, OPAL_ENABLE_MVE);
951 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
961 #ifdef CONFIG_PCI_IOV
962 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
964 struct pci_dn *pdn = pci_get_pdn(dev);
966 struct resource *res, res2;
967 resource_size_t size;
974 * "offset" is in VFs. The M64 windows are sized so that when they
975 * are segmented, each segment is the same size as the IOV BAR.
976 * Each segment is in a separate PE, and the high order bits of the
977 * address are the PE number. Therefore, each VF's BAR is in a
978 * separate PE, and changing the IOV BAR start address changes the
979 * range of PEs the VFs are in.
981 num_vfs = pdn->num_vfs;
982 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
983 res = &dev->resource[i + PCI_IOV_RESOURCES];
984 if (!res->flags || !res->parent)
988 * The actual IOV BAR range is determined by the start address
989 * and the actual size for num_vfs VFs BAR. This check is to
990 * make sure that after shifting, the range will not overlap
991 * with another device.
993 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
994 res2.flags = res->flags;
995 res2.start = res->start + (size * offset);
996 res2.end = res2.start + (size * num_vfs) - 1;
998 if (res2.end > res->end) {
999 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1000 i, &res2, res, num_vfs, offset);
1006 * After doing so, there would be a "hole" in the /proc/iomem when
1007 * offset is a positive value. It looks like the device return some
1008 * mmio back to the system, which actually no one could use it.
1010 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 if (!res->flags || !res->parent)
1015 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1017 res->start += size * offset;
1019 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 i, &res2, res, (offset > 0) ? "En" : "Dis",
1022 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1026 #endif /* CONFIG_PCI_IOV */
1028 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1030 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1031 struct pnv_phb *phb = hose->private_data;
1032 struct pci_dn *pdn = pci_get_pdn(dev);
1033 struct pnv_ioda_pe *pe;
1036 pr_err("%s: Device tree node not associated properly\n",
1040 if (pdn->pe_number != IODA_INVALID_PE)
1043 pe = pnv_ioda_alloc_pe(phb);
1045 pr_warning("%s: Not enough PE# available, disabling device\n",
1050 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1051 * pointer in the PE data structure, both should be destroyed at the
1052 * same time. However, this needs to be looked at more closely again
1053 * once we actually start removing things (Hotplug, SR-IOV, ...)
1055 * At some point we want to remove the PDN completely anyways
1059 pdn->pe_number = pe->pe_number;
1060 pe->flags = PNV_IODA_PE_DEV;
1063 pe->mve_number = -1;
1064 pe->rid = dev->bus->number << 8 | pdn->devfn;
1066 pe_info(pe, "Associated device to PE\n");
1068 if (pnv_ioda_configure_pe(phb, pe)) {
1069 /* XXX What do we do here ? */
1070 pnv_ioda_free_pe(pe);
1071 pdn->pe_number = IODA_INVALID_PE;
1077 /* Put PE to the list */
1078 list_add_tail(&pe->list, &phb->ioda.pe_list);
1083 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1085 struct pci_dev *dev;
1087 list_for_each_entry(dev, &bus->devices, bus_list) {
1088 struct pci_dn *pdn = pci_get_pdn(dev);
1091 pr_warn("%s: No device node associated with device !\n",
1097 * In partial hotplug case, the PCI device might be still
1098 * associated with the PE and needn't attach it to the PE
1101 if (pdn->pe_number != IODA_INVALID_PE)
1106 pdn->pe_number = pe->pe_number;
1107 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1113 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1114 * single PCI bus. Another one that contains the primary PCI bus and its
1115 * subordinate PCI devices and buses. The second type of PE is normally
1116 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1118 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1120 struct pci_controller *hose = pci_bus_to_host(bus);
1121 struct pnv_phb *phb = hose->private_data;
1122 struct pnv_ioda_pe *pe = NULL;
1123 unsigned int pe_num;
1126 * In partial hotplug case, the PE instance might be still alive.
1127 * We should reuse it instead of allocating a new one.
1129 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1130 if (pe_num != IODA_INVALID_PE) {
1131 pe = &phb->ioda.pe_array[pe_num];
1132 pnv_ioda_setup_same_PE(bus, pe);
1136 /* PE number for root bus should have been reserved */
1137 if (pci_is_root_bus(bus) &&
1138 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1139 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1141 /* Check if PE is determined by M64 */
1142 if (!pe && phb->pick_m64_pe)
1143 pe = phb->pick_m64_pe(bus, all);
1145 /* The PE number isn't pinned by M64 */
1147 pe = pnv_ioda_alloc_pe(phb);
1150 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1151 __func__, pci_domain_nr(bus), bus->number);
1155 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1158 pe->mve_number = -1;
1159 pe->rid = bus->busn_res.start << 8;
1162 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1163 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1165 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1166 bus->busn_res.start, pe->pe_number);
1168 if (pnv_ioda_configure_pe(phb, pe)) {
1169 /* XXX What do we do here ? */
1170 pnv_ioda_free_pe(pe);
1175 /* Associate it with all child devices */
1176 pnv_ioda_setup_same_PE(bus, pe);
1178 /* Put PE to the list */
1179 list_add_tail(&pe->list, &phb->ioda.pe_list);
1184 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1186 int pe_num, found_pe = false, rc;
1188 struct pnv_ioda_pe *pe;
1189 struct pci_dev *gpu_pdev;
1190 struct pci_dn *npu_pdn;
1191 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1192 struct pnv_phb *phb = hose->private_data;
1195 * Due to a hardware errata PE#0 on the NPU is reserved for
1196 * error handling. This means we only have three PEs remaining
1197 * which need to be assigned to four links, implying some
1198 * links must share PEs.
1200 * To achieve this we assign PEs such that NPUs linking the
1201 * same GPU get assigned the same PE.
