GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7
8 #undef DEBUG
9
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 #include <asm/debugfs.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39
40 #include <misc/cxl-base.h>
41
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45
46 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
47 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
48 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
49
50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51                                               "NPU_OCAPI" };
52
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 static void pnv_pci_configure_bus(struct pci_bus *bus);
55
56 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
57                             const char *fmt, ...)
58 {
59         struct va_format vaf;
60         va_list args;
61         char pfix[32];
62
63         va_start(args, fmt);
64
65         vaf.fmt = fmt;
66         vaf.va = &args;
67
68         if (pe->flags & PNV_IODA_PE_DEV)
69                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
70         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
71                 sprintf(pfix, "%04x:%02x     ",
72                         pci_domain_nr(pe->pbus), pe->pbus->number);
73 #ifdef CONFIG_PCI_IOV
74         else if (pe->flags & PNV_IODA_PE_VF)
75                 sprintf(pfix, "%04x:%02x:%2x.%d",
76                         pci_domain_nr(pe->parent_dev->bus),
77                         (pe->rid & 0xff00) >> 8,
78                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
79 #endif /* CONFIG_PCI_IOV*/
80
81         printk("%spci %s: [PE# %.2x] %pV",
82                level, pfix, pe->pe_number, &vaf);
83
84         va_end(args);
85 }
86
87 static bool pnv_iommu_bypass_disabled __read_mostly;
88 static bool pci_reset_phbs __read_mostly;
89
90 static int __init iommu_setup(char *str)
91 {
92         if (!str)
93                 return -EINVAL;
94
95         while (*str) {
96                 if (!strncmp(str, "nobypass", 8)) {
97                         pnv_iommu_bypass_disabled = true;
98                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
99                         break;
100                 }
101                 str += strcspn(str, ",");
102                 if (*str == ',')
103                         str++;
104         }
105
106         return 0;
107 }
108 early_param("iommu", iommu_setup);
109
110 static int __init pci_reset_phbs_setup(char *str)
111 {
112         pci_reset_phbs = true;
113         return 0;
114 }
115
116 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
117
118 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
119 {
120         s64 rc;
121
122         phb->ioda.pe_array[pe_no].phb = phb;
123         phb->ioda.pe_array[pe_no].pe_number = pe_no;
124         phb->ioda.pe_array[pe_no].dma_setup_done = false;
125
126         /*
127          * Clear the PE frozen state as it might be put into frozen state
128          * in the last PCI remove path. It's not harmful to do so when the
129          * PE is already in unfrozen state.
130          */
131         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
132                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
133         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
134                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
135                         __func__, rc, phb->hose->global_number, pe_no);
136
137         return &phb->ioda.pe_array[pe_no];
138 }
139
140 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
141 {
142         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
143                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
144                         __func__, pe_no, phb->hose->global_number);
145                 return;
146         }
147
148         mutex_lock(&phb->ioda.pe_alloc_mutex);
149         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
150                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
151                          __func__, pe_no, phb->hose->global_number);
152         mutex_unlock(&phb->ioda.pe_alloc_mutex);
153
154         pnv_ioda_init_pe(phb, pe_no);
155 }
156
157 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
158 {
159         struct pnv_ioda_pe *ret = NULL;
160         int run = 0, pe, i;
161
162         mutex_lock(&phb->ioda.pe_alloc_mutex);
163
164         /* scan backwards for a run of @count cleared bits */
165         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
166                 if (test_bit(pe, phb->ioda.pe_alloc)) {
167                         run = 0;
168                         continue;
169                 }
170
171                 run++;
172                 if (run == count)
173                         break;
174         }
175         if (run != count)
176                 goto out;
177
178         for (i = pe; i < pe + count; i++) {
179                 set_bit(i, phb->ioda.pe_alloc);
180                 pnv_ioda_init_pe(phb, i);
181         }
182         ret = &phb->ioda.pe_array[pe];
183
184 out:
185         mutex_unlock(&phb->ioda.pe_alloc_mutex);
186         return ret;
187 }
188
189 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
190 {
191         struct pnv_phb *phb = pe->phb;
192         unsigned int pe_num = pe->pe_number;
193
194         WARN_ON(pe->pdev);
195         WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */
196         kfree(pe->npucomp);
197         memset(pe, 0, sizeof(struct pnv_ioda_pe));
198
199         mutex_lock(&phb->ioda.pe_alloc_mutex);
200         clear_bit(pe_num, phb->ioda.pe_alloc);
201         mutex_unlock(&phb->ioda.pe_alloc_mutex);
202 }
203
204 /* The default M64 BAR is shared by all PEs */
205 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
206 {
207         const char *desc;
208         struct resource *r;
209         s64 rc;
210
211         /* Configure the default M64 BAR */
212         rc = opal_pci_set_phb_mem_window(phb->opal_id,
213                                          OPAL_M64_WINDOW_TYPE,
214                                          phb->ioda.m64_bar_idx,
215                                          phb->ioda.m64_base,
216                                          0, /* unused */
217                                          phb->ioda.m64_size);
218         if (rc != OPAL_SUCCESS) {
219                 desc = "configuring";
220                 goto fail;
221         }
222
223         /* Enable the default M64 BAR */
224         rc = opal_pci_phb_mmio_enable(phb->opal_id,
225                                       OPAL_M64_WINDOW_TYPE,
226                                       phb->ioda.m64_bar_idx,
227                                       OPAL_ENABLE_M64_SPLIT);
228         if (rc != OPAL_SUCCESS) {
229                 desc = "enabling";
230                 goto fail;
231         }
232
233         /*
234          * Exclude the segments for reserved and root bus PE, which
235          * are first or last two PEs.
236          */
237         r = &phb->hose->mem_resources[1];
238         if (phb->ioda.reserved_pe_idx == 0)
239                 r->start += (2 * phb->ioda.m64_segsize);
240         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
241                 r->end -= (2 * phb->ioda.m64_segsize);
242         else
243                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
244                         phb->ioda.reserved_pe_idx);
245
246         return 0;
247
248 fail:
249         pr_warn("  Failure %lld %s M64 BAR#%d\n",
250                 rc, desc, phb->ioda.m64_bar_idx);
251         opal_pci_phb_mmio_enable(phb->opal_id,
252                                  OPAL_M64_WINDOW_TYPE,
253                                  phb->ioda.m64_bar_idx,
254                                  OPAL_DISABLE_M64);
255         return -EIO;
256 }
257
258 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
259                                          unsigned long *pe_bitmap)
260 {
261         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
262         struct resource *r;
263         resource_size_t base, sgsz, start, end;
264         int segno, i;
265
266         base = phb->ioda.m64_base;
267         sgsz = phb->ioda.m64_segsize;
268         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
269                 r = &pdev->resource[i];
270                 if (!r->parent || !pnv_pci_is_m64(phb, r))
271                         continue;
272
273                 start = ALIGN_DOWN(r->start - base, sgsz);
274                 end = ALIGN(r->end - base, sgsz);
275                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
276                         if (pe_bitmap)
277                                 set_bit(segno, pe_bitmap);
278                         else
279                                 pnv_ioda_reserve_pe(phb, segno);
280                 }
281         }
282 }
283
284 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
285 {
286         struct resource *r;
287         int index;
288
289         /*
290          * There are 16 M64 BARs, each of which has 8 segments. So
291          * there are as many M64 segments as the maximum number of
292          * PEs, which is 128.
293          */
294         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
295                 unsigned long base, segsz = phb->ioda.m64_segsize;
296                 int64_t rc;
297
298                 base = phb->ioda.m64_base +
299                        index * PNV_IODA1_M64_SEGS * segsz;
300                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
301                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
302                                 PNV_IODA1_M64_SEGS * segsz);
303                 if (rc != OPAL_SUCCESS) {
304                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
305                                 rc, phb->hose->global_number, index);
306                         goto fail;
307                 }
308
309                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
310                                 OPAL_M64_WINDOW_TYPE, index,
311                                 OPAL_ENABLE_M64_SPLIT);
312                 if (rc != OPAL_SUCCESS) {
313                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
314                                 rc, phb->hose->global_number, index);
315                         goto fail;
316                 }
317         }
318
319         for (index = 0; index < phb->ioda.total_pe_num; index++) {
320                 int64_t rc;
321
322                 /*
323                  * P7IOC supports M64DT, which helps mapping M64 segment
324                  * to one particular PE#. However, PHB3 has fixed mapping
325                  * between M64 segment and PE#. In order to have same logic
326                  * for P7IOC and PHB3, we enforce fixed mapping between M64
327                  * segment and PE# on P7IOC.
328                  */
329                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
330                                 index, OPAL_M64_WINDOW_TYPE,
331                                 index / PNV_IODA1_M64_SEGS,
332                                 index % PNV_IODA1_M64_SEGS);
333                 if (rc != OPAL_SUCCESS) {
334                         pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
335                                 __func__, rc, phb->hose->global_number,
336                                 index);
337                         goto fail;
338                 }
339         }
340
341         /*
342          * Exclude the segments for reserved and root bus PE, which
343          * are first or last two PEs.
344          */
345         r = &phb->hose->mem_resources[1];
346         if (phb->ioda.reserved_pe_idx == 0)
347                 r->start += (2 * phb->ioda.m64_segsize);
348         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
349                 r->end -= (2 * phb->ioda.m64_segsize);
350         else
351                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
352                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
353
354         return 0;
355
356 fail:
357         for ( ; index >= 0; index--)
358                 opal_pci_phb_mmio_enable(phb->opal_id,
359                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
360
361         return -EIO;
362 }
363
364 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
365                                     unsigned long *pe_bitmap,
366                                     bool all)
367 {
368         struct pci_dev *pdev;
369
370         list_for_each_entry(pdev, &bus->devices, bus_list) {
371                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
372
373                 if (all && pdev->subordinate)
374                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
375                                                 pe_bitmap, all);
376         }
377 }
378
379 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
380 {
381         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
382         struct pnv_ioda_pe *master_pe, *pe;
383         unsigned long size, *pe_alloc;
384         int i;
385
386         /* Root bus shouldn't use M64 */
387         if (pci_is_root_bus(bus))
388                 return NULL;
389
390         /* Allocate bitmap */
391         size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
392         pe_alloc = kzalloc(size, GFP_KERNEL);
393         if (!pe_alloc) {
394                 pr_warn("%s: Out of memory !\n",
395                         __func__);
396                 return NULL;
397         }
398
399         /* Figure out reserved PE numbers by the PE */
400         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
401
402         /*
403          * the current bus might not own M64 window and that's all
404          * contributed by its child buses. For the case, we needn't
405          * pick M64 dependent PE#.
406          */
407         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
408                 kfree(pe_alloc);
409                 return NULL;
410         }
411
412         /*
413          * Figure out the master PE and put all slave PEs to master
414          * PE's list to form compound PE.
415          */
416         master_pe = NULL;
417         i = -1;
418         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
419                 phb->ioda.total_pe_num) {
420                 pe = &phb->ioda.pe_array[i];
421
422                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
423                 if (!master_pe) {
424                         pe->flags |= PNV_IODA_PE_MASTER;
425                         INIT_LIST_HEAD(&pe->slaves);
426                         master_pe = pe;
427                 } else {
428                         pe->flags |= PNV_IODA_PE_SLAVE;
429                         pe->master = master_pe;
430                         list_add_tail(&pe->list, &master_pe->slaves);
431                 }
432         }
433
434         kfree(pe_alloc);
435         return master_pe;
436 }
437
438 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
439 {
440         struct pci_controller *hose = phb->hose;
441         struct device_node *dn = hose->dn;
442         struct resource *res;
443         u32 m64_range[2], i;
444         const __be32 *r;
445         u64 pci_addr;
446
447         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
448                 pr_info("  Not support M64 window\n");
449                 return;
450         }
451
452         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
453                 pr_info("  Firmware too old to support M64 window\n");
454                 return;
455         }
456
457         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
458         if (!r) {
459                 pr_info("  No <ibm,opal-m64-window> on %pOF\n",
460                         dn);
461                 return;
462         }
463
464         /*
465          * Find the available M64 BAR range and pickup the last one for
466          * covering the whole 64-bits space. We support only one range.