1203 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205 pe = &phb->ioda.pe_array[pe_num];
1209 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1211 * This device has the same peer GPU so should
1212 * be assigned the same PE as the existing
1215 dev_info(&npu_pdev->dev,
1216 "Associating to existing PE %d\n", pe_num);
1217 pci_dev_get(npu_pdev);
1218 npu_pdn = pci_get_pdn(npu_pdev);
1219 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1220 npu_pdn->pcidev = npu_pdev;
1221 npu_pdn->pe_number = pe_num;
1222 phb->ioda.pe_rmap[rid] = pe->pe_number;
1224 /* Map the PE to this link */
1225 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1227 OPAL_COMPARE_RID_DEVICE_NUMBER,
1228 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1230 WARN_ON(rc != OPAL_SUCCESS);
1238 * Could not find an existing PE so allocate a new
1241 return pnv_ioda_setup_dev_PE(npu_pdev);
1246 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1248 struct pci_dev *pdev;
1250 list_for_each_entry(pdev, &bus->devices, bus_list)
1251 pnv_ioda_setup_npu_PE(pdev);
1254 static void pnv_pci_ioda_setup_PEs(void)
1256 struct pci_controller *hose, *tmp;
1257 struct pnv_phb *phb;
1259 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260 phb = hose->private_data;
1261 if (phb->type == PNV_PHB_NPU) {
1262 /* PE#0 is needed for error reporting */
1263 pnv_ioda_reserve_pe(phb, 0);
1264 pnv_ioda_setup_npu_PEs(hose->bus);
1269 #ifdef CONFIG_PCI_IOV
1270 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1272 struct pci_bus *bus;
1273 struct pci_controller *hose;
1274 struct pnv_phb *phb;
1280 hose = pci_bus_to_host(bus);
1281 phb = hose->private_data;
1282 pdn = pci_get_pdn(pdev);
1284 if (pdn->m64_single_mode)
1289 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1290 for (j = 0; j < m64_bars; j++) {
1291 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1293 opal_pci_phb_mmio_enable(phb->opal_id,
1294 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1295 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1296 pdn->m64_map[j][i] = IODA_INVALID_M64;
1299 kfree(pdn->m64_map);
1303 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1305 struct pci_bus *bus;
1306 struct pci_controller *hose;
1307 struct pnv_phb *phb;
1310 struct resource *res;
1314 resource_size_t size, start;
1319 hose = pci_bus_to_host(bus);
1320 phb = hose->private_data;
1321 pdn = pci_get_pdn(pdev);
1322 total_vfs = pci_sriov_get_totalvfs(pdev);
1324 if (pdn->m64_single_mode)
1329 pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1332 /* Initialize the m64_map to IODA_INVALID_M64 */
1333 for (i = 0; i < m64_bars ; i++)
1334 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1335 pdn->m64_map[i][j] = IODA_INVALID_M64;
1338 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1339 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1340 if (!res->flags || !res->parent)
1343 for (j = 0; j < m64_bars; j++) {
1345 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1346 phb->ioda.m64_bar_idx + 1, 0);
1348 if (win >= phb->ioda.m64_bar_idx + 1)
1350 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1352 pdn->m64_map[j][i] = win;
1354 if (pdn->m64_single_mode) {
1355 size = pci_iov_resource_size(pdev,
1356 PCI_IOV_RESOURCES + i);
1357 start = res->start + size * j;
1359 size = resource_size(res);
1363 /* Map the M64 here */
1364 if (pdn->m64_single_mode) {
1365 pe_num = pdn->pe_num_map[j];
1366 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1367 pe_num, OPAL_M64_WINDOW_TYPE,
1368 pdn->m64_map[j][i], 0);
1371 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1372 OPAL_M64_WINDOW_TYPE,
1379 if (rc != OPAL_SUCCESS) {
1380 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1385 if (pdn->m64_single_mode)
1386 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1387 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1389 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1390 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1392 if (rc != OPAL_SUCCESS) {
1393 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1402 pnv_pci_vf_release_m64(pdev, num_vfs);
1406 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1408 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1410 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1412 struct iommu_table *tbl;
1415 tbl = pe->table_group.tables[0];
1416 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1418 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1420 pnv_pci_ioda2_set_bypass(pe, false);
1421 if (pe->table_group.group) {
1422 iommu_group_put(pe->table_group.group);
1423 BUG_ON(pe->table_group.group);
1425 pnv_pci_ioda2_table_free_pages(tbl);
1426 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1429 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1431 struct pci_bus *bus;
1432 struct pci_controller *hose;
1433 struct pnv_phb *phb;
1434 struct pnv_ioda_pe *pe, *pe_n;
1438 hose = pci_bus_to_host(bus);
1439 phb = hose->private_data;
1440 pdn = pci_get_pdn(pdev);
1442 if (!pdev->is_physfn)
1445 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1446 if (pe->parent_dev != pdev)
1449 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1451 /* Remove from list */
1452 mutex_lock(&phb->ioda.pe_list_mutex);
1453 list_del(&pe->list);
1454 mutex_unlock(&phb->ioda.pe_list_mutex);
1456 pnv_ioda_deconfigure_pe(phb, pe);
1458 pnv_ioda_free_pe(pe);
1462 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1464 struct pci_bus *bus;
1465 struct pci_controller *hose;
1466 struct pnv_phb *phb;
1467 struct pnv_ioda_pe *pe;
1469 struct pci_sriov *iov;
1473 hose = pci_bus_to_host(bus);
1474 phb = hose->private_data;
1475 pdn = pci_get_pdn(pdev);
1477 num_vfs = pdn->num_vfs;
1479 /* Release VF PEs */
1480 pnv_ioda_release_vf_PE(pdev);
1482 if (phb->type == PNV_PHB_IODA2) {
1483 if (!pdn->m64_single_mode)
1484 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1486 /* Release M64 windows */
1487 pnv_pci_vf_release_m64(pdev, num_vfs);
1489 /* Release PE numbers */
1490 if (pdn->m64_single_mode) {
1491 for (i = 0; i < num_vfs; i++) {
1492 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1495 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496 pnv_ioda_free_pe(pe);
1499 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500 /* Releasing pe_num_map */
1501 kfree(pdn->pe_num_map);
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506 struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1509 struct pci_bus *bus;
1510 struct pci_controller *hose;
1511 struct pnv_phb *phb;
1512 struct pnv_ioda_pe *pe;
1518 hose = pci_bus_to_host(bus);
1519 phb = hose->private_data;
1520 pdn = pci_get_pdn(pdev);
1522 if (!pdev->is_physfn)
1525 /* Reserve PE for each VF */
1526 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
1528 int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
1529 struct pci_dn *vf_pdn;
1531 if (pdn->m64_single_mode)
1532 pe_num = pdn->pe_num_map[vf_index];
1534 pe_num = *pdn->pe_num_map + vf_index;
1536 pe = &phb->ioda.pe_array[pe_num];
1537 pe->pe_number = pe_num;
1539 pe->flags = PNV_IODA_PE_VF;
1541 pe->parent_dev = pdev;
1542 pe->mve_number = -1;
1543 pe->rid = (vf_bus << 8) | vf_devfn;
1545 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1546 hose->global_number, pdev->bus->number,
1547 PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
1549 if (pnv_ioda_configure_pe(phb, pe)) {
1550 /* XXX What do we do here ? */
1551 pnv_ioda_free_pe(pe);
1556 /* Put PE to the list */
1557 mutex_lock(&phb->ioda.pe_list_mutex);
1558 list_add_tail(&pe->list, &phb->ioda.pe_list);
1559 mutex_unlock(&phb->ioda.pe_list_mutex);
1561 /* associate this pe to it's pdn */
1562 list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
1563 if (vf_pdn->busno == vf_bus &&
1564 vf_pdn->devfn == vf_devfn) {
1565 vf_pdn->pe_number = pe_num;
1570 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1574 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1576 struct pci_bus *bus;
1577 struct pci_controller *hose;
1578 struct pnv_phb *phb;
1579 struct pnv_ioda_pe *pe;
1585 hose = pci_bus_to_host(bus);
1586 phb = hose->private_data;
1587 pdn = pci_get_pdn(pdev);
1589 if (phb->type == PNV_PHB_IODA2) {
1590 if (!pdn->vfs_expanded) {
1591 dev_info(&pdev->dev, "don't support this SRIOV device"
1592 " with non 64bit-prefetchable IOV BAR\n");
1597 * When M64 BARs functions in Single PE mode, the number of VFs
1598 * could be enabled must be less than the number of M64 BARs.
1600 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1601 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1605 /* Allocating pe_num_map */
1606 if (pdn->m64_single_mode)
1607 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1610 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1612 if (!pdn->pe_num_map)
1615 if (pdn->m64_single_mode)
1616 for (i = 0; i < num_vfs; i++)
1617 pdn->pe_num_map[i] = IODA_INVALID_PE;
1619 /* Calculate available PE for required VFs */
1620 if (pdn->m64_single_mode) {
1621 for (i = 0; i < num_vfs; i++) {
1622 pe = pnv_ioda_alloc_pe(phb);
1628 pdn->pe_num_map[i] = pe->pe_number;
1631 mutex_lock(&phb->ioda.pe_alloc_mutex);
1632 *pdn->pe_num_map = bitmap_find_next_zero_area(
1633 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1635 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1636 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1637 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1638 kfree(pdn->pe_num_map);
1641 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1642 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1644 pdn->num_vfs = num_vfs;
1646 /* Assign M64 window accordingly */
1647 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1649 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1654 * When using one M64 BAR to map one IOV BAR, we need to shift
1655 * the IOV BAR according to the PE# allocated to the VFs.
1656 * Otherwise, the PE# for the VF will conflict with others.
1658 if (!pdn->m64_single_mode) {
1659 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1666 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1671 if (pdn->m64_single_mode) {
1672 for (i = 0; i < num_vfs; i++) {
1673 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1676 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1677 pnv_ioda_free_pe(pe);
1680 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1682 /* Releasing pe_num_map */
1683 kfree(pdn->pe_num_map);
1688 int pcibios_sriov_disable(struct pci_dev *pdev)
1690 pnv_pci_sriov_disable(pdev);
1692 /* Release PCI data */
1693 remove_dev_pci_data(pdev);
1697 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1699 /* Allocate PCI data */
1700 add_dev_pci_data(pdev);
1702 return pnv_pci_sriov_enable(pdev, num_vfs);
1704 #endif /* CONFIG_PCI_IOV */
1706 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1708 struct pci_dn *pdn = pci_get_pdn(pdev);
1709 struct pnv_ioda_pe *pe;
1712 * The function can be called while the PE#
1713 * hasn't been assigned. Do nothing for the
1716 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1719 pe = &phb->ioda.pe_array[pdn->pe_number];
1720 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1721 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1722 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1724 * Note: iommu_add_device() will fail here as
1725 * for physical PE: the device is already added by now;
1726 * for virtual PE: sysfs entries are not ready yet and
1727 * tce_iommu_bus_notifier will add the device to a group later.
1731 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1733 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1734 struct pnv_phb *phb = hose->private_data;
1735 struct pci_dn *pdn = pci_get_pdn(pdev);
1736 struct pnv_ioda_pe *pe;
1738 bool bypass = false;
1740 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1743 pe = &phb->ioda.pe_array[pdn->pe_number];
1744 if (pe->tce_bypass_enabled) {
1745 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1746 bypass = (dma_mask >= top);
1750 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1751 set_dma_ops(&pdev->dev, &dma_direct_ops);
1753 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1754 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1756 *pdev->dev.dma_mask = dma_mask;
1758 /* Update peer npu devices */
1759 pnv_npu_try_dma_set_bypass(pdev, bypass);
1764 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1766 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1767 struct pnv_phb *phb = hose->private_data;
1768 struct pci_dn *pdn = pci_get_pdn(pdev);
1769 struct pnv_ioda_pe *pe;
1772 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1775 pe = &phb->ioda.pe_array[pdn->pe_number];
1776 if (!pe->tce_bypass_enabled)
1777 return __dma_get_required_mask(&pdev->dev);
1780 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1781 mask = 1ULL << (fls64(end) - 1);
1787 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1788 struct pci_bus *bus)
1790 struct pci_dev *dev;
1792 list_for_each_entry(dev, &bus->devices, bus_list) {
1793 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1794 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1795 iommu_add_device(&dev->dev);
1797 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1798 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1802 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1805 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1806 (phb->regs + 0x210);
1809 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1810 unsigned long index, unsigned long npages, bool rm)
1812 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1813 &tbl->it_group_list, struct iommu_table_group_link,
1815 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1816 struct pnv_ioda_pe, table_group);
1817 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1818 unsigned long start, end, inc;
1820 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1821 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1824 /* p7ioc-style invalidation, 2 TCEs per write */
1825 start |= (1ull << 63);
1826 end |= (1ull << 63);
1828 end |= inc - 1; /* round up end to be different than start */
1830 mb(); /* Ensure above stores are visible */
1831 while (start <= end) {
1833 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1835 __raw_writeq(cpu_to_be64(start), invalidate);
1840 * The iommu layer will do another mb() for us on build()
1841 * and we don't care on free()
1845 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1846 long npages, unsigned long uaddr,
1847 enum dma_data_direction direction,
1848 unsigned long attrs)
1850 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1854 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1859 #ifdef CONFIG_IOMMU_API
1860 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1861 unsigned long *hpa, enum dma_data_direction *direction)
1863 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1866 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1872 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1875 pnv_tce_free(tbl, index, npages);
1877 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1880 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1881 .set = pnv_ioda1_tce_build,
1882 #ifdef CONFIG_IOMMU_API
1883 .exchange = pnv_ioda1_tce_xchg,
1885 .clear = pnv_ioda1_tce_free,
1889 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1890 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1891 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1893 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1895 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1896 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1898 mb(); /* Ensure previous TCE table stores are visible */
1900 __raw_rm_writeq(cpu_to_be64(val), invalidate);
1902 __raw_writeq(cpu_to_be64(val), invalidate);
1905 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1907 /* 01xb - invalidate TCEs that match the specified PE# */
1908 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1909 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1911 mb(); /* Ensure above stores are visible */
1912 __raw_writeq(cpu_to_be64(val), invalidate);
1915 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1916 unsigned shift, unsigned long index,
1917 unsigned long npages)
1919 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1920 unsigned long start, end, inc;
1922 /* We'll invalidate DMA address in PE scope */
1923 start = PHB3_TCE_KILL_INVAL_ONE;
1924 start |= (pe->pe_number & 0xFF);
1927 /* Figure out the start, end and step */
1928 start |= (index << shift);
1929 end |= ((index + npages - 1) << shift);
1930 inc = (0x1ull << shift);
1933 while (start <= end) {
1935 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1937 __raw_writeq(cpu_to_be64(start), invalidate);
1942 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1944 struct pnv_phb *phb = pe->phb;
1946 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1947 pnv_pci_phb3_tce_invalidate_pe(pe);
1949 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1950 pe->pe_number, 0, 0, 0);
1953 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1954 unsigned long index, unsigned long npages, bool rm)
1956 struct iommu_table_group_link *tgl;
1958 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1959 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1960 struct pnv_ioda_pe, table_group);
1961 struct pnv_phb *phb = pe->phb;
1962 unsigned int shift = tbl->it_page_shift;
1964 if (phb->type == PNV_PHB_NPU) {
1966 * The NVLink hardware does not support TCE kill
1967 * per TCE entry so we have to invalidate
1968 * the entire cache for it.
1970 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1973 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1974 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1977 opal_rm_pci_tce_kill(phb->opal_id,
1978 OPAL_PCI_TCE_KILL_PAGES,
1979 pe->pe_number, 1u << shift,
1980 index << shift, npages);
1982 opal_pci_tce_kill(phb->opal_id,
1983 OPAL_PCI_TCE_KILL_PAGES,
1984 pe->pe_number, 1u << shift,
1985 index << shift, npages);
1989 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1990 long npages, unsigned long uaddr,
1991 enum dma_data_direction direction,
1992 unsigned long attrs)
1994 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1998 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2003 #ifdef CONFIG_IOMMU_API
2004 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2005 unsigned long *hpa, enum dma_data_direction *direction)
2007 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2010 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2016 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2019 pnv_tce_free(tbl, index, npages);
2021 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2024 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2026 pnv_pci_ioda2_table_free_pages(tbl);
2027 iommu_free_table(tbl, "pnv");
2030 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2031 .set = pnv_ioda2_tce_build,
2032 #ifdef CONFIG_IOMMU_API
2033 .exchange = pnv_ioda2_tce_xchg,
2035 .clear = pnv_ioda2_tce_free,
2037 .free = pnv_ioda2_table_free,
2040 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2042 unsigned int *weight = (unsigned int *)data;
2044 /* This is quite simplistic. The "base" weight of a device
2045 * is 10. 0 means no DMA is to be accounted for it.
2047 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2050 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2051 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2052 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2054 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2062 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2064 unsigned int weight = 0;
2066 /* SRIOV VF has same DMA32 weight as its PF */
2067 #ifdef CONFIG_PCI_IOV
2068 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2069 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2074 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2075 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2076 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2077 struct pci_dev *pdev;
2079 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2080 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2081 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2082 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2088 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2089 struct pnv_ioda_pe *pe)
2092 struct page *tce_mem = NULL;
2093 struct iommu_table *tbl;
2094 unsigned int weight, total_weight = 0;
2095 unsigned int tce32_segsz, base, segs, avail, i;
2099 /* XXX FIXME: Handle 64-bit only DMA devices */
2100 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2101 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2102 weight = pnv_pci_ioda_pe_dma_weight(pe);
2106 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2108 segs = (weight * phb->ioda.dma32_count) / total_weight;
2113 * Allocate contiguous DMA32 segments. We begin with the expected
2114 * number of segments. With one more attempt, the number of DMA32
2115 * segments to be allocated is decreased by one until one segment
2116 * is allocated successfully.