467          */
468         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
469                                        m64_range, 2)) {
470                 /* In absence of the property, assume 0..15 */
471                 m64_range[0] = 0;
472                 m64_range[1] = 16;
473         }
474         /* We only support 64 bits in our allocator */
475         if (m64_range[1] > 63) {
476                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
477                         __func__, m64_range[1], phb->hose->global_number);
478                 m64_range[1] = 63;
479         }
480         /* Empty range, no m64 */
481         if (m64_range[1] <= m64_range[0]) {
482                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
483                         __func__, phb->hose->global_number);
484                 return;
485         }
486
487         /* Configure M64 informations */
488         res = &hose->mem_resources[1];
489         res->name = dn->full_name;
490         res->start = of_translate_address(dn, r + 2);
491         res->end = res->start + of_read_number(r + 4, 2) - 1;
492         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
493         pci_addr = of_read_number(r, 2);
494         hose->mem_offset[1] = res->start - pci_addr;
495
496         phb->ioda.m64_size = resource_size(res);
497         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
498         phb->ioda.m64_base = pci_addr;
499
500         /* This lines up nicely with the display from processing OF ranges */
501         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
502                 res->start, res->end, pci_addr, m64_range[0],
503                 m64_range[0] + m64_range[1] - 1);
504
505         /* Mark all M64 used up by default */
506         phb->ioda.m64_bar_alloc = (unsigned long)-1;
507
508         /* Use last M64 BAR to cover M64 window */
509         m64_range[1]--;
510         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
511
512         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
513
514         /* Mark remaining ones free */
515         for (i = m64_range[0]; i < m64_range[1]; i++)
516                 clear_bit(i, &phb->ioda.m64_bar_alloc);
517
518         /*
519          * Setup init functions for M64 based on IODA version, IODA3 uses
520          * the IODA2 code.
521          */
522         if (phb->type == PNV_PHB_IODA1)
523                 phb->init_m64 = pnv_ioda1_init_m64;
524         else
525                 phb->init_m64 = pnv_ioda2_init_m64;
526 }
527
528 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
529 {
530         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
531         struct pnv_ioda_pe *slave;
532         s64 rc;
533
534         /* Fetch master PE */
535         if (pe->flags & PNV_IODA_PE_SLAVE) {
536                 pe = pe->master;
537                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
538                         return;
539
540                 pe_no = pe->pe_number;
541         }
542
543         /* Freeze master PE */
544         rc = opal_pci_eeh_freeze_set(phb->opal_id,
545                                      pe_no,
546                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
547         if (rc != OPAL_SUCCESS) {
548                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
549                         __func__, rc, phb->hose->global_number, pe_no);
550                 return;
551         }
552
553         /* Freeze slave PEs */
554         if (!(pe->flags & PNV_IODA_PE_MASTER))
555                 return;
556
557         list_for_each_entry(slave, &pe->slaves, list) {
558                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
559                                              slave->pe_number,
560                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
561                 if (rc != OPAL_SUCCESS)
562                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
563                                 __func__, rc, phb->hose->global_number,
564                                 slave->pe_number);
565         }
566 }
567
568 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
569 {
570         struct pnv_ioda_pe *pe, *slave;
571         s64 rc;
572
573         /* Find master PE */
574         pe = &phb->ioda.pe_array[pe_no];
575         if (pe->flags & PNV_IODA_PE_SLAVE) {
576                 pe = pe->master;
577                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
578                 pe_no = pe->pe_number;
579         }
580
581         /* Clear frozen state for master PE */
582         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
583         if (rc != OPAL_SUCCESS) {
584                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
585                         __func__, rc, opt, phb->hose->global_number, pe_no);
586                 return -EIO;
587         }
588
589         if (!(pe->flags & PNV_IODA_PE_MASTER))
590                 return 0;
591
592         /* Clear frozen state for slave PEs */
593         list_for_each_entry(slave, &pe->slaves, list) {
594                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
595                                              slave->pe_number,
596                                              opt);
597                 if (rc != OPAL_SUCCESS) {
598                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
599                                 __func__, rc, opt, phb->hose->global_number,
600                                 slave->pe_number);
601                         return -EIO;
602                 }
603         }
604
605         return 0;
606 }
607
608 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
609 {
610         struct pnv_ioda_pe *slave, *pe;
611         u8 fstate = 0, state;
612         __be16 pcierr = 0;
613         s64 rc;
614
615         /* Sanity check on PE number */
616         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
617                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
618
619         /*
620          * Fetch the master PE and the PE instance might be
621          * not initialized yet.
622          */
623         pe = &phb->ioda.pe_array[pe_no];
624         if (pe->flags & PNV_IODA_PE_SLAVE) {
625                 pe = pe->master;
626                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
627                 pe_no = pe->pe_number;
628         }
629
630         /* Check the master PE */
631         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
632                                         &state, &pcierr, NULL);
633         if (rc != OPAL_SUCCESS) {
634                 pr_warn("%s: Failure %lld getting "
635                         "PHB#%x-PE#%x state\n",
636                         __func__, rc,
637                         phb->hose->global_number, pe_no);
638                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
639         }
640
641         /* Check the slave PE */
642         if (!(pe->flags & PNV_IODA_PE_MASTER))
643                 return state;
644
645         list_for_each_entry(slave, &pe->slaves, list) {
646                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
647                                                 slave->pe_number,
648                                                 &fstate,
649                                                 &pcierr,
650                                                 NULL);
651                 if (rc != OPAL_SUCCESS) {
652                         pr_warn("%s: Failure %lld getting "
653                                 "PHB#%x-PE#%x state\n",
654                                 __func__, rc,
655                                 phb->hose->global_number, slave->pe_number);
656                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
657                 }
658
659                 /*
660                  * Override the result based on the ascending
661                  * priority.
662                  */
663                 if (fstate > state)
664                         state = fstate;
665         }
666
667         return state;
668 }
669
670 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
671 {
672         int pe_number = phb->ioda.pe_rmap[bdfn];
673
674         if (pe_number == IODA_INVALID_PE)
675                 return NULL;
676
677         return &phb->ioda.pe_array[pe_number];
678 }
679
680 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
681 {
682         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
683         struct pci_dn *pdn = pci_get_pdn(dev);
684
685         if (!pdn)
686                 return NULL;
687         if (pdn->pe_number == IODA_INVALID_PE)
688                 return NULL;
689         return &phb->ioda.pe_array[pdn->pe_number];
690 }
691
692 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
693                                   struct pnv_ioda_pe *parent,
694                                   struct pnv_ioda_pe *child,
695                                   bool is_add)
696 {
697         const char *desc = is_add ? "adding" : "removing";
698         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
699                               OPAL_REMOVE_PE_FROM_DOMAIN;
700         struct pnv_ioda_pe *slave;
701         long rc;
702
703         /* Parent PE affects child PE */
704         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705                                 child->pe_number, op);
706         if (rc != OPAL_SUCCESS) {
707                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
708                         rc, desc);
709                 return -ENXIO;
710         }
711
712         if (!(child->flags & PNV_IODA_PE_MASTER))
713                 return 0;
714
715         /* Compound case: parent PE affects slave PEs */
716         list_for_each_entry(slave, &child->slaves, list) {
717                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
718                                         slave->pe_number, op);
719                 if (rc != OPAL_SUCCESS) {
720                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
721                                 rc, desc);
722                         return -ENXIO;
723                 }
724         }
725
726         return 0;
727 }
728
729 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
730                               struct pnv_ioda_pe *pe,
731                               bool is_add)
732 {
733         struct pnv_ioda_pe *slave;
734         struct pci_dev *pdev = NULL;
735         int ret;
736
737         /*
738          * Clear PE frozen state. If it's master PE, we need
739          * clear slave PE frozen state as well.
740          */
741         if (is_add) {
742                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
743                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
744                 if (pe->flags & PNV_IODA_PE_MASTER) {
745                         list_for_each_entry(slave, &pe->slaves, list)
746                                 opal_pci_eeh_freeze_clear(phb->opal_id,
747                                                           slave->pe_number,
748                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
749                 }
750         }
751
752         /*
753          * Associate PE in PELT. We need add the PE into the
754          * corresponding PELT-V as well. Otherwise, the error
755          * originated from the PE might contribute to other
756          * PEs.
757          */
758         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
759         if (ret)
760                 return ret;
761
762         /* For compound PEs, any one affects all of them */
763         if (pe->flags & PNV_IODA_PE_MASTER) {
764                 list_for_each_entry(slave, &pe->slaves, list) {
765                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
766                         if (ret)
767                                 return ret;
768                 }
769         }
770
771         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
772                 pdev = pe->pbus->self;
773         else if (pe->flags & PNV_IODA_PE_DEV)
774                 pdev = pe->pdev->bus->self;
775 #ifdef CONFIG_PCI_IOV
776         else if (pe->flags & PNV_IODA_PE_VF)
777                 pdev = pe->parent_dev;
778 #endif /* CONFIG_PCI_IOV */
779         while (pdev) {
780                 struct pci_dn *pdn = pci_get_pdn(pdev);
781                 struct pnv_ioda_pe *parent;
782
783                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
784                         parent = &phb->ioda.pe_array[pdn->pe_number];
785                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
786                         if (ret)
787                                 return ret;
788                 }
789
790                 pdev = pdev->bus->self;
791         }
792
793         return 0;
794 }
795
796 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
797                                  struct pnv_ioda_pe *pe,
798                                  struct pci_dev *parent)
799 {
800         int64_t rc;
801
802         while (parent) {
803                 struct pci_dn *pdn = pci_get_pdn(parent);
804
805                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
806                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
807                                                 pe->pe_number,
808                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
809                         /* XXX What to do in case of error ? */
810                 }
811                 parent = parent->bus->self;
812         }
813
814         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
815                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
816
817         /* Disassociate PE in PELT */
818         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
819                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
820         if (rc)
821                 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
822 }
823
824 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
825 {
826         struct pci_dev *parent;
827         uint8_t bcomp, dcomp, fcomp;
828         int64_t rc;
829         long rid_end, rid;
830
831         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
832         if (pe->pbus) {
833                 int count;
834
835                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
836                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
837                 parent = pe->pbus->self;
838                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
839                         count = resource_size(&pe->pbus->busn_res);
840                 else
841                         count = 1;
842
843                 switch(count) {
844                 case  1: bcomp = OpalPciBusAll;         break;
845                 case  2: bcomp = OpalPciBus7Bits;       break;
846                 case  4: bcomp = OpalPciBus6Bits;       break;
847                 case  8: bcomp = OpalPciBus5Bits;       break;
848                 case 16: bcomp = OpalPciBus4Bits;       break;
849                 case 32: bcomp = OpalPciBus3Bits;       break;
850                 default:
851                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
852                                 count);
853                         /* Do an exact match only */
854                         bcomp = OpalPciBusAll;
855                 }
856                 rid_end = pe->rid + (count << 8);
857         } else {
858 #ifdef CONFIG_PCI_IOV
859                 if (pe->flags & PNV_IODA_PE_VF)
860                         parent = pe->parent_dev;
861                 else
862 #endif
863                         parent = pe->pdev->bus->self;
864                 bcomp = OpalPciBusAll;
865                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
866                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
867                 rid_end = pe->rid + 1;
868         }
869
870         /* Clear the reverse map */
871         for (rid = pe->rid; rid < rid_end; rid++)
872                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
873
874         /*
875          * Release from all parents PELT-V. NPUs don't have a PELTV
876          * table
877          */
878         if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
879                 pnv_ioda_unset_peltv(phb, pe, parent);
880
881         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
882                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
883         if (rc)
884                 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
885
886         pe->pbus = NULL;
887         pe->pdev = NULL;
888 #ifdef CONFIG_PCI_IOV
889         pe->parent_dev = NULL;
890 #endif
891
892         return 0;
893 }
894
895 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
896 {
897         uint8_t bcomp, dcomp, fcomp;
898         long rc, rid_end, rid;
899
900         /* Bus validation ? */
901         if (pe->pbus) {
902                 int count;
903
904                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
905                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
906                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
907                         count = resource_size(&pe->pbus->busn_res);
908                 else
909                         count = 1;
910
911                 switch(count) {
912                 case  1: bcomp = OpalPciBusAll;         break;
913                 case  2: bcomp = OpalPciBus7Bits;       break;
914                 case  4: bcomp = OpalPciBus6Bits;       break;
915                 case  8: bcomp = OpalPciBus5Bits;       break;
916                 case 16: bcomp = OpalPciBus4Bits;       break;
917                 case 32: bcomp = OpalPciBus3Bits;       break;
918                 default:
919                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
920                                 count);
921                         /* Do an exact match only */
922                         bcomp = OpalPciBusAll;
923                 }
924                 rid_end = pe->rid + (count << 8);
925         } else {
926                 bcomp = OpalPciBusAll;
927                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
928                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
929                 rid_end = pe->rid + 1;
930         }
931
932         /*
933          * Associate PE in PELT. We need add the PE into the
934          * corresponding PELT-V as well. Otherwise, the error
935          * originated from the PE might contribute to other
936          * PEs.