2119 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2120 for (avail = 0, i = base; i < base + segs; i++) {
2121 if (phb->ioda.dma32_segmap[i] ==
2132 pe_warn(pe, "No available DMA32 segments\n");
2137 tbl = pnv_pci_table_alloc(phb->hose->node);
2138 iommu_register_group(&pe->table_group, phb->hose->global_number,
2140 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2142 /* Grab a 32-bit TCE table */
2143 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2144 weight, total_weight, base, segs);
2145 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2146 base * PNV_IODA1_DMA32_SEGSIZE,
2147 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2149 /* XXX Currently, we allocate one big contiguous table for the
2150 * TCEs. We only really need one chunk per 256M of TCE space
2151 * (ie per segment) but that's an optimization for later, it
2152 * requires some added smarts with our get/put_tce implementation
2154 * Each TCE page is 4KB in size and each TCE entry occupies 8
2157 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2158 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2159 get_order(tce32_segsz * segs));
2161 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2164 addr = page_address(tce_mem);
2165 memset(addr, 0, tce32_segsz * segs);
2168 for (i = 0; i < segs; i++) {
2169 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2172 __pa(addr) + tce32_segsz * i,
2173 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2175 pe_err(pe, " Failed to configure 32-bit TCE table,"
2181 /* Setup DMA32 segment mapping */
2182 for (i = base; i < base + segs; i++)
2183 phb->ioda.dma32_segmap[i] = pe->pe_number;
2185 /* Setup linux iommu table */
2186 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2187 base * PNV_IODA1_DMA32_SEGSIZE,
2188 IOMMU_PAGE_SHIFT_4K);
2190 tbl->it_ops = &pnv_ioda1_iommu_ops;
2191 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2192 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2193 iommu_init_table(tbl, phb->hose->node);
2195 if (pe->flags & PNV_IODA_PE_DEV) {
2197 * Setting table base here only for carrying iommu_group
2198 * further down to let iommu_add_device() do the job.
2199 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2201 set_iommu_table_base(&pe->pdev->dev, tbl);
2202 iommu_add_device(&pe->pdev->dev);
2203 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2204 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2208 /* XXX Failure: Try to fallback to 64-bit only ? */
2210 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2212 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2213 iommu_free_table(tbl, "pnv");
2217 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2218 int num, struct iommu_table *tbl)
2220 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2222 struct pnv_phb *phb = pe->phb;
2224 const unsigned long size = tbl->it_indirect_levels ?
2225 tbl->it_level_size : tbl->it_size;
2226 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2227 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2229 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2230 start_addr, start_addr + win_size - 1,
2231 IOMMU_PAGE_SIZE(tbl));
2234 * Map TCE table through TVT. The TVE index is the PE number
2235 * shifted by 1 bit for 32-bits DMA space.
2237 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2239 (pe->pe_number << 1) + num,
2240 tbl->it_indirect_levels + 1,
2243 IOMMU_PAGE_SIZE(tbl));
2245 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2249 pnv_pci_link_table_and_group(phb->hose->node, num,
2250 tbl, &pe->table_group);
2251 pnv_pci_ioda2_tce_invalidate_pe(pe);
2256 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2258 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2261 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2263 phys_addr_t top = memblock_end_of_DRAM();
2265 top = roundup_pow_of_two(top);
2266 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2269 pe->tce_bypass_base,
2272 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2275 pe->tce_bypass_base,
2279 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2281 pe->tce_bypass_enabled = enable;
2284 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2285 __u32 page_shift, __u64 window_size, __u32 levels,
2286 struct iommu_table *tbl);
2288 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2289 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2290 struct iommu_table **ptbl)
2292 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2294 int nid = pe->phb->hose->node;
2295 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2297 struct iommu_table *tbl;
2299 tbl = pnv_pci_table_alloc(nid);
2303 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2304 bus_offset, page_shift, window_size,
2307 iommu_free_table(tbl, "pnv");
2311 tbl->it_ops = &pnv_ioda2_iommu_ops;
2318 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2320 struct iommu_table *tbl = NULL;
2324 * crashkernel= specifies the kdump kernel's maximum memory at
2325 * some offset and there is no guaranteed the result is a power
2326 * of 2, which will cause errors later.
2328 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2331 * In memory constrained environments, e.g. kdump kernel, the
2332 * DMA window can be larger than available memory, which will
2333 * cause errors later.
2335 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2337 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2338 IOMMU_PAGE_SHIFT_4K,
2340 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2342 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2347 iommu_init_table(tbl, pe->phb->hose->node);
2349 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2351 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2353 pnv_ioda2_table_free(tbl);
2357 if (!pnv_iommu_bypass_disabled)
2358 pnv_pci_ioda2_set_bypass(pe, true);
2361 * Setting table base here only for carrying iommu_group
2362 * further down to let iommu_add_device() do the job.
2363 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2365 if (pe->flags & PNV_IODA_PE_DEV)
2366 set_iommu_table_base(&pe->pdev->dev, tbl);
2371 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2372 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2375 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2377 struct pnv_phb *phb = pe->phb;
2380 pe_info(pe, "Removing DMA window #%d\n", num);
2382 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2383 (pe->pe_number << 1) + num,
2384 0/* levels */, 0/* table address */,
2385 0/* table size */, 0/* page size */);
2387 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2389 pnv_pci_ioda2_tce_invalidate_pe(pe);
2391 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2397 #ifdef CONFIG_IOMMU_API
2398 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2399 __u64 window_size, __u32 levels)
2401 unsigned long bytes = 0;
2402 const unsigned window_shift = ilog2(window_size);
2403 unsigned entries_shift = window_shift - page_shift;
2404 unsigned table_shift = entries_shift + 3;
2405 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2406 unsigned long direct_table_size;
2408 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2409 (window_size > memory_hotplug_max()) ||
2410 !is_power_of_2(window_size))
2413 /* Calculate a direct table size from window_size and levels */
2414 entries_shift = (entries_shift + levels - 1) / levels;
2415 table_shift = entries_shift + 3;
2416 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2417 direct_table_size = 1UL << table_shift;
2419 for ( ; levels; --levels) {
2420 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2422 tce_table_size /= direct_table_size;
2423 tce_table_size <<= 3;
2424 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2430 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2432 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2434 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2435 struct iommu_table *tbl = pe->table_group.tables[0];
2437 pnv_pci_ioda2_set_bypass(pe, false);
2438 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2439 pnv_ioda2_table_free(tbl);
2442 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2444 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2447 pnv_pci_ioda2_setup_default_config(pe);
2450 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2451 .get_table_size = pnv_pci_ioda2_get_table_size,
2452 .create_table = pnv_pci_ioda2_create_table,
2453 .set_window = pnv_pci_ioda2_set_window,
2454 .unset_window = pnv_pci_ioda2_unset_window,
2455 .take_ownership = pnv_ioda2_take_ownership,
2456 .release_ownership = pnv_ioda2_release_ownership,
2459 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2461 struct pci_controller *hose;
2462 struct pnv_phb *phb;
2463 struct pnv_ioda_pe **ptmppe = opaque;
2464 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2465 struct pci_dn *pdn = pci_get_pdn(pdev);
2467 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2470 hose = pci_bus_to_host(pdev->bus);
2471 phb = hose->private_data;
2472 if (phb->type != PNV_PHB_NPU)
2475 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2481 * This returns PE of associated NPU.
2482 * This assumes that NPU is in the same IOMMU group with GPU and there is
2485 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2486 struct iommu_table_group *table_group)
2488 struct pnv_ioda_pe *npe = NULL;
2489 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2490 gpe_table_group_to_npe_cb);
2492 BUG_ON(!ret || !npe);
2497 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2498 int num, struct iommu_table *tbl)
2500 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2505 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2507 pnv_pci_ioda2_unset_window(table_group, num);
2512 static long pnv_pci_ioda2_npu_unset_window(
2513 struct iommu_table_group *table_group,
2516 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2521 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2524 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2527 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2528 * the iommu_table if 32bit DMA is enabled.
2530 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2531 pnv_ioda2_take_ownership(table_group);
2534 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2535 .get_table_size = pnv_pci_ioda2_get_table_size,
2536 .create_table = pnv_pci_ioda2_create_table,
2537 .set_window = pnv_pci_ioda2_npu_set_window,
2538 .unset_window = pnv_pci_ioda2_npu_unset_window,
2539 .take_ownership = pnv_ioda2_npu_take_ownership,
2540 .release_ownership = pnv_ioda2_release_ownership,
2543 static void pnv_pci_ioda_setup_iommu_api(void)
2545 struct pci_controller *hose, *tmp;
2546 struct pnv_phb *phb;
2547 struct pnv_ioda_pe *pe, *gpe;
2550 * Now we have all PHBs discovered, time to add NPU devices to
2551 * the corresponding IOMMU groups.
2553 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2554 phb = hose->private_data;
2556 if (phb->type != PNV_PHB_NPU)
2559 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2560 gpe = pnv_pci_npu_setup_iommu(pe);
2562 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2566 #else /* !CONFIG_IOMMU_API */
2567 static void pnv_pci_ioda_setup_iommu_api(void) { };
2570 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2571 unsigned levels, unsigned long limit,
2572 unsigned long *current_offset, unsigned long *total_allocated)
2574 struct page *tce_mem = NULL;
2576 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2577 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2578 unsigned entries = 1UL << (shift - 3);
2581 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2583 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2586 addr = page_address(tce_mem);
2587 memset(addr, 0, allocated);
2588 *total_allocated += allocated;
2592 *current_offset += allocated;
2596 for (i = 0; i < entries; ++i) {
2597 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2598 levels, limit, current_offset, total_allocated);
2602 addr[i] = cpu_to_be64(__pa(tmp) |
2603 TCE_PCI_READ | TCE_PCI_WRITE);
2605 if (*current_offset >= limit)
2612 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2613 unsigned long size, unsigned level);
2615 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2616 __u32 page_shift, __u64 window_size, __u32 levels,
2617 struct iommu_table *tbl)
2620 unsigned long offset = 0, level_shift, total_allocated = 0;
2621 const unsigned window_shift = ilog2(window_size);
2622 unsigned entries_shift = window_shift - page_shift;
2623 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2624 const unsigned long tce_table_size = 1UL << table_shift;
2626 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2629 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2632 /* Adjust direct table size from window_size and levels */
2633 entries_shift = (entries_shift + levels - 1) / levels;
2634 level_shift = entries_shift + 3;
2635 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2637 if ((level_shift - 3) * levels + page_shift >= 55)
2640 /* Allocate TCE table */
2641 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2642 levels, tce_table_size, &offset, &total_allocated);
2644 /* addr==NULL means that the first level allocation failed */
2649 * First level was allocated but some lower level failed as
2650 * we did not allocate as much as we wanted,
2651 * release partially allocated table.
2653 if (offset < tce_table_size) {
2654 pnv_pci_ioda2_table_do_free_pages(addr,
2655 1ULL << (level_shift - 3), levels - 1);
2659 /* Setup linux iommu table */
2660 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2662 tbl->it_level_size = 1ULL << (level_shift - 3);
2663 tbl->it_indirect_levels = levels - 1;
2664 tbl->it_allocated_size = total_allocated;
2666 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2667 window_size, tce_table_size, bus_offset);
2672 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2673 unsigned long size, unsigned level)
2675 const unsigned long addr_ul = (unsigned long) addr &
2676 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2680 u64 *tmp = (u64 *) addr_ul;
2682 for (i = 0; i < size; ++i) {
2683 unsigned long hpa = be64_to_cpu(tmp[i]);
2685 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2688 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2693 free_pages(addr_ul, get_order(size << 3));
2696 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2698 const unsigned long size = tbl->it_indirect_levels ?
2699 tbl->it_level_size : tbl->it_size;
2704 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2705 tbl->it_indirect_levels);
2708 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2709 struct pnv_ioda_pe *pe)
2713 if (!pnv_pci_ioda_pe_dma_weight(pe))
2716 /* TVE #1 is selected by PCI address bit 59 */
2717 pe->tce_bypass_base = 1ull << 59;
2719 iommu_register_group(&pe->table_group, phb->hose->global_number,
2722 /* The PE will reserve all possible 32-bits space */
2723 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2724 phb->ioda.m32_pci_base);
2726 /* Setup linux iommu table */
2727 pe->table_group.tce32_start = 0;
2728 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2729 pe->table_group.max_dynamic_windows_supported =
2730 IOMMU_TABLE_GROUP_MAX_TABLES;
2731 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2732 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2733 #ifdef CONFIG_IOMMU_API
2734 pe->table_group.ops = &pnv_pci_ioda2_ops;
2737 rc = pnv_pci_ioda2_setup_default_config(pe);
2741 if (pe->flags & PNV_IODA_PE_DEV)
2742 iommu_add_device(&pe->pdev->dev);
2743 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2744 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2747 #ifdef CONFIG_PCI_MSI
2748 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2750 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2753 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2756 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2759 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2760 struct irq_chip *chip = irq_data_get_irq_chip(d);
2762 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2769 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2771 struct irq_data *idata;
2772 struct irq_chip *ichip;
2774 /* The MSI EOI OPAL call is only needed on PHB3 */
2775 if (phb->model != PNV_PHB_MODEL_PHB3)
2778 if (!phb->ioda.irq_chip_init) {
2780 * First time we setup an MSI IRQ, we need to setup the
2781 * corresponding IRQ chip to route correctly.
2783 idata = irq_get_irq_data(virq);
2784 ichip = irq_data_get_irq_chip(idata);
2785 phb->ioda.irq_chip_init = 1;
2786 phb->ioda.irq_chip = *ichip;
2787 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2789 irq_set_chip(virq, &phb->ioda.irq_chip);
2793 * Returns true iff chip is something that we could call
2794 * pnv_opal_pci_msi_eoi for.
2796 bool is_pnv_opal_msi(struct irq_chip *chip)
2798 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2800 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2802 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2803 unsigned int hwirq, unsigned int virq,
2804 unsigned int is_64, struct msi_msg *msg)
2806 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2807 unsigned int xive_num = hwirq - phb->msi_base;
2811 /* No PE assigned ? bail out ... no MSI for you ! */
2815 /* Check if we have an MVE */
2816 if (pe->mve_number < 0)
2819 /* Force 32-bit MSI on some broken devices */
2820 if (dev->no_64bit_msi)
2823 /* Assign XIVE to PE */
2824 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2826 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2827 pci_name(dev), rc, xive_num);
2834 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2837 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2841 msg->address_hi = be64_to_cpu(addr64) >> 32;
2842 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2846 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2849 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2853 msg->address_hi = 0;
2854 msg->address_lo = be32_to_cpu(addr32);
2856 msg->data = be32_to_cpu(data);
2858 pnv_set_msi_irq_chip(phb, virq);
2860 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2861 " address=%x_%08x data=%x PE# %d\n",
2862 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2863 msg->address_hi, msg->address_lo, data, pe->pe_number);
2868 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2871 const __be32 *prop = of_get_property(phb->hose->dn,
2872 "ibm,opal-msi-ranges", NULL);
2875 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2880 phb->msi_base = be32_to_cpup(prop);
2881 count = be32_to_cpup(prop + 1);
2882 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2883 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2884 phb->hose->global_number);
2888 phb->msi_setup = pnv_pci_ioda_msi_setup;
2889 phb->msi32_support = 1;
2890 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2891 count, phb->msi_base);
2894 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2895 #endif /* CONFIG_PCI_MSI */
2897 #ifdef CONFIG_PCI_IOV
2898 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2900 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2901 struct pnv_phb *phb = hose->private_data;
2902 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2903 struct resource *res;
2905 resource_size_t size, total_vf_bar_sz;
2909 if (!pdev->is_physfn || pdev->is_added)
2912 pdn = pci_get_pdn(pdev);
2913 pdn->vfs_expanded = 0;
2914 pdn->m64_single_mode = false;
2916 total_vfs = pci_sriov_get_totalvfs(pdev);
2917 mul = phb->ioda.total_pe_num;
2918 total_vf_bar_sz = 0;
2920 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2921 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2922 if (!res->flags || res->parent)
2924 if (!pnv_pci_is_m64_flags(res->flags)) {
2925 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2926 " non M64 VF BAR%d: %pR. \n",
2931 total_vf_bar_sz += pci_iov_resource_size(pdev,
2932 i + PCI_IOV_RESOURCES);
2935 * If bigger than quarter of M64 segment size, just round up
2938 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2939 * with other devices, IOV BAR size is expanded to be
2940 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2941 * segment size , the expanded size would equal to half of the
2942 * whole M64 space size, which will exhaust the M64 Space and
2943 * limit the system flexibility. This is a design decision to
2944 * set the boundary to quarter of the M64 segment size.