937          */
938         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
939                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
940         if (rc) {
941                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
942                 return -ENXIO;
943         }
944
945         /*
946          * Configure PELTV. NPUs don't have a PELTV table so skip
947          * configuration on them.
948          */
949         if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
950                 pnv_ioda_set_peltv(phb, pe, true);
951
952         /* Setup reverse map */
953         for (rid = pe->rid; rid < rid_end; rid++)
954                 phb->ioda.pe_rmap[rid] = pe->pe_number;
955
956         /* Setup one MVTs on IODA1 */
957         if (phb->type != PNV_PHB_IODA1) {
958                 pe->mve_number = 0;
959                 goto out;
960         }
961
962         pe->mve_number = pe->pe_number;
963         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
964         if (rc != OPAL_SUCCESS) {
965                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
966                        rc, pe->mve_number);
967                 pe->mve_number = -1;
968         } else {
969                 rc = opal_pci_set_mve_enable(phb->opal_id,
970                                              pe->mve_number, OPAL_ENABLE_MVE);
971                 if (rc) {
972                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
973                                rc, pe->mve_number);
974                         pe->mve_number = -1;
975                 }
976         }
977
978 out:
979         return 0;
980 }
981
982 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
983 {
984         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
985         struct pci_dn *pdn = pci_get_pdn(dev);
986         struct pnv_ioda_pe *pe;
987
988         if (!pdn) {
989                 pr_err("%s: Device tree node not associated properly\n",
990                            pci_name(dev));
991                 return NULL;
992         }
993         if (pdn->pe_number != IODA_INVALID_PE)
994                 return NULL;
995
996         pe = pnv_ioda_alloc_pe(phb, 1);
997         if (!pe) {
998                 pr_warn("%s: Not enough PE# available, disabling device\n",
999                         pci_name(dev));
1000                 return NULL;
1001         }
1002
1003         /* NOTE: We don't get a reference for the pointer in the PE
1004          * data structure, both the device and PE structures should be
1005          * destroyed at the same time. However, removing nvlink
1006          * devices will need some work.
1007          *
1008          * At some point we want to remove the PDN completely anyways
1009          */
1010         pdn->pe_number = pe->pe_number;
1011         pe->flags = PNV_IODA_PE_DEV;
1012         pe->pdev = dev;
1013         pe->pbus = NULL;
1014         pe->mve_number = -1;
1015         pe->rid = dev->bus->number << 8 | pdn->devfn;
1016         pe->device_count++;
1017
1018         pe_info(pe, "Associated device to PE\n");
1019
1020         if (pnv_ioda_configure_pe(phb, pe)) {
1021                 /* XXX What do we do here ? */
1022                 pnv_ioda_free_pe(pe);
1023                 pdn->pe_number = IODA_INVALID_PE;
1024                 pe->pdev = NULL;
1025                 return NULL;
1026         }
1027
1028         /* Put PE to the list */
1029         mutex_lock(&phb->ioda.pe_list_mutex);
1030         list_add_tail(&pe->list, &phb->ioda.pe_list);
1031         mutex_unlock(&phb->ioda.pe_list_mutex);
1032         return pe;
1033 }
1034
1035 /*
1036  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1037  * single PCI bus. Another one that contains the primary PCI bus and its
1038  * subordinate PCI devices and buses. The second type of PE is normally
1039  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1040  */
1041 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1042 {
1043         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1044         struct pnv_ioda_pe *pe = NULL;
1045         unsigned int pe_num;
1046
1047         /*
1048          * In partial hotplug case, the PE instance might be still alive.
1049          * We should reuse it instead of allocating a new one.
1050          */
1051         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1052         if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1053                 pe = &phb->ioda.pe_array[pe_num];
1054                 return NULL;
1055         }
1056
1057         /* PE number for root bus should have been reserved */
1058         if (pci_is_root_bus(bus))
1059                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1060
1061         /* Check if PE is determined by M64 */
1062         if (!pe)
1063                 pe = pnv_ioda_pick_m64_pe(bus, all);
1064
1065         /* The PE number isn't pinned by M64 */
1066         if (!pe)
1067                 pe = pnv_ioda_alloc_pe(phb, 1);
1068
1069         if (!pe) {
1070                 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1071                         __func__, pci_domain_nr(bus), bus->number);
1072                 return NULL;
1073         }
1074
1075         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1076         pe->pbus = bus;
1077         pe->pdev = NULL;
1078         pe->mve_number = -1;
1079         pe->rid = bus->busn_res.start << 8;
1080
1081         if (all)
1082                 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1083                         &bus->busn_res.start, &bus->busn_res.end,
1084                         pe->pe_number);
1085         else
1086                 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1087                         &bus->busn_res.start, pe->pe_number);
1088
1089         if (pnv_ioda_configure_pe(phb, pe)) {
1090                 /* XXX What do we do here ? */
1091                 pnv_ioda_free_pe(pe);
1092                 pe->pbus = NULL;
1093                 return NULL;
1094         }
1095
1096         /* Put PE to the list */
1097         list_add_tail(&pe->list, &phb->ioda.pe_list);
1098
1099         return pe;
1100 }
1101
1102 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1103 {
1104         int pe_num, found_pe = false, rc;
1105         long rid;
1106         struct pnv_ioda_pe *pe;
1107         struct pci_dev *gpu_pdev;
1108         struct pci_dn *npu_pdn;
1109         struct pnv_phb *phb = pci_bus_to_pnvhb(npu_pdev->bus);
1110
1111         /*
1112          * Intentionally leak a reference on the npu device (for
1113          * nvlink only; this is not an opencapi path) to make sure it
1114          * never goes away, as it's been the case all along and some
1115          * work is needed otherwise.
1116          */
1117         pci_dev_get(npu_pdev);
1118
1119         /*
1120          * Due to a hardware errata PE#0 on the NPU is reserved for
1121          * error handling. This means we only have three PEs remaining
1122          * which need to be assigned to four links, implying some
1123          * links must share PEs.
1124          *
1125          * To achieve this we assign PEs such that NPUs linking the
1126          * same GPU get assigned the same PE.
1127          */
1128         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1129         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1130                 pe = &phb->ioda.pe_array[pe_num];
1131                 if (!pe->pdev)
1132                         continue;
1133
1134                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1135                         /*
1136                          * This device has the same peer GPU so should
1137                          * be assigned the same PE as the existing
1138                          * peer NPU.
1139                          */
1140                         dev_info(&npu_pdev->dev,
1141                                 "Associating to existing PE %x\n", pe_num);
1142                         npu_pdn = pci_get_pdn(npu_pdev);
1143                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1144                         npu_pdn->pe_number = pe_num;
1145                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1146                         pe->device_count++;
1147
1148                         /* Map the PE to this link */
1149                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1150                                         OpalPciBusAll,
1151                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1152                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1153                                         OPAL_MAP_PE);
1154                         WARN_ON(rc != OPAL_SUCCESS);
1155                         found_pe = true;
1156                         break;
1157                 }
1158         }
1159
1160         if (!found_pe)
1161                 /*
1162                  * Could not find an existing PE so allocate a new
1163                  * one.
1164                  */
1165                 return pnv_ioda_setup_dev_PE(npu_pdev);
1166         else
1167                 return pe;
1168 }
1169
1170 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1171 {
1172         struct pci_dev *pdev;
1173
1174         list_for_each_entry(pdev, &bus->devices, bus_list)
1175                 pnv_ioda_setup_npu_PE(pdev);
1176 }
1177
1178 static void pnv_pci_ioda_setup_nvlink(void)
1179 {
1180         struct pci_controller *hose;
1181         struct pnv_phb *phb;
1182         struct pnv_ioda_pe *pe;
1183
1184         list_for_each_entry(hose, &hose_list, list_node) {
1185                 phb = hose->private_data;
1186                 if (phb->type == PNV_PHB_NPU_NVLINK) {
1187                         /* PE#0 is needed for error reporting */
1188                         pnv_ioda_reserve_pe(phb, 0);
1189                         pnv_ioda_setup_npu_PEs(hose->bus);
1190                         if (phb->model == PNV_PHB_MODEL_NPU2)
1191                                 WARN_ON_ONCE(pnv_npu2_init(hose));
1192                 }
1193         }
1194         list_for_each_entry(hose, &hose_list, list_node) {
1195                 phb = hose->private_data;
1196                 if (phb->type != PNV_PHB_IODA2)
1197                         continue;
1198
1199                 list_for_each_entry(pe, &phb->ioda.pe_list, list)
1200                         pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1201         }
1202
1203 #ifdef CONFIG_IOMMU_API
1204         /* setup iommu groups so we can do nvlink pass-thru */
1205         pnv_pci_npu_setup_iommu_groups();
1206 #endif
1207 }
1208
1209 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1210                                        struct pnv_ioda_pe *pe);
1211
1212 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1213 {
1214         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1215         struct pci_dn *pdn = pci_get_pdn(pdev);
1216         struct pnv_ioda_pe *pe;
1217
1218         /* Check if the BDFN for this device is associated with a PE yet */
1219         pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1220         if (!pe) {
1221                 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1222                 if (WARN_ON(pdev->is_virtfn))
1223                         return;
1224
1225                 pnv_pci_configure_bus(pdev->bus);
1226                 pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1227                 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1228
1229
1230                 /*
1231                  * If we can't setup the IODA PE something has gone horribly
1232                  * wrong and we can't enable DMA for the device.