2946 if (total_vf_bar_sz > gate) {
2947 mul = roundup_pow_of_two(total_vfs);
2948 dev_info(&pdev->dev,
2949 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2950 total_vf_bar_sz, gate, mul);
2951 pdn->m64_single_mode = true;
2956 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2957 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2958 if (!res->flags || res->parent)
2961 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2963 * On PHB3, the minimum size alignment of M64 BAR in single
2966 if (pdn->m64_single_mode && (size < SZ_32M))
2968 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2969 res->end = res->start + size * mul - 1;
2970 dev_dbg(&pdev->dev, " %pR\n", res);
2971 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2974 pdn->vfs_expanded = mul;
2979 /* To save MMIO space, IOV BAR is truncated. */
2980 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2981 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2983 res->end = res->start - 1;
2986 #endif /* CONFIG_PCI_IOV */
2988 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2989 struct resource *res)
2991 struct pnv_phb *phb = pe->phb;
2992 struct pci_bus_region region;
2996 if (!res || !res->flags || res->start > res->end)
2999 if (res->flags & IORESOURCE_IO) {
3000 region.start = res->start - phb->ioda.io_pci_base;
3001 region.end = res->end - phb->ioda.io_pci_base;
3002 index = region.start / phb->ioda.io_segsize;
3004 while (index < phb->ioda.total_pe_num &&
3005 region.start <= region.end) {
3006 phb->ioda.io_segmap[index] = pe->pe_number;
3007 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3008 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3009 if (rc != OPAL_SUCCESS) {
3010 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3011 __func__, rc, index, pe->pe_number);
3015 region.start += phb->ioda.io_segsize;
3018 } else if ((res->flags & IORESOURCE_MEM) &&
3019 !pnv_pci_is_m64(phb, res)) {
3020 region.start = res->start -
3021 phb->hose->mem_offset[0] -
3022 phb->ioda.m32_pci_base;
3023 region.end = res->end -
3024 phb->hose->mem_offset[0] -
3025 phb->ioda.m32_pci_base;
3026 index = region.start / phb->ioda.m32_segsize;
3028 while (index < phb->ioda.total_pe_num &&
3029 region.start <= region.end) {
3030 phb->ioda.m32_segmap[index] = pe->pe_number;
3031 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3032 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3033 if (rc != OPAL_SUCCESS) {
3034 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3035 __func__, rc, index, pe->pe_number);
3039 region.start += phb->ioda.m32_segsize;
3046 * This function is supposed to be called on basis of PE from top
3047 * to bottom style. So the the I/O or MMIO segment assigned to
3048 * parent PE could be overrided by its child PEs if necessary.
3050 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3052 struct pci_dev *pdev;
3056 * NOTE: We only care PCI bus based PE for now. For PCI
3057 * device based PE, for example SRIOV sensitive VF should
3058 * be figured out later.
3060 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3062 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3063 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3064 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3067 * If the PE contains all subordinate PCI buses, the
3068 * windows of the child bridges should be mapped to
3071 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3073 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3074 pnv_ioda_setup_pe_res(pe,
3075 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3079 #ifdef CONFIG_DEBUG_FS
3080 static int pnv_pci_diag_data_set(void *data, u64 val)
3082 struct pci_controller *hose;
3083 struct pnv_phb *phb;
3089 hose = (struct pci_controller *)data;
3090 if (!hose || !hose->private_data)
3093 phb = hose->private_data;
3095 /* Retrieve the diag data from firmware */
3096 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
3097 PNV_PCI_DIAG_BUF_SIZE);
3098 if (ret != OPAL_SUCCESS)
3101 /* Print the diag data to the kernel log */
3102 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
3106 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3107 pnv_pci_diag_data_set, "%llu\n");
3109 #endif /* CONFIG_DEBUG_FS */
3111 static void pnv_pci_ioda_create_dbgfs(void)
3113 #ifdef CONFIG_DEBUG_FS
3114 struct pci_controller *hose, *tmp;
3115 struct pnv_phb *phb;
3118 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3119 phb = hose->private_data;
3121 /* Notify initialization of PHB done */
3122 phb->initialized = 1;
3124 sprintf(name, "PCI%04x", hose->global_number);
3125 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3127 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3128 __func__, hose->global_number);
3132 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3133 &pnv_pci_diag_data_fops);
3135 #endif /* CONFIG_DEBUG_FS */
3138 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3140 struct pci_dev *dev = bus->self;
3141 struct pci_bus *child;
3143 /* Empty bus ? bail */
3144 if (list_empty(&bus->devices))
3148 * If there's a bridge associated with that bus enable it. This works
3149 * around races in the generic code if the enabling is done during
3150 * parallel probing. This can be removed once those races have been
3154 int rc = pci_enable_device(dev);
3156 pci_err(dev, "Error enabling bridge (%d)\n", rc);
3157 pci_set_master(dev);
3160 /* Perform the same to child busses */
3161 list_for_each_entry(child, &bus->children, node)
3162 pnv_pci_enable_bridge(child);
3165 static void pnv_pci_enable_bridges(void)
3167 struct pci_controller *hose;
3169 list_for_each_entry(hose, &hose_list, list_node)
3170 pnv_pci_enable_bridge(hose->bus);
3173 static void pnv_pci_ioda_fixup(void)
3175 pnv_pci_ioda_setup_PEs();
3176 pnv_pci_ioda_setup_iommu_api();
3177 pnv_pci_ioda_create_dbgfs();
3179 pnv_pci_enable_bridges();
3183 eeh_addr_cache_build();
3188 * Returns the alignment for I/O or memory windows for P2P
3189 * bridges. That actually depends on how PEs are segmented.
3190 * For now, we return I/O or M32 segment size for PE sensitive
3191 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3192 * 1MiB for memory) will be returned.
3194 * The current PCI bus might be put into one PE, which was
3195 * create against the parent PCI bridge. For that case, we
3196 * needn't enlarge the alignment so that we can save some
3199 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3202 struct pci_dev *bridge;
3203 struct pci_controller *hose = pci_bus_to_host(bus);
3204 struct pnv_phb *phb = hose->private_data;
3205 int num_pci_bridges = 0;
3209 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3211 if (num_pci_bridges >= 2)
3215 bridge = bridge->bus->self;
3219 * We fall back to M32 if M64 isn't supported. We enforce the M64
3220 * alignment for any 64-bit resource, PCIe doesn't care and
3221 * bridges only do 64-bit prefetchable anyway.
3223 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3224 return phb->ioda.m64_segsize;
3225 if (type & IORESOURCE_MEM)
3226 return phb->ioda.m32_segsize;
3228 return phb->ioda.io_segsize;
3232 * We are updating root port or the upstream port of the
3233 * bridge behind the root port with PHB's windows in order
3234 * to accommodate the changes on required resources during
3235 * PCI (slot) hotplug, which is connected to either root
3236 * port or the downstream ports of PCIe switch behind the
3239 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3242 struct pci_controller *hose = pci_bus_to_host(bus);
3243 struct pnv_phb *phb = hose->private_data;
3244 struct pci_dev *bridge = bus->self;
3245 struct resource *r, *w;
3246 bool msi_region = false;
3249 /* Check if we need apply fixup to the bridge's windows */
3250 if (!pci_is_root_bus(bridge->bus) &&
3251 !pci_is_root_bus(bridge->bus->self->bus))
3254 /* Fixup the resources */
3255 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3256 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3257 if (!r->flags || !r->parent)
3261 if (r->flags & type & IORESOURCE_IO)
3262 w = &hose->io_resource;
3263 else if (pnv_pci_is_m64(phb, r) &&
3264 (type & IORESOURCE_PREFETCH) &&
3265 phb->ioda.m64_segsize)
3266 w = &hose->mem_resources[1];
3267 else if (r->flags & type & IORESOURCE_MEM) {
3268 w = &hose->mem_resources[0];
3272 r->start = w->start;
3275 /* The 64KB 32-bits MSI region shouldn't be included in
3276 * the 32-bits bridge window. Otherwise, we can see strange
3277 * issues. One of them is EEH error observed on Garrison.
3279 * Exclude top 1MB region which is the minimal alignment of
3280 * 32-bits bridge window.
3289 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3291 struct pci_controller *hose = pci_bus_to_host(bus);
3292 struct pnv_phb *phb = hose->private_data;
3293 struct pci_dev *bridge = bus->self;
3294 struct pnv_ioda_pe *pe;
3295 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3297 /* Extend bridge's windows if necessary */
3298 pnv_pci_fixup_bridge_resources(bus, type);
3300 /* The PE for root bus should be realized before any one else */
3301 if (!phb->ioda.root_pe_populated) {
3302 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3304 phb->ioda.root_pe_idx = pe->pe_number;
3305 phb->ioda.root_pe_populated = true;
3309 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3310 if (list_empty(&bus->devices))
3313 /* Reserve PEs according to used M64 resources */
3314 if (phb->reserve_m64_pe)
3315 phb->reserve_m64_pe(bus, NULL, all);
3318 * Assign PE. We might run here because of partial hotplug.
3319 * For the case, we just pick up the existing PE and should
3320 * not allocate resources again.
3322 pe = pnv_ioda_setup_bus_PE(bus, all);
3326 pnv_ioda_setup_pe_seg(pe);
3327 switch (phb->type) {
3329 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3332 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3335 pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3336 __func__, phb->hose->global_number, phb->type);
3340 #ifdef CONFIG_PCI_IOV
3341 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3344 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3345 struct pnv_phb *phb = hose->private_data;
3346 struct pci_dn *pdn = pci_get_pdn(pdev);
3347 resource_size_t align;
3350 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3351 * SR-IOV. While from hardware perspective, the range mapped by M64
3352 * BAR should be size aligned.
3354 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3355 * powernv-specific hardware restriction is gone. But if just use the
3356 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3357 * in one segment of M64 #15, which introduces the PE conflict between
3358 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3361 * This function returns the total IOV BAR size if M64 BAR is in
3362 * Shared PE mode or just VF BAR size if not.
3363 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3364 * M64 segment size if IOV BAR size is less.
3366 align = pci_iov_resource_size(pdev, resno);
3367 if (!pdn->vfs_expanded)
3369 if (pdn->m64_single_mode)
3370 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3372 return pdn->vfs_expanded * align;
3374 #endif /* CONFIG_PCI_IOV */
3376 /* Prevent enabling devices for which we couldn't properly
3379 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3381 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3382 struct pnv_phb *phb = hose->private_data;
3385 /* The function is probably called while the PEs have
3386 * not be created yet. For example, resource reassignment
3387 * during PCI probe period. We just skip the check if
3390 if (!phb->initialized)
3393 pdn = pci_get_pdn(dev);
3394 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3400 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3403 struct pnv_ioda_pe *pe = container_of(table_group,
3404 struct pnv_ioda_pe, table_group);
3405 struct pnv_phb *phb = pe->phb;
3409 pe_info(pe, "Removing DMA window #%d\n", num);
3410 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3411 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3414 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3415 idx, 0, 0ul, 0ul, 0ul);
3416 if (rc != OPAL_SUCCESS) {
3417 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3422 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3425 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3426 return OPAL_SUCCESS;
3429 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3431 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3432 struct iommu_table *tbl = pe->table_group.tables[0];
3438 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3439 if (rc != OPAL_SUCCESS)
3442 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3443 if (pe->table_group.group) {
3444 iommu_group_put(pe->table_group.group);
3445 WARN_ON(pe->table_group.group);
3448 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3449 iommu_free_table(tbl, "pnv");
3452 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3454 struct iommu_table *tbl = pe->table_group.tables[0];
3455 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3456 #ifdef CONFIG_IOMMU_API
3463 #ifdef CONFIG_IOMMU_API
3464 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3466 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3469 pnv_pci_ioda2_set_bypass(pe, false);
3470 if (pe->table_group.group) {
3471 iommu_group_put(pe->table_group.group);
3472 WARN_ON(pe->table_group.group);
3475 iommu_free_table(tbl, "pnv");
3478 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3482 struct pnv_phb *phb = pe->phb;
3486 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3487 if (map[idx] != pe->pe_number)
3490 if (win == OPAL_M64_WINDOW_TYPE)
3491 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3492 phb->ioda.reserved_pe_idx, win,
3493 idx / PNV_IODA1_M64_SEGS,
3494 idx % PNV_IODA1_M64_SEGS);
3496 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3497 phb->ioda.reserved_pe_idx, win, 0, idx);
3499 if (rc != OPAL_SUCCESS)
3500 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3503 map[idx] = IODA_INVALID_PE;
3507 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3509 struct pnv_phb *phb = pe->phb;
3511 if (phb->type == PNV_PHB_IODA1) {
3512 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3513 phb->ioda.io_segmap);
3514 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3515 phb->ioda.m32_segmap);
3516 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3517 phb->ioda.m64_segmap);
3518 } else if (phb->type == PNV_PHB_IODA2) {
3519 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3520 phb->ioda.m32_segmap);
3524 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3526 struct pnv_phb *phb = pe->phb;
3527 struct pnv_ioda_pe *slave, *tmp;
3529 list_del(&pe->list);
3530 switch (phb->type) {
3532 pnv_pci_ioda1_release_pe_dma(pe);
3535 pnv_pci_ioda2_release_pe_dma(pe);
3541 pnv_ioda_release_pe_seg(pe);
3542 pnv_ioda_deconfigure_pe(pe->phb, pe);
3544 /* Release slave PEs in the compound PE */
3545 if (pe->flags & PNV_IODA_PE_MASTER) {
3546 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3547 list_del(&slave->list);
3548 pnv_ioda_free_pe(slave);
3553 * The PE for root bus can be removed because of hotplug in EEH
3554 * recovery for fenced PHB error. We need to mark the PE dead so
3555 * that it can be populated again in PCI hot add path. The PE
3556 * shouldn't be destroyed as it's the global reserved resource.
3558 if (phb->ioda.root_pe_populated &&
3559 phb->ioda.root_pe_idx == pe->pe_number)
3560 phb->ioda.root_pe_populated = false;
3562 pnv_ioda_free_pe(pe);
3565 static void pnv_pci_release_device(struct pci_dev *pdev)
3567 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3568 struct pnv_phb *phb = hose->private_data;
3569 struct pci_dn *pdn = pci_get_pdn(pdev);
3570 struct pnv_ioda_pe *pe;
3572 if (pdev->is_virtfn)
3575 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3579 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3580 * isn't removed and added afterwards in this scenario. We should
3581 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3582 * device count is decreased on removing devices while failing to
3583 * be increased on adding devices. It leads to unbalanced PE's device
3584 * count and eventually make normal PCI hotplug path broken.