1233                  */
1234                 if (WARN_ON(!pe))
1235                         return;
1236         } else {
1237                 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1238         }
1239
1240         /*
1241          * We assume that bridges *probably* don't need to do any DMA so we can
1242          * skip allocating a TCE table, etc unless we get a non-bridge device.
1243          */
1244         if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1245                 switch (phb->type) {
1246                 case PNV_PHB_IODA1:
1247                         pnv_pci_ioda1_setup_dma_pe(phb, pe);
1248                         break;
1249                 case PNV_PHB_IODA2:
1250                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
1251                         break;
1252                 default:
1253                         pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1254                                 __func__, phb->hose->global_number, phb->type);
1255                 }
1256         }
1257
1258         if (pdn)
1259                 pdn->pe_number = pe->pe_number;
1260         pe->device_count++;
1261
1262         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1263         pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1264         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1265
1266         /* PEs with a DMA weight of zero won't have a group */
1267         if (pe->table_group.group)
1268                 iommu_add_device(&pe->table_group, &pdev->dev);
1269 }
1270
1271 /*
1272  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1273  *
1274  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1275  * Devices can only access more than that if bit 59 of the PCI address is set
1276  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1277  * Many PCI devices are not capable of addressing that many bits, and as a
1278  * result are limited to the 4GB of virtual memory made available to 32-bit
1279  * devices in TVE#0.
1280  *
1281  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1282  * devices by configuring the virtual memory past the first 4GB inaccessible
1283  * by 64-bit DMAs.  This should only be used by devices that want more than
1284  * 4GB, and only on PEs that have no 32-bit devices.
1285  *
1286  * Currently this will only work on PHB3 (POWER8).
1287  */
1288 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1289 {
1290         u64 window_size, table_size, tce_count, addr;
1291         struct page *table_pages;
1292         u64 tce_order = 28; /* 256MB TCEs */
1293         __be64 *tces;
1294         s64 rc;
1295
1296         /*
1297          * Window size needs to be a power of two, but needs to account for
1298          * shifting memory by the 4GB offset required to skip 32bit space.
1299          */
1300         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1301         tce_count = window_size >> tce_order;
1302         table_size = tce_count << 3;
1303
1304         if (table_size < PAGE_SIZE)
1305                 table_size = PAGE_SIZE;
1306
1307         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1308                                        get_order(table_size));
1309         if (!table_pages)
1310                 goto err;
1311
1312         tces = page_address(table_pages);
1313         if (!tces)
1314                 goto err;
1315
1316         memset(tces, 0, table_size);
1317
1318         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1319                 tces[(addr + (1ULL << 32)) >> tce_order] =
1320                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1321         }
1322
1323         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1324                                         pe->pe_number,
1325                                         /* reconfigure window 0 */
1326                                         (pe->pe_number << 1) + 0,
1327                                         1,
1328                                         __pa(tces),
1329                                         table_size,
1330                                         1 << tce_order);
1331         if (rc == OPAL_SUCCESS) {
1332                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1333                 return 0;
1334         }
1335 err:
1336         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1337         return -EIO;
1338 }
1339
1340 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1341                 u64 dma_mask)
1342 {
1343         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1344         struct pci_dn *pdn = pci_get_pdn(pdev);
1345         struct pnv_ioda_pe *pe;
1346
1347         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1348                 return false;
1349
1350         pe = &phb->ioda.pe_array[pdn->pe_number];
1351         if (pe->tce_bypass_enabled) {
1352                 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1353                 if (dma_mask >= top)
1354                         return true;
1355         }
1356
1357         /*
1358          * If the device can't set the TCE bypass bit but still wants
1359          * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1360          * bypass the 32-bit region and be usable for 64-bit DMAs.
1361          * The device needs to be able to address all of this space.
1362          */
1363         if (dma_mask >> 32 &&
1364             dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1365             /* pe->pdev should be set if it's a single device, pe->pbus if not */
1366             (pe->device_count == 1 || !pe->pbus) &&
1367             phb->model == PNV_PHB_MODEL_PHB3) {
1368                 /* Configure the bypass mode */
1369                 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1370                 if (rc)
1371                         return false;
1372                 /* 4GB offset bypasses 32-bit space */
1373                 pdev->dev.archdata.dma_offset = (1ULL << 32);
1374                 return true;
1375         }
1376
1377         return false;
1378 }
1379
1380 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1381                                                      bool real_mode)
1382 {
1383         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1384                 (phb->regs + 0x210);
1385 }
1386
1387 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1388                 unsigned long index, unsigned long npages, bool rm)
1389 {
1390         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1391                         &tbl->it_group_list, struct iommu_table_group_link,
1392                         next);
1393         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1394                         struct pnv_ioda_pe, table_group);
1395         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1396         unsigned long start, end, inc;
1397
1398         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1399         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1400                         npages - 1);
1401
1402         /* p7ioc-style invalidation, 2 TCEs per write */
1403         start |= (1ull << 63);
1404         end |= (1ull << 63);
1405         inc = 16;
1406         end |= inc - 1; /* round up end to be different than start */
1407
1408         mb(); /* Ensure above stores are visible */
1409         while (start <= end) {
1410                 if (rm)
1411                         __raw_rm_writeq_be(start, invalidate);
1412                 else
1413                         __raw_writeq_be(start, invalidate);
1414
1415                 start += inc;
1416         }
1417
1418         /*
1419          * The iommu layer will do another mb() for us on build()
1420          * and we don't care on free()
1421          */
1422 }
1423
1424 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1425                 long npages, unsigned long uaddr,
1426                 enum dma_data_direction direction,
1427                 unsigned long attrs)
1428 {
1429         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1430                         attrs);
1431
1432         if (!ret)
1433                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1434
1435         return ret;
1436 }
1437
1438 #ifdef CONFIG_IOMMU_API
1439 /* Common for IODA1 and IODA2 */
1440 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1441                 unsigned long *hpa, enum dma_data_direction *direction,
1442                 bool realmode)
1443 {
1444         return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1445 }
1446 #endif
1447
1448 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1449                 long npages)
1450 {
1451         pnv_tce_free(tbl, index, npages);
1452
1453         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1454 }
1455
1456 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1457         .set = pnv_ioda1_tce_build,
1458 #ifdef CONFIG_IOMMU_API
1459         .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1460         .tce_kill = pnv_pci_p7ioc_tce_invalidate,
1461         .useraddrptr = pnv_tce_useraddrptr,
1462 #endif
1463         .clear = pnv_ioda1_tce_free,
1464         .get = pnv_tce_get,
1465 };
1466
1467 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1468 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1469 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1470
1471 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1472 {
1473         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1474         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1475
1476         mb(); /* Ensure previous TCE table stores are visible */
1477         if (rm)
1478                 __raw_rm_writeq_be(val, invalidate);
1479         else
1480                 __raw_writeq_be(val, invalidate);
1481 }
1482
1483 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1484 {
1485         /* 01xb - invalidate TCEs that match the specified PE# */
1486         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1487         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1488
1489         mb(); /* Ensure above stores are visible */
1490         __raw_writeq_be(val, invalidate);
1491 }
1492
1493 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1494                                         unsigned shift, unsigned long index,
1495                                         unsigned long npages)
1496 {
1497         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1498         unsigned long start, end, inc;
1499
1500         /* We'll invalidate DMA address in PE scope */
1501         start = PHB3_TCE_KILL_INVAL_ONE;
1502         start |= (pe->pe_number & 0xFF);
1503         end = start;
1504
1505         /* Figure out the start, end and step */
1506         start |= (index << shift);
1507         end |= ((index + npages - 1) << shift);
1508         inc = (0x1ull << shift);
1509         mb();
1510
1511         while (start <= end) {
1512                 if (rm)
1513                         __raw_rm_writeq_be(start, invalidate);
1514                 else
1515                         __raw_writeq_be(start, invalidate);
1516                 start += inc;
1517         }
1518 }
1519
1520 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1521 {
1522         struct pnv_phb *phb = pe->phb;
1523
1524         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1525                 pnv_pci_phb3_tce_invalidate_pe(pe);
1526         else
1527                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1528                                   pe->pe_number, 0, 0, 0);
1529 }
1530
1531 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1532                 unsigned long index, unsigned long npages, bool rm)
1533 {
1534         struct iommu_table_group_link *tgl;
1535
1536         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1537                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1538                                 struct pnv_ioda_pe, table_group);
1539                 struct pnv_phb *phb = pe->phb;
1540                 unsigned int shift = tbl->it_page_shift;
1541
1542                 /*
1543                  * NVLink1 can use the TCE kill register directly as
1544                  * it's the same as PHB3. NVLink2 is different and
1545                  * should go via the OPAL call.
1546                  */
1547                 if (phb->model == PNV_PHB_MODEL_NPU) {
1548                         /*
1549                          * The NVLink hardware does not support TCE kill
1550                          * per TCE entry so we have to invalidate
1551                          * the entire cache for it.
1552                          */
1553                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1554                         continue;
1555                 }
1556                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1557                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1558                                                     index, npages);
1559                 else
1560                         opal_pci_tce_kill(phb->opal_id,
1561                                           OPAL_PCI_TCE_KILL_PAGES,
1562                                           pe->pe_number, 1u << shift,
1563                                           index << shift, npages);
1564         }
1565 }
1566
1567 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1568 {
1569         if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
1570                 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1571         else
1572                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
1573 }
1574
1575 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1576                 long npages, unsigned long uaddr,
1577                 enum dma_data_direction direction,
1578                 unsigned long attrs)
1579 {
1580         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1581                         attrs);
1582
1583         if (!ret)
1584                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1585
1586         return ret;
1587 }
1588
1589 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1590                 long npages)
1591 {
1592         pnv_tce_free(tbl, index, npages);
1593
1594         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1595 }
1596
1597 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1598         .set = pnv_ioda2_tce_build,
1599 #ifdef CONFIG_IOMMU_API
1600         .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1601         .tce_kill = pnv_pci_ioda2_tce_invalidate,
1602         .useraddrptr = pnv_tce_useraddrptr,
1603 #endif
1604         .clear = pnv_ioda2_tce_free,
1605         .get = pnv_tce_get,
1606         .free = pnv_pci_ioda2_table_free_pages,
1607 };
1608
1609 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1610 {
1611         unsigned int *weight = (unsigned int *)data;
1612
1613         /* This is quite simplistic. The "base" weight of a device
1614          * is 10. 0 means no DMA is to be accounted for it.
1615          */
1616         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1617                 return 0;
1618
1619         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1620             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1621             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1622                 *weight += 3;
1623         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1624                 *weight += 15;
1625         else
1626                 *weight += 10;
1627
1628         return 0;
1629 }
1630
1631 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1632 {
1633         unsigned int weight = 0;
1634
1635         /* SRIOV VF has same DMA32 weight as its PF */
1636 #ifdef CONFIG_PCI_IOV
1637         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1638                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1639                 return weight;
1640         }
1641 #endif
1642
1643         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1644                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1645         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1646                 struct pci_dev *pdev;
1647
1648                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1649                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1650         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1651                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1652         }
1653
1654         return weight;
1655 }
1656
1657 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1658                                        struct pnv_ioda_pe *pe)
1659 {
1660
1661         struct page *tce_mem = NULL;
1662         struct iommu_table *tbl;
1663         unsigned int weight, total_weight = 0;
1664         unsigned int tce32_segsz, base, segs, avail, i;
1665         int64_t rc;
1666         void *addr;
1667
1668         /* XXX FIXME: Handle 64-bit only DMA devices */
1669         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1670         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1671         weight = pnv_pci_ioda_pe_dma_weight(pe);
1672         if (!weight)
1673                 return;
1674
1675         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1676                      &total_weight);
1677         segs = (weight * phb->ioda.dma32_count) / total_weight;
1678         if (!segs)
1679                 segs = 1;
1680
1681         /*
1682          * Allocate contiguous DMA32 segments. We begin with the expected
1683          * number of segments. With one more attempt, the number of DMA32
1684          * segments to be allocated is decreased by one until one segment
1685          * is allocated successfully.