3586 pe = &phb->ioda.pe_array[pdn->pe_number];
3587 pdn->pe_number = IODA_INVALID_PE;
3589 WARN_ON(--pe->device_count < 0);
3590 if (pe->device_count == 0)
3591 pnv_ioda_release_pe(pe);
3594 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3596 struct pnv_phb *phb = hose->private_data;
3598 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3602 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3603 .dma_dev_setup = pnv_pci_dma_dev_setup,
3604 .dma_bus_setup = pnv_pci_dma_bus_setup,
3605 #ifdef CONFIG_PCI_MSI
3606 .setup_msi_irqs = pnv_setup_msi_irqs,
3607 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3609 .enable_device_hook = pnv_pci_enable_device_hook,
3610 .release_device = pnv_pci_release_device,
3611 .window_alignment = pnv_pci_window_alignment,
3612 .setup_bridge = pnv_pci_setup_bridge,
3613 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3614 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3615 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3616 .shutdown = pnv_pci_ioda_shutdown,
3619 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3621 dev_err_once(&npdev->dev,
3622 "%s operation unsupported for NVLink devices\n",
3627 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3628 .dma_dev_setup = pnv_pci_dma_dev_setup,
3629 #ifdef CONFIG_PCI_MSI
3630 .setup_msi_irqs = pnv_setup_msi_irqs,
3631 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3633 .enable_device_hook = pnv_pci_enable_device_hook,
3634 .window_alignment = pnv_pci_window_alignment,
3635 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3636 .dma_set_mask = pnv_npu_dma_set_mask,
3637 .shutdown = pnv_pci_ioda_shutdown,
3640 #ifdef CONFIG_CXL_BASE
3641 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3642 .dma_dev_setup = pnv_pci_dma_dev_setup,
3643 .dma_bus_setup = pnv_pci_dma_bus_setup,
3644 #ifdef CONFIG_PCI_MSI
3645 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs,
3646 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs,
3648 .enable_device_hook = pnv_cxl_enable_device_hook,
3649 .disable_device = pnv_cxl_disable_device,
3650 .release_device = pnv_pci_release_device,
3651 .window_alignment = pnv_pci_window_alignment,
3652 .setup_bridge = pnv_pci_setup_bridge,
3653 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3654 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3655 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3656 .shutdown = pnv_pci_ioda_shutdown,
3660 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3661 u64 hub_id, int ioda_type)
3663 struct pci_controller *hose;
3664 struct pnv_phb *phb;
3665 unsigned long size, m64map_off, m32map_off, pemap_off;
3666 unsigned long iomap_off = 0, dma32map_off = 0;
3668 const __be64 *prop64;
3669 const __be32 *prop32;
3676 if (!of_device_is_available(np))
3679 pr_info("Initializing %s PHB (%s)\n",
3680 pnv_phb_names[ioda_type], of_node_full_name(np));
3682 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3684 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3687 phb_id = be64_to_cpup(prop64);
3688 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3690 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3692 /* Allocate PCI controller */
3693 phb->hose = hose = pcibios_alloc_controller(np);
3695 pr_err(" Can't allocate PCI controller for %s\n",
3697 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3701 spin_lock_init(&phb->lock);
3702 prop32 = of_get_property(np, "bus-range", &len);
3703 if (prop32 && len == 8) {
3704 hose->first_busno = be32_to_cpu(prop32[0]);
3705 hose->last_busno = be32_to_cpu(prop32[1]);
3707 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3708 hose->first_busno = 0;
3709 hose->last_busno = 0xff;
3711 hose->private_data = phb;
3712 phb->hub_id = hub_id;
3713 phb->opal_id = phb_id;
3714 phb->type = ioda_type;
3715 mutex_init(&phb->ioda.pe_alloc_mutex);
3717 /* Detect specific models for error handling */
3718 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3719 phb->model = PNV_PHB_MODEL_P7IOC;
3720 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3721 phb->model = PNV_PHB_MODEL_PHB3;
3722 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3723 phb->model = PNV_PHB_MODEL_NPU;
3725 phb->model = PNV_PHB_MODEL_UNKNOWN;
3727 /* Parse 32-bit and IO ranges (if any) */
3728 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3731 if (!of_address_to_resource(np, 0, &r)) {
3732 phb->regs_phys = r.start;
3733 phb->regs = ioremap(r.start, resource_size(&r));
3734 if (phb->regs == NULL)
3735 pr_err(" Failed to map registers !\n");
3738 /* Initialize more IODA stuff */
3739 phb->ioda.total_pe_num = 1;
3740 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3742 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3743 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3745 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3747 /* Invalidate RID to PE# mapping */
3748 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3749 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3751 /* Parse 64-bit MMIO range */
3752 pnv_ioda_parse_m64_window(phb);
3754 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3755 /* FW Has already off top 64k of M32 space (MSI space) */
3756 phb->ioda.m32_size += 0x10000;
3758 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3759 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3760 phb->ioda.io_size = hose->pci_io_size;
3761 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3762 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3764 /* Calculate how many 32-bit TCE segments we have */
3765 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3766 PNV_IODA1_DMA32_SEGSIZE;
3768 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3769 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3770 sizeof(unsigned long));
3772 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3774 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3775 if (phb->type == PNV_PHB_IODA1) {
3777 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3778 dma32map_off = size;
3779 size += phb->ioda.dma32_count *
3780 sizeof(phb->ioda.dma32_segmap[0]);
3783 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3784 aux = memblock_virt_alloc(size, 0);
3785 phb->ioda.pe_alloc = aux;
3786 phb->ioda.m64_segmap = aux + m64map_off;
3787 phb->ioda.m32_segmap = aux + m32map_off;
3788 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3789 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3790 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3792 if (phb->type == PNV_PHB_IODA1) {
3793 phb->ioda.io_segmap = aux + iomap_off;
3794 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3795 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3797 phb->ioda.dma32_segmap = aux + dma32map_off;
3798 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3799 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3801 phb->ioda.pe_array = aux + pemap_off;
3804 * Choose PE number for root bus, which shouldn't have
3805 * M64 resources consumed by its child devices. To pick
3806 * the PE number adjacent to the reserved one if possible.
3808 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3809 if (phb->ioda.reserved_pe_idx == 0) {
3810 phb->ioda.root_pe_idx = 1;
3811 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3812 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3813 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3814 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3816 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3819 INIT_LIST_HEAD(&phb->ioda.pe_list);
3820 mutex_init(&phb->ioda.pe_list_mutex);
3822 /* Calculate how many 32-bit TCE segments we have */
3823 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3824 PNV_IODA1_DMA32_SEGSIZE;
3826 #if 0 /* We should really do that ... */
3827 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3830 starting_real_address,
3831 starting_pci_address,
3835 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3836 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3837 phb->ioda.m32_size, phb->ioda.m32_segsize);
3838 if (phb->ioda.m64_size)
3839 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3840 phb->ioda.m64_size, phb->ioda.m64_segsize);
3841 if (phb->ioda.io_size)
3842 pr_info(" IO: 0x%x [segment=0x%x]\n",
3843 phb->ioda.io_size, phb->ioda.io_segsize);
3846 phb->hose->ops = &pnv_pci_ops;
3847 phb->get_pe_state = pnv_ioda_get_pe_state;
3848 phb->freeze_pe = pnv_ioda_freeze_pe;
3849 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3851 /* Setup MSI support */
3852 pnv_pci_init_ioda_msis(phb);
3855 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3856 * to let the PCI core do resource assignment. It's supposed
3857 * that the PCI core will do correct I/O and MMIO alignment
3858 * for the P2P bridge bars so that each PCI bus (excluding
3859 * the child P2P bridges) can form individual PE.
3861 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3863 if (phb->type == PNV_PHB_NPU) {
3864 hose->controller_ops = pnv_npu_ioda_controller_ops;
3866 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3867 hose->controller_ops = pnv_pci_ioda_controller_ops;
3870 #ifdef CONFIG_PCI_IOV
3871 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3872 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3875 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3877 /* Reset IODA tables to a clean state */
3878 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3880 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3883 * If we're running in kdump kernel, the previous kernel never
3884 * shutdown PCI devices correctly. We already got IODA table
3885 * cleaned out. So we have to issue PHB reset to stop all PCI
3886 * transactions from previous kernel.
3888 if (is_kdump_kernel()) {
3889 pr_info(" Issue PHB reset ...\n");
3890 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3891 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3894 /* Remove M64 resource if we can't configure it successfully */
3895 if (!phb->init_m64 || phb->init_m64(phb))
3896 hose->mem_resources[1].flags = 0;
3899 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3901 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3904 void __init pnv_pci_init_npu_phb(struct device_node *np)
3906 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3909 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3911 struct device_node *phbn;
3912 const __be64 *prop64;
3915 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3917 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3919 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3922 hub_id = be64_to_cpup(prop64);
3923 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3925 /* Count child PHBs */
3926 for_each_child_of_node(np, phbn) {
3927 /* Look for IODA1 PHBs */
3928 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3929 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);