1686          */
1687         do {
1688                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1689                         for (avail = 0, i = base; i < base + segs; i++) {
1690                                 if (phb->ioda.dma32_segmap[i] ==
1691                                     IODA_INVALID_PE)
1692                                         avail++;
1693                         }
1694
1695                         if (avail == segs)
1696                                 goto found;
1697                 }
1698         } while (--segs);
1699
1700         if (!segs) {
1701                 pe_warn(pe, "No available DMA32 segments\n");
1702                 return;
1703         }
1704
1705 found:
1706         tbl = pnv_pci_table_alloc(phb->hose->node);
1707         if (WARN_ON(!tbl))
1708                 return;
1709
1710         iommu_register_group(&pe->table_group, phb->hose->global_number,
1711                         pe->pe_number);
1712         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1713
1714         /* Grab a 32-bit TCE table */
1715         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1716                 weight, total_weight, base, segs);
1717         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1718                 base * PNV_IODA1_DMA32_SEGSIZE,
1719                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1720
1721         /* XXX Currently, we allocate one big contiguous table for the
1722          * TCEs. We only really need one chunk per 256M of TCE space
1723          * (ie per segment) but that's an optimization for later, it
1724          * requires some added smarts with our get/put_tce implementation
1725          *
1726          * Each TCE page is 4KB in size and each TCE entry occupies 8
1727          * bytes
1728          */
1729         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1730         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1731                                    get_order(tce32_segsz * segs));
1732         if (!tce_mem) {
1733                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1734                 goto fail;
1735         }
1736         addr = page_address(tce_mem);
1737         memset(addr, 0, tce32_segsz * segs);
1738
1739         /* Configure HW */
1740         for (i = 0; i < segs; i++) {
1741                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1742                                               pe->pe_number,
1743                                               base + i, 1,
1744                                               __pa(addr) + tce32_segsz * i,
1745                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
1746                 if (rc) {
1747                         pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1748                                rc);
1749                         goto fail;
1750                 }
1751         }
1752
1753         /* Setup DMA32 segment mapping */
1754         for (i = base; i < base + segs; i++)
1755                 phb->ioda.dma32_segmap[i] = pe->pe_number;
1756
1757         /* Setup linux iommu table */
1758         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1759                                   base * PNV_IODA1_DMA32_SEGSIZE,
1760                                   IOMMU_PAGE_SHIFT_4K);
1761
1762         tbl->it_ops = &pnv_ioda1_iommu_ops;
1763         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1764         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1765         iommu_init_table(tbl, phb->hose->node, 0, 0);
1766
1767         pe->dma_setup_done = true;
1768         return;
1769  fail:
1770         /* XXX Failure: Try to fallback to 64-bit only ? */
1771         if (tce_mem)
1772                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
1773         if (tbl) {
1774                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1775                 iommu_tce_table_put(tbl);
1776         }
1777 }
1778
1779 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1780                 int num, struct iommu_table *tbl)
1781 {
1782         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1783                         table_group);
1784         struct pnv_phb *phb = pe->phb;
1785         int64_t rc;
1786         const unsigned long size = tbl->it_indirect_levels ?
1787                         tbl->it_level_size : tbl->it_size;
1788         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1789         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1790
1791         pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1792                 num, start_addr, start_addr + win_size - 1,
1793                 IOMMU_PAGE_SIZE(tbl));
1794
1795         /*
1796          * Map TCE table through TVT. The TVE index is the PE number
1797          * shifted by 1 bit for 32-bits DMA space.
1798          */
1799         rc = opal_pci_map_pe_dma_window(phb->opal_id,
1800                         pe->pe_number,
1801                         (pe->pe_number << 1) + num,
1802                         tbl->it_indirect_levels + 1,
1803                         __pa(tbl->it_base),
1804                         size << 3,
1805                         IOMMU_PAGE_SIZE(tbl));
1806         if (rc) {
1807                 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1808                 return rc;
1809         }
1810
1811         pnv_pci_link_table_and_group(phb->hose->node, num,
1812                         tbl, &pe->table_group);
1813         pnv_pci_ioda2_tce_invalidate_pe(pe);
1814
1815         return 0;
1816 }
1817
1818 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1819 {
1820         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1821         int64_t rc;
1822
1823         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1824         if (enable) {
1825                 phys_addr_t top = memblock_end_of_DRAM();
1826
1827                 top = roundup_pow_of_two(top);
1828                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1829                                                      pe->pe_number,
1830                                                      window_id,
1831                                                      pe->tce_bypass_base,
1832                                                      top);
1833         } else {
1834                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1835                                                      pe->pe_number,
1836                                                      window_id,
1837                                                      pe->tce_bypass_base,
1838                                                      0);
1839         }
1840         if (rc)
1841                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1842         else
1843                 pe->tce_bypass_enabled = enable;
1844 }
1845
1846 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1847                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1848                 bool alloc_userspace_copy, struct iommu_table **ptbl)
1849 {
1850         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1851                         table_group);
1852         int nid = pe->phb->hose->node;
1853         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1854         long ret;
1855         struct iommu_table *tbl;
1856
1857         tbl = pnv_pci_table_alloc(nid);
1858         if (!tbl)
1859                 return -ENOMEM;
1860
1861         tbl->it_ops = &pnv_ioda2_iommu_ops;
1862
1863         ret = pnv_pci_ioda2_table_alloc_pages(nid,
1864                         bus_offset, page_shift, window_size,
1865                         levels, alloc_userspace_copy, tbl);
1866         if (ret) {
1867                 iommu_tce_table_put(tbl);
1868                 return ret;
1869         }
1870
1871         *ptbl = tbl;
1872
1873         return 0;
1874 }
1875
1876 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1877 {
1878         struct iommu_table *tbl = NULL;
1879         long rc;
1880         unsigned long res_start, res_end;
1881
1882         /*
1883          * crashkernel= specifies the kdump kernel's maximum memory at
1884          * some offset and there is no guaranteed the result is a power
1885          * of 2, which will cause errors later.
1886          */
1887         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1888
1889         /*
1890          * In memory constrained environments, e.g. kdump kernel, the
1891          * DMA window can be larger than available memory, which will
1892          * cause errors later.
1893          */
1894         const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1895
1896         /*
1897          * We create the default window as big as we can. The constraint is
1898          * the max order of allocation possible. The TCE table is likely to
1899          * end up being multilevel and with on-demand allocation in place,
1900          * the initial use is not going to be huge as the default window aims
1901          * to support crippled devices (i.e. not fully 64bit DMAble) only.
1902          */
1903         /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1904         const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1905         /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1906         unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1907         unsigned long tcelevel_order = ilog2(maxblock >> 3);
1908         unsigned int levels = tces_order / tcelevel_order;
1909
1910         if (tces_order % tcelevel_order)
1911                 levels += 1;
1912         /*
1913          * We try to stick to default levels (which is >1 at the moment) in
1914          * order to save memory by relying on on-demain TCE level allocation.
1915          */
1916         levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1917
1918         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1919                         window_size, levels, false, &tbl);
1920         if (rc) {
1921                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1922                                 rc);
1923                 return rc;
1924         }
1925
1926         /* We use top part of 32bit space for MMIO so exclude it from DMA */
1927         res_start = 0;
1928         res_end = 0;
1929         if (window_size > pe->phb->ioda.m32_pci_base) {
1930                 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1931                 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1932         }
1933         iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
1934
1935         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1936         if (rc) {
1937                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
1938                                 rc);
1939                 iommu_tce_table_put(tbl);
1940                 return rc;
1941         }
1942
1943         if (!pnv_iommu_bypass_disabled)
1944                 pnv_pci_ioda2_set_bypass(pe, true);
1945
1946         /*
1947          * Set table base for the case of IOMMU DMA use. Usually this is done
1948          * from dma_dev_setup() which is not called when a device is returned
1949          * from VFIO so do it here.
1950          */
1951         if (pe->pdev)
1952                 set_iommu_table_base(&pe->pdev->dev, tbl);
1953
1954         return 0;
1955 }
1956
1957 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1958                 int num)
1959 {
1960         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1961                         table_group);
1962         struct pnv_phb *phb = pe->phb;
1963         long ret;
1964
1965         pe_info(pe, "Removing DMA window #%d\n", num);
1966
1967         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1968                         (pe->pe_number << 1) + num,
1969                         0/* levels */, 0/* table address */,
1970                         0/* table size */, 0/* page size */);
1971         if (ret)
1972                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1973         else
1974                 pnv_pci_ioda2_tce_invalidate_pe(pe);
1975
1976         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1977
1978         return ret;
1979 }
1980
1981 #ifdef CONFIG_IOMMU_API
1982 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1983                 __u64 window_size, __u32 levels)
1984 {
1985         unsigned long bytes = 0;
1986         const unsigned window_shift = ilog2(window_size);
1987         unsigned entries_shift = window_shift - page_shift;
1988         unsigned table_shift = entries_shift + 3;
1989         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1990         unsigned long direct_table_size;
1991
1992         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1993                         !is_power_of_2(window_size))
1994                 return 0;
1995
1996         /* Calculate a direct table size from window_size and levels */
1997         entries_shift = (entries_shift + levels - 1) / levels;
1998         table_shift = entries_shift + 3;
1999         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2000         direct_table_size =  1UL << table_shift;
2001
2002         for ( ; levels; --levels) {
2003                 bytes += ALIGN(tce_table_size, direct_table_size);
2004
2005                 tce_table_size /= direct_table_size;
2006                 tce_table_size <<= 3;
2007                 tce_table_size = max_t(unsigned long,
2008                                 tce_table_size, direct_table_size);
2009         }
2010
2011         return bytes + bytes; /* one for HW table, one for userspace copy */
2012 }
2013
2014 static long pnv_pci_ioda2_create_table_userspace(
2015                 struct iommu_table_group *table_group,
2016                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017                 struct iommu_table **ptbl)
2018 {
2019         long ret = pnv_pci_ioda2_create_table(table_group,
2020                         num, page_shift, window_size, levels, true, ptbl);
2021
2022         if (!ret)
2023                 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2024                                 page_shift, window_size, levels);
2025         return ret;
2026 }
2027
2028 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
2029 {
2030         struct pci_dev *dev;
2031
2032         list_for_each_entry(dev, &bus->devices, bus_list) {
2033                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
2034                 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
2035
2036                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2037                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
2038         }
2039 }
2040
2041 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2042 {
2043         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2044                                                 table_group);
2045         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2046         struct iommu_table *tbl = pe->table_group.tables[0];
2047
2048         pnv_pci_ioda2_set_bypass(pe, false);
2049         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2050         if (pe->pbus)
2051                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2052         else if (pe->pdev)
2053                 set_iommu_table_base(&pe->pdev->dev, NULL);
2054         iommu_tce_table_put(tbl);
2055 }
2056
2057 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2058 {
2059         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2060                                                 table_group);
2061
2062         pnv_pci_ioda2_setup_default_config(pe);
2063         if (pe->pbus)
2064                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2065 }
2066
2067 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2068         .get_table_size = pnv_pci_ioda2_get_table_size,
2069         .create_table = pnv_pci_ioda2_create_table_userspace,
2070         .set_window = pnv_pci_ioda2_set_window,
2071         .unset_window = pnv_pci_ioda2_unset_window,
2072         .take_ownership = pnv_ioda2_take_ownership,
2073         .release_ownership = pnv_ioda2_release_ownership,
2074 };
2075 #endif
2076
2077 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2078                                 struct pnv_ioda_pe *pe)
2079 {
2080         int64_t rc;
2081
2082         /* TVE #1 is selected by PCI address bit 59 */
2083         pe->tce_bypass_base = 1ull << 59;
2084
2085         /* The PE will reserve all possible 32-bits space */
2086         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2087                 phb->ioda.m32_pci_base);
2088
2089         /* Setup linux iommu table */
2090         pe->table_group.tce32_start = 0;
2091         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2092         pe->table_group.max_dynamic_windows_supported =
2093                         IOMMU_TABLE_GROUP_MAX_TABLES;
2094         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2095         pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2096
2097         rc = pnv_pci_ioda2_setup_default_config(pe);
2098         if (rc)
2099                 return;
2100
2101 #ifdef CONFIG_IOMMU_API
2102         pe->table_group.ops = &pnv_pci_ioda2_ops;
2103         iommu_register_group(&pe->table_group, phb->hose->global_number,
2104                              pe->pe_number);
2105 #endif
2106         pe->dma_setup_done = true;
2107 }
2108
2109 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2110 {
2111         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2112                                            ioda.irq_chip);
2113
2114         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2115 }
2116
2117 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2118 {
2119         int64_t rc;
2120         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2121         struct irq_chip *chip = irq_data_get_irq_chip(d);
2122
2123         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2124         WARN_ON_ONCE(rc);
2125
2126         icp_native_eoi(d);
2127 }
2128
2129
2130 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2131 {
2132         struct irq_data *idata;
2133         struct irq_chip *ichip;
2134
2135         /* The MSI EOI OPAL call is only needed on PHB3 */
2136         if (phb->model != PNV_PHB_MODEL_PHB3)
2137                 return;
2138
2139         if (!phb->ioda.irq_chip_init) {
2140                 /*
2141                  * First time we setup an MSI IRQ, we need to setup the
2142                  * corresponding IRQ chip to route correctly.
2143                  */
2144                 idata = irq_get_irq_data(virq);
2145                 ichip = irq_data_get_irq_chip(idata);
2146                 phb->ioda.irq_chip_init = 1;
2147                 phb->ioda.irq_chip = *ichip;
2148                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2149         }
2150         irq_set_chip(virq, &phb->ioda.irq_chip);
2151 }
2152
2153 /*
2154  * Returns true iff chip is something that we could call
2155  * pnv_opal_pci_msi_eoi for.
2156  */
2157 bool is_pnv_opal_msi(struct irq_chip *chip)
2158 {
2159         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2160 }
2161 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2162
2163 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2164                                   unsigned int hwirq, unsigned int virq,
2165                                   unsigned int is_64, struct msi_msg *msg)
2166 {
2167         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2168         unsigned int xive_num = hwirq - phb->msi_base;
2169         __be32 data;
2170         int rc;
2171
2172         /* No PE assigned ? bail out ... no MSI for you ! */
2173         if (pe == NULL)
2174                 return -ENXIO;
2175
2176         /* Check if we have an MVE */
2177         if (pe->mve_number < 0)
2178                 return -ENXIO;
2179
2180         /* Force 32-bit MSI on some broken devices */
2181         if (dev->no_64bit_msi)
2182                 is_64 = 0;
2183
2184         /* Assign XIVE to PE */
2185         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2186         if (rc) {
2187                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2188                         pci_name(dev), rc, xive_num);
2189                 return -EIO;
2190         }
2191
2192         if (is_64) {
2193                 __be64 addr64;
2194
2195                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2196                                      &addr64, &data);
2197                 if (rc) {
2198                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2199                                 pci_name(dev), rc);
2200                         return -EIO;
2201                 }
2202                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2203                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2204         } else {
2205                 __be32 addr32;
2206
2207                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2208                                      &addr32, &data);
2209                 if (rc) {
2210                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2211                                 pci_name(dev), rc);
2212                         return -EIO;
2213                 }
2214                 msg->address_hi = 0;
2215                 msg->address_lo = be32_to_cpu(addr32);
2216         }
2217         msg->data = be32_to_cpu(data);
2218
2219         pnv_set_msi_irq_chip(phb, virq);
2220
2221         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2222                  " address=%x_%08x data=%x PE# %x\n",
2223                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2224                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2225
2226         return 0;
2227 }
2228
2229 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2230 {
2231         unsigned int count;
2232         const __be32 *prop = of_get_property(phb->hose->dn,
2233                                              "ibm,opal-msi-ranges", NULL);
2234         if (!prop) {
2235                 /* BML Fallback */
2236                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2237         }
2238         if (!prop)
2239                 return;
2240
2241         phb->msi_base = be32_to_cpup(prop);
2242         count = be32_to_cpup(prop + 1);
2243         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2244                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2245                        phb->hose->global_number);
2246                 return;
2247         }
2248
2249         phb->msi_setup = pnv_pci_ioda_msi_setup;
2250         phb->msi32_support = 1;
2251         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2252                 count, phb->msi_base);
2253 }
2254
2255 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2256                                   struct resource *res)
2257 {
2258         struct pnv_phb *phb = pe->phb;
2259         struct pci_bus_region region;
2260         int index;
2261         int64_t rc;
2262
2263         if (!res || !res->flags || res->start > res->end ||
2264             res->flags & IORESOURCE_UNSET)
2265                 return;
2266
2267         if (res->flags & IORESOURCE_IO) {
2268                 region.start = res->start - phb->ioda.io_pci_base;
2269                 region.end   = res->end - phb->ioda.io_pci_base;
2270                 index = region.start / phb->ioda.io_segsize;
2271
2272                 while (index < phb->ioda.total_pe_num &&
2273                        region.start <= region.end) {
2274                         phb->ioda.io_segmap[index] = pe->pe_number;
2275                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2276                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2277                         if (rc != OPAL_SUCCESS) {
2278                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2279                                        __func__, rc, index, pe->pe_number);
2280                                 break;
2281                         }
2282
2283                         region.start += phb->ioda.io_segsize;
2284                         index++;
2285                 }
2286         } else if ((res->flags & IORESOURCE_MEM) &&
2287                    !pnv_pci_is_m64(phb, res)) {
2288                 region.start = res->start -
2289                                phb->hose->mem_offset[0] -
2290                                phb->ioda.m32_pci_base;
2291                 region.end   = res->end -
2292                                phb->hose->mem_offset[0] -
2293                                phb->ioda.m32_pci_base;
2294                 index = region.start / phb->ioda.m32_segsize;
2295
2296                 while (index < phb->ioda.total_pe_num &&
2297                        region.start <= region.end) {
2298                         phb->ioda.m32_segmap[index] = pe->pe_number;
2299                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2300                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2301                         if (rc != OPAL_SUCCESS) {
2302                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2303                                        __func__, rc, index, pe->pe_number);
2304                                 break;
2305                         }
2306
2307                         region.start += phb->ioda.m32_segsize;
2308                         index++;
2309                 }
2310         }
2311 }
2312
2313 /*
2314  * This function is supposed to be called on basis of PE from top
2315  * to bottom style. So the the I/O or MMIO segment assigned to
2316  * parent PE could be overridden by its child PEs if necessary.
2317  */
2318 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2319 {
2320         struct pci_dev *pdev;
2321         int i;
2322
2323         /*
2324          * NOTE: We only care PCI bus based PE for now. For PCI
2325          * device based PE, for example SRIOV sensitive VF should
2326          * be figured out later.
2327          */
2328         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2329
2330         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2331                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2332                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2333
2334                 /*
2335                  * If the PE contains all subordinate PCI buses, the
2336                  * windows of the child bridges should be mapped to
2337                  * the PE as well.
2338                  */
2339                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2340                         continue;
2341                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2342                         pnv_ioda_setup_pe_res(pe,
2343                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2344         }
2345 }
2346
2347 #ifdef CONFIG_DEBUG_FS
2348 static int pnv_pci_diag_data_set(void *data, u64 val)
2349 {
2350         struct pnv_phb *phb = data;
2351         s64 ret;
2352
2353         /* Retrieve the diag data from firmware */
2354         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2355                                           phb->diag_data_size);
2356         if (ret != OPAL_SUCCESS)
2357                 return -EIO;
2358
2359         /* Print the diag data to the kernel log */
2360         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2361         return 0;
2362 }
2363
2364 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2365                          "%llu\n");
2366
2367 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2368 {
2369         struct pnv_phb *phb = data;
2370         int pe_num;
2371
2372         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2373                 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2374
2375                 if (!test_bit(pe_num, phb->ioda.pe_alloc))
2376                         continue;
2377
2378                 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2379                         pe->rid, pe->device_count,
2380                         (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2381                         (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2382                         (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2383                         (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2384                         (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2385                         (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2386         }
2387
2388         return 0;
2389 }
2390
2391 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2392                          pnv_pci_ioda_pe_dump, "%llu\n");
2393
2394 #endif /* CONFIG_DEBUG_FS */
2395
2396 static void pnv_pci_ioda_create_dbgfs(void)
2397 {
2398 #ifdef CONFIG_DEBUG_FS
2399         struct pci_controller *hose, *tmp;
2400         struct pnv_phb *phb;
2401         char name[16];
2402
2403         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2404                 phb = hose->private_data;
2405
2406                 /* Notify initialization of PHB done */
2407                 phb->initialized = 1;
2408
2409                 sprintf(name, "PCI%04x", hose->global_number);
2410                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2411
2412                 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2413                                            phb, &pnv_pci_diag_data_fops);
2414                 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2415                                            phb, &pnv_pci_ioda_pe_dump_fops);
2416         }
2417 #endif /* CONFIG_DEBUG_FS */
2418 }
2419
2420 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2421 {
2422         struct pci_dev *dev = bus->self;
2423         struct pci_bus *child;
2424
2425         /* Empty bus ? bail */
2426         if (list_empty(&bus->devices))
2427                 return;
2428
2429         /*
2430          * If there's a bridge associated with that bus enable it. This works
2431          * around races in the generic code if the enabling is done during
2432          * parallel probing. This can be removed once those races have been
2433          * fixed.
2434          */
2435         if (dev) {
2436                 int rc = pci_enable_device(dev);
2437                 if (rc)
2438                         pci_err(dev, "Error enabling bridge (%d)\n", rc);
2439                 pci_set_master(dev);
2440         }
2441
2442         /* Perform the same to child busses */
2443         list_for_each_entry(child, &bus->children, node)
2444                 pnv_pci_enable_bridge(child);
2445 }
2446
2447 static void pnv_pci_enable_bridges(void)
2448 {
2449         struct pci_controller *hose;
2450
2451         list_for_each_entry(hose, &hose_list, list_node)
2452                 pnv_pci_enable_bridge(hose->bus);
2453 }
2454
2455 static void pnv_pci_ioda_fixup(void)
2456 {
2457         pnv_pci_ioda_setup_nvlink();
2458         pnv_pci_ioda_create_dbgfs();
2459
2460         pnv_pci_enable_bridges();
2461
2462 #ifdef CONFIG_EEH
2463         pnv_eeh_post_init();
2464 #endif
2465 }
2466
2467 /*
2468  * Returns the alignment for I/O or memory windows for P2P
2469  * bridges. That actually depends on how PEs are segmented.
2470  * For now, we return I/O or M32 segment size for PE sensitive
2471  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2472  * 1MiB for memory) will be returned.
2473  *
2474  * The current PCI bus might be put into one PE, which was
2475  * create against the parent PCI bridge. For that case, we
2476  * needn't enlarge the alignment so that we can save some
2477  * resources.
2478  */
2479 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2480                                                 unsigned long type)
2481 {
2482         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2483         int num_pci_bridges = 0;
2484         struct pci_dev *bridge;
2485
2486         bridge = bus->self;
2487         while (bridge) {
2488                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2489                         num_pci_bridges++;
2490                         if (num_pci_bridges >= 2)
2491                                 return 1;
2492                 }
2493
2494                 bridge = bridge->bus->self;
2495         }
2496
2497         /*
2498          * We fall back to M32 if M64 isn't supported. We enforce the M64
2499          * alignment for any 64-bit resource, PCIe doesn't care and
2500          * bridges only do 64-bit prefetchable anyway.
2501          */
2502         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2503                 return phb->ioda.m64_segsize;
2504         if (type & IORESOURCE_MEM)
2505                 return phb->ioda.m32_segsize;
2506
2507         return phb->ioda.io_segsize;
2508 }
2509
2510 /*
2511  * We are updating root port or the upstream port of the
2512  * bridge behind the root port with PHB's windows in order
2513  * to accommodate the changes on required resources during
2514  * PCI (slot) hotplug, which is connected to either root
2515  * port or the downstream ports of PCIe switch behind the
2516  * root port.
2517  */
2518 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2519                                            unsigned long type)
2520 {
2521         struct pci_controller *hose = pci_bus_to_host(bus);
2522         struct pnv_phb *phb = hose->private_data;
2523         struct pci_dev *bridge = bus->self;
2524         struct resource *r, *w;
2525         bool msi_region = false;
2526         int i;
2527
2528         /* Check if we need apply fixup to the bridge's windows */
2529         if (!pci_is_root_bus(bridge->bus) &&
2530             !pci_is_root_bus(bridge->bus->self->bus))
2531                 return;
2532
2533         /* Fixup the resources */
2534         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2535                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2536                 if (!r->flags || !r->parent)
2537                         continue;
2538
2539                 w = NULL;
2540                 if (r->flags & type & IORESOURCE_IO)
2541                         w = &hose->io_resource;
2542                 else if (pnv_pci_is_m64(phb, r) &&
2543                          (type & IORESOURCE_PREFETCH) &&
2544                          phb->ioda.m64_segsize)
2545                         w = &hose->mem_resources[1];
2546                 else if (r->flags & type & IORESOURCE_MEM) {
2547                         w = &hose->mem_resources[0];
2548                         msi_region = true;
2549                 }
2550
2551                 r->start = w->start;
2552                 r->end = w->end;
2553
2554                 /* The 64KB 32-bits MSI region shouldn't be included in
2555                  * the 32-bits bridge window. Otherwise, we can see strange
2556                  * issues. One of them is EEH error observed on Garrison.
2557                  *
2558                  * Exclude top 1MB region which is the minimal alignment of
2559                  * 32-bits bridge window.
2560                  */
2561                 if (msi_region) {
2562                         r->end += 0x10000;
2563                         r->end -= 0x100000;
2564                 }
2565         }
2566 }
2567
2568 static void pnv_pci_configure_bus(struct pci_bus *bus)
2569 {
2570         struct pci_dev *bridge = bus->self;
2571         struct pnv_ioda_pe *pe;
2572         bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2573
2574         dev_info(&bus->dev, "Configuring PE for bus\n");
2575
2576         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2577         if (WARN_ON(list_empty(&bus->devices)))
2578                 return;
2579
2580         /* Reserve PEs according to used M64 resources */
2581         pnv_ioda_reserve_m64_pe(bus, NULL, all);
2582
2583         /*
2584          * Assign PE. We might run here because of partial hotplug.
2585          * For the case, we just pick up the existing PE and should
2586          * not allocate resources again.
2587          */
2588         pe = pnv_ioda_setup_bus_PE(bus, all);
2589         if (!pe)
2590                 return;
2591
2592         pnv_ioda_setup_pe_seg(pe);
2593 }
2594
2595 static resource_size_t pnv_pci_default_alignment(void)
2596 {
2597         return PAGE_SIZE;
2598 }
2599
2600 /* Prevent enabling devices for which we couldn't properly
2601  * assign a PE
2602  */
2603 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2604 {
2605         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2606         struct pci_dn *pdn;
2607
2608         /* The function is probably called while the PEs have
2609          * not be created yet. For example, resource reassignment
2610          * during PCI probe period. We just skip the check if
2611          * PEs isn't ready.
2612          */
2613         if (!phb->initialized)
2614                 return true;
2615
2616         pdn = pci_get_pdn(dev);
2617         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2618                 return false;
2619
2620         return true;
2621 }
2622
2623 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2624 {
2625         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2626         struct pnv_phb *phb = hose->private_data;
2627         struct pci_dn *pdn;
2628         struct pnv_ioda_pe *pe;
2629
2630         if (!phb->initialized)
2631                 return true;
2632
2633         pdn = pci_get_pdn(dev);
2634         if (!pdn)
2635                 return false;
2636
2637         if (pdn->pe_number == IODA_INVALID_PE) {
2638                 pe = pnv_ioda_setup_dev_PE(dev);
2639                 if (!pe)
2640                         return false;
2641         }
2642         return true;
2643 }
2644
2645 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2646                                        int num)
2647 {
2648         struct pnv_ioda_pe *pe = container_of(table_group,
2649                                               struct pnv_ioda_pe, table_group);
2650         struct pnv_phb *phb = pe->phb;
2651         unsigned int idx;
2652         long rc;
2653
2654         pe_info(pe, "Removing DMA window #%d\n", num);
2655         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2656                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2657                         continue;
2658
2659                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2660                                                 idx, 0, 0ul, 0ul, 0ul);
2661                 if (rc != OPAL_SUCCESS) {
2662                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2663                                 rc, idx);
2664                         return rc;
2665                 }
2666
2667                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2668         }
2669
2670         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2671         return OPAL_SUCCESS;
2672 }
2673
2674 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2675 {
2676         struct iommu_table *tbl = pe->table_group.tables[0];
2677         int64_t rc;
2678
2679         if (!pe->dma_setup_done)
2680                 return;
2681
2682         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2683         if (rc != OPAL_SUCCESS)
2684                 return;
2685
2686         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
2687         if (pe->table_group.group) {
2688                 iommu_group_put(pe->table_group.group);
2689                 WARN_ON(pe->table_group.group);
2690         }
2691
2692         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2693         iommu_tce_table_put(tbl);
2694 }
2695
2696 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2697 {
2698         struct iommu_table *tbl = pe->table_group.tables[0];
2699         int64_t rc;
2700
2701         if (!pe->dma_setup_done)
2702                 return;
2703
2704         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2705         if (rc)
2706                 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2707
2708         pnv_pci_ioda2_set_bypass(pe, false);
2709         if (pe->table_group.group) {
2710                 iommu_group_put(pe->table_group.group);
2711                 WARN_ON(pe->table_group.group);
2712         }
2713
2714         iommu_tce_table_put(tbl);
2715 }
2716
2717 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2718                                  unsigned short win,
2719                                  unsigned int *map)
2720 {
2721         struct pnv_phb *phb = pe->phb;
2722         int idx;
2723         int64_t rc;
2724
2725         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2726                 if (map[idx] != pe->pe_number)
2727                         continue;
2728
2729                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2730                                 phb->ioda.reserved_pe_idx, win, 0, idx);
2731
2732                 if (rc != OPAL_SUCCESS)
2733                         pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2734                                 rc, win, idx);
2735
2736                 map[idx] = IODA_INVALID_PE;
2737         }
2738 }
2739
2740 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2741 {
2742         struct pnv_phb *phb = pe->phb;
2743
2744         if (phb->type == PNV_PHB_IODA1) {
2745                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2746                                      phb->ioda.io_segmap);
2747                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2748                                      phb->ioda.m32_segmap);
2749                 /* M64 is pre-configured by pnv_ioda1_init_m64() */
2750         } else if (phb->type == PNV_PHB_IODA2) {
2751                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2752                                      phb->ioda.m32_segmap);
2753         }
2754 }
2755
2756 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2757 {
2758         struct pnv_phb *phb = pe->phb;
2759         struct pnv_ioda_pe *slave, *tmp;
2760
2761         pe_info(pe, "Releasing PE\n");
2762
2763         mutex_lock(&phb->ioda.pe_list_mutex);
2764         list_del(&pe->list);
2765         mutex_unlock(&phb->ioda.pe_list_mutex);
2766
2767         switch (phb->type) {
2768         case PNV_PHB_IODA1:
2769                 pnv_pci_ioda1_release_pe_dma(pe);
2770                 break;
2771         case PNV_PHB_IODA2:
2772                 pnv_pci_ioda2_release_pe_dma(pe);
2773                 break;
2774         case PNV_PHB_NPU_OCAPI:
2775                 break;
2776         default:
2777                 WARN_ON(1);
2778         }
2779
2780         pnv_ioda_release_pe_seg(pe);
2781         pnv_ioda_deconfigure_pe(pe->phb, pe);
2782
2783         /* Release slave PEs in the compound PE */
2784         if (pe->flags & PNV_IODA_PE_MASTER) {
2785                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2786                         list_del(&slave->list);
2787                         pnv_ioda_free_pe(slave);
2788                 }
2789         }
2790
2791         /*
2792          * The PE for root bus can be removed because of hotplug in EEH
2793          * recovery for fenced PHB error. We need to mark the PE dead so
2794          * that it can be populated again in PCI hot add path. The PE
2795          * shouldn't be destroyed as it's the global reserved resource.
2796          */
2797         if (phb->ioda.root_pe_idx == pe->pe_number)
2798                 return;
2799
2800         pnv_ioda_free_pe(pe);
2801 }
2802
2803 static void pnv_pci_release_device(struct pci_dev *pdev)
2804 {
2805         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2806         struct pci_dn *pdn = pci_get_pdn(pdev);
2807         struct pnv_ioda_pe *pe;
2808
2809         /* The VF PE state is torn down when sriov_disable() is called */
2810         if (pdev->is_virtfn)
2811                 return;
2812
2813         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2814                 return;
2815
2816 #ifdef CONFIG_PCI_IOV
2817         /*
2818          * FIXME: Try move this to sriov_disable(). It's here since we allocate
2819          * the iov state at probe time since we need to fiddle with the IOV
2820          * resources.
2821          */
2822         if (pdev->is_physfn)
2823                 kfree(pdev->dev.archdata.iov_data);
2824 #endif
2825
2826         /*
2827          * PCI hotplug can happen as part of EEH error recovery. The @pdn
2828          * isn't removed and added afterwards in this scenario. We should
2829          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2830          * device count is decreased on removing devices while failing to
2831          * be increased on adding devices. It leads to unbalanced PE's device
2832          * count and eventually make normal PCI hotplug path broken.
2833          */
2834         pe = &phb->ioda.pe_array[pdn->pe_number];
2835         pdn->pe_number = IODA_INVALID_PE;
2836
2837         WARN_ON(--pe->device_count < 0);
2838         if (pe->device_count == 0)
2839                 pnv_ioda_release_pe(pe);
2840 }
2841
2842 static void pnv_npu_disable_device(struct pci_dev *pdev)
2843 {
2844         struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
2845         struct eeh_pe *eehpe = edev ? edev->pe : NULL;
2846
2847         if (eehpe && eeh_ops && eeh_ops->reset)
2848                 eeh_ops->reset(eehpe, EEH_RESET_HOT);
2849 }
2850
2851 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2852 {
2853         struct pnv_phb *phb = hose->private_data;
2854
2855         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2856                        OPAL_ASSERT_RESET);
2857 }
2858
2859 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2860 {
2861         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2862         struct pnv_ioda_pe *pe;
2863
2864         list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2865                 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2866                         continue;
2867
2868                 if (!pe->pbus)
2869                         continue;
2870
2871                 if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2872                         pe->pbus = bus;
2873                         break;
2874                 }
2875         }
2876 }
2877
2878 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2879         .dma_dev_setup          = pnv_pci_ioda_dma_dev_setup,
2880         .dma_bus_setup          = pnv_pci_ioda_dma_bus_setup,
2881         .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2882         .setup_msi_irqs         = pnv_setup_msi_irqs,
2883         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
2884         .enable_device_hook     = pnv_pci_enable_device_hook,
2885         .release_device         = pnv_pci_release_device,
2886         .window_alignment       = pnv_pci_window_alignment,
2887         .setup_bridge           = pnv_pci_fixup_bridge_resources,
2888         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2889         .shutdown               = pnv_pci_ioda_shutdown,
2890 };
2891
2892 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
2893         .setup_msi_irqs         = pnv_setup_msi_irqs,
2894         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
2895         .enable_device_hook     = pnv_pci_enable_device_hook,
2896         .window_alignment       = pnv_pci_window_alignment,
2897         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2898         .shutdown               = pnv_pci_ioda_shutdown,
2899         .disable_device         = pnv_npu_disable_device,
2900 };
2901
2902 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2903         .enable_device_hook     = pnv_ocapi_enable_device_hook,
2904         .release_device         = pnv_pci_release_device,
2905         .window_alignment       = pnv_pci_window_alignment,
2906         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2907         .shutdown               = pnv_pci_ioda_shutdown,
2908 };
2909
2910 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2911                                          u64 hub_id, int ioda_type)
2912 {
2913         struct pci_controller *hose;
2914         struct pnv_phb *phb;
2915         unsigned long size, m64map_off, m32map_off, pemap_off;
2916         unsigned long iomap_off = 0, dma32map_off = 0;
2917         struct pnv_ioda_pe *root_pe;
2918         struct resource r;
2919         const __be64 *prop64;
2920         const __be32 *prop32;
2921         int len;
2922         unsigned int segno;
2923         u64 phb_id;
2924         void *aux;
2925         long rc;
2926
2927         if (!of_device_is_available(np))
2928                 return;
2929
2930         pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2931
2932         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2933         if (!prop64) {
2934                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2935                 return;
2936         }
2937         phb_id = be64_to_cpup(prop64);
2938         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2939
2940         phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
2941         if (!phb)
2942                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2943                       sizeof(*phb));
2944
2945         /* Allocate PCI controller */
2946         phb->hose = hose = pcibios_alloc_controller(np);
2947         if (!phb->hose) {
2948                 pr_err("  Can't allocate PCI controller for %pOF\n",
2949                        np);
2950                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
2951                 return;
2952         }
2953
2954         spin_lock_init(&phb->lock);
2955         prop32 = of_get_property(np, "bus-range", &len);
2956         if (prop32 && len == 8) {
2957                 hose->first_busno = be32_to_cpu(prop32[0]);
2958                 hose->last_busno = be32_to_cpu(prop32[1]);
2959         } else {
2960                 pr_warn("  Broken <bus-range> on %pOF\n", np);
2961                 hose->first_busno = 0;
2962                 hose->last_busno = 0xff;
2963         }
2964         hose->private_data = phb;
2965         phb->hub_id = hub_id;
2966         phb->opal_id = phb_id;
2967         phb->type = ioda_type;
2968         mutex_init(&phb->ioda.pe_alloc_mutex);
2969
2970         /* Detect specific models for error handling */
2971         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2972                 phb->model = PNV_PHB_MODEL_P7IOC;
2973         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2974                 phb->model = PNV_PHB_MODEL_PHB3;
2975         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
2976                 phb->model = PNV_PHB_MODEL_NPU;
2977         else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
2978                 phb->model = PNV_PHB_MODEL_NPU2;
2979         else
2980                 phb->model = PNV_PHB_MODEL_UNKNOWN;
2981
2982         /* Initialize diagnostic data buffer */
2983         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2984         if (prop32)
2985                 phb->diag_data_size = be32_to_cpup(prop32);
2986         else
2987                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2988
2989         phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
2990         if (!phb->diag_data)
2991                 panic("%s: Failed to allocate %u bytes\n", __func__,
2992                       phb->diag_data_size);
2993
2994         /* Parse 32-bit and IO ranges (if any) */
2995         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2996
2997         /* Get registers */
2998         if (!of_address_to_resource(np, 0, &r)) {
2999                 phb->regs_phys = r.start;
3000                 phb->regs = ioremap(r.start, resource_size(&r));
3001                 if (phb->regs == NULL)
3002                         pr_err("  Failed to map registers !\n");
3003         }
3004
3005         /* Initialize more IODA stuff */
3006         phb->ioda.total_pe_num = 1;
3007         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3008         if (prop32)
3009                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3010         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3011         if (prop32)
3012                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3013
3014         /* Invalidate RID to PE# mapping */
3015         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3016                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3017
3018         /* Parse 64-bit MMIO range */
3019         pnv_ioda_parse_m64_window(phb);
3020
3021         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3022         /* FW Has already off top 64k of M32 space (MSI space) */
3023         phb->ioda.m32_size += 0x10000;
3024
3025         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3026         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3027         phb->ioda.io_size = hose->pci_io_size;
3028         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3029         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3030
3031         /* Calculate how many 32-bit TCE segments we have */
3032         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3033                                 PNV_IODA1_DMA32_SEGSIZE;
3034
3035         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3036         size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3037                         sizeof(unsigned long));
3038         m64map_off = size;
3039         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3040         m32map_off = size;
3041         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3042         if (phb->type == PNV_PHB_IODA1) {
3043                 iomap_off = size;
3044                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3045                 dma32map_off = size;
3046                 size += phb->ioda.dma32_count *
3047                         sizeof(phb->ioda.dma32_segmap[0]);
3048         }
3049         pemap_off = size;
3050         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3051         aux = memblock_alloc(size, SMP_CACHE_BYTES);
3052         if (!aux)
3053                 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3054         phb->ioda.pe_alloc = aux;
3055         phb->ioda.m64_segmap = aux + m64map_off;
3056         phb->ioda.m32_segmap = aux + m32map_off;
3057         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3058                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3059                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3060         }
3061         if (phb->type == PNV_PHB_IODA1) {
3062                 phb->ioda.io_segmap = aux + iomap_off;
3063                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3064                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3065
3066                 phb->ioda.dma32_segmap = aux + dma32map_off;
3067                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3068                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3069         }
3070         phb->ioda.pe_array = aux + pemap_off;
3071
3072         /*
3073          * Choose PE number for root bus, which shouldn't have
3074          * M64 resources consumed by its child devices. To pick
3075          * the PE number adjacent to the reserved one if possible.
3076          */
3077         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3078         if (phb->ioda.reserved_pe_idx == 0) {
3079                 phb->ioda.root_pe_idx = 1;
3080                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3081         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3082                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3083                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3084         } else {
3085                 /* otherwise just allocate one */
3086                 root_pe = pnv_ioda_alloc_pe(phb, 1);
3087                 phb->ioda.root_pe_idx = root_pe->pe_number;
3088         }
3089
3090         INIT_LIST_HEAD(&phb->ioda.pe_list);
3091         mutex_init(&phb->ioda.pe_list_mutex);
3092
3093         /* Calculate how many 32-bit TCE segments we have */
3094         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3095                                 PNV_IODA1_DMA32_SEGSIZE;
3096
3097 #if 0 /* We should really do that ... */
3098         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3099                                          window_type,
3100                                          window_num,
3101                                          starting_real_address,
3102                                          starting_pci_address,
3103                                          segment_size);
3104 #endif
3105
3106         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3107                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3108                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3109         if (phb->ioda.m64_size)
3110                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3111                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3112         if (phb->ioda.io_size)
3113                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3114                         phb->ioda.io_size, phb->ioda.io_segsize);
3115
3116
3117         phb->hose->ops = &pnv_pci_ops;
3118         phb->get_pe_state = pnv_ioda_get_pe_state;
3119         phb->freeze_pe = pnv_ioda_freeze_pe;
3120         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3121
3122         /* Setup MSI support */
3123         pnv_pci_init_ioda_msis(phb);
3124
3125         /*
3126          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3127          * to let the PCI core do resource assignment. It's supposed
3128          * that the PCI core will do correct I/O and MMIO alignment
3129          * for the P2P bridge bars so that each PCI bus (excluding
3130          * the child P2P bridges) can form individual PE.
3131          */
3132         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3133
3134         switch (phb->type) {
3135         case PNV_PHB_NPU_NVLINK:
3136                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3137                 break;
3138         case PNV_PHB_NPU_OCAPI:
3139                 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3140                 break;
3141         default:
3142                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3143         }
3144
3145         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3146
3147 #ifdef CONFIG_PCI_IOV
3148         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3149         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3150         ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3151         ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3152 #endif
3153
3154         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3155
3156         /* Reset IODA tables to a clean state */
3157         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3158         if (rc)
3159                 pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3160
3161         /*
3162          * If we're running in kdump kernel, the previous kernel never
3163          * shutdown PCI devices correctly. We already got IODA table
3164          * cleaned out. So we have to issue PHB reset to stop all PCI
3165          * transactions from previous kernel. The ppc_pci_reset_phbs
3166          * kernel parameter will force this reset too. Additionally,
3167          * if the IODA reset above failed then use a bigger hammer.
3168          * This can happen if we get a PHB fatal error in very early
3169          * boot.
3170          */
3171         if (is_kdump_kernel() || pci_reset_phbs || rc) {
3172                 pr_info("  Issue PHB reset ...\n");
3173                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3174                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3175         }
3176
3177         /* Remove M64 resource if we can't configure it successfully */
3178         if (!phb->init_m64 || phb->init_m64(phb))
3179                 hose->mem_resources[1].flags = 0;
3180 }
3181
3182 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3183 {
3184         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3185 }
3186
3187 void __init pnv_pci_init_npu_phb(struct device_node *np)
3188 {
3189         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3190 }
3191
3192 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3193 {
3194         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3195 }
3196
3197 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3198 {
3199         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3200
3201         if (!machine_is(powernv))
3202                 return;
3203
3204         if (phb->type == PNV_PHB_NPU_OCAPI)
3205                 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3206 }
3207 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3208
3209 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3210 {
3211         struct device_node *phbn;
3212         const __be64 *prop64;
3213         u64 hub_id;
3214
3215         pr_info("Probing IODA IO-Hub %pOF\n", np);
3216
3217         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3218         if (!prop64) {
3219                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3220                 return;
3221         }
3222         hub_id = be64_to_cpup(prop64);
3223         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3224
3225         /* Count child PHBs */
3226         for_each_child_of_node(np, phbn) {
3227                 /* Look for IODA1 PHBs */
3228                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3229                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3230         }
3231 }