Linux 6.7-rc7
[linux-modified.git] / arch / powerpc / platforms / powernv / opal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerNV OPAL high level interfaces
4  *
5  * Copyright 2011 IBM Corp.
6  */
7
8 #define pr_fmt(fmt)     "opal: " fmt
9
10 #include <linux/printk.h>
11 #include <linux/types.h>
12 #include <linux/of.h>
13 #include <linux/of_fdt.h>
14 #include <linux/of_platform.h>
15 #include <linux/of_address.h>
16 #include <linux/interrupt.h>
17 #include <linux/notifier.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/kobject.h>
21 #include <linux/delay.h>
22 #include <linux/memblock.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/kmsg_dump.h>
26 #include <linux/console.h>
27 #include <linux/sched/debug.h>
28
29 #include <asm/machdep.h>
30 #include <asm/opal.h>
31 #include <asm/firmware.h>
32 #include <asm/mce.h>
33 #include <asm/imc-pmu.h>
34 #include <asm/bug.h>
35
36 #include "powernv.h"
37
38 #define OPAL_MSG_QUEUE_MAX 16
39
40 struct opal_msg_node {
41         struct list_head        list;
42         struct opal_msg         msg;
43 };
44
45 static DEFINE_SPINLOCK(msg_list_lock);
46 static LIST_HEAD(msg_list);
47
48 /* /sys/firmware/opal */
49 struct kobject *opal_kobj;
50
51 struct opal {
52         u64 base;
53         u64 entry;
54         u64 size;
55 } opal;
56
57 struct mcheck_recoverable_range {
58         u64 start_addr;
59         u64 end_addr;
60         u64 recover_addr;
61 };
62
63 static int msg_list_size;
64
65 static struct mcheck_recoverable_range *mc_recoverable_range;
66 static int mc_recoverable_range_len;
67
68 struct device_node *opal_node;
69 static DEFINE_SPINLOCK(opal_write_lock);
70 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
71 static uint32_t opal_heartbeat;
72 static struct task_struct *kopald_tsk;
73 static struct opal_msg *opal_msg;
74 static u32 opal_msg_size __ro_after_init;
75
76 void __init opal_configure_cores(void)
77 {
78         u64 reinit_flags = 0;
79
80         /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
81          *
82          * It will preserve non volatile GPRs and HSPRG0/1. It will
83          * also restore HIDs and other SPRs to their original value
84          * but it might clobber a bunch.
85          */
86 #ifdef __BIG_ENDIAN__
87         reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
88 #else
89         reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
90 #endif
91
92         /*
93          * POWER9 always support running hash:
94          *  ie. Host hash  supports  hash guests
95          *      Host radix supports  hash/radix guests
96          */
97         if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
98                 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
99                 if (early_radix_enabled())
100                         reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
101         }
102
103         opal_reinit_cpus(reinit_flags);
104
105         /* Restore some bits */
106         if (cur_cpu_spec->cpu_restore)
107                 cur_cpu_spec->cpu_restore();
108 }
109
110 int __init early_init_dt_scan_opal(unsigned long node,
111                                    const char *uname, int depth, void *data)
112 {
113         const void *basep, *entryp, *sizep;
114         int basesz, entrysz, runtimesz;
115
116         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
117                 return 0;
118
119         basep  = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
120         entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
121         sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
122
123         if (!basep || !entryp || !sizep)
124                 return 1;
125
126         opal.base = of_read_number(basep, basesz/4);
127         opal.entry = of_read_number(entryp, entrysz/4);
128         opal.size = of_read_number(sizep, runtimesz/4);
129
130         pr_debug("OPAL Base  = 0x%llx (basep=%p basesz=%d)\n",
131                  opal.base, basep, basesz);
132         pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
133                  opal.entry, entryp, entrysz);
134         pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
135                  opal.size, sizep, runtimesz);
136
137         if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
138                 powerpc_firmware_features |= FW_FEATURE_OPAL;
139                 pr_debug("OPAL detected !\n");
140         } else {
141                 panic("OPAL != V3 detected, no longer supported.\n");
142         }
143
144         return 1;
145 }
146
147 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
148                                    const char *uname, int depth, void *data)
149 {
150         int i, psize, size;
151         const __be32 *prop;
152
153         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
154                 return 0;
155
156         prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
157
158         if (!prop)
159                 return 1;
160
161         pr_debug("Found machine check recoverable ranges.\n");
162
163         /*
164          * Calculate number of available entries.
165          *
166          * Each recoverable address range entry is (start address, len,
167          * recovery address), 2 cells each for start and recovery address,
168          * 1 cell for len, totalling 5 cells per entry.
169          */
170         mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
171
172         /* Sanity check */
173         if (!mc_recoverable_range_len)
174                 return 1;
175
176         /* Size required to hold all the entries. */
177         size = mc_recoverable_range_len *
178                         sizeof(struct mcheck_recoverable_range);
179
180         /*
181          * Allocate a buffer to hold the MC recoverable ranges.
182          */
183         mc_recoverable_range = memblock_alloc(size, __alignof__(u64));
184         if (!mc_recoverable_range)
185                 panic("%s: Failed to allocate %u bytes align=0x%lx\n",
186                       __func__, size, __alignof__(u64));
187
188         for (i = 0; i < mc_recoverable_range_len; i++) {
189                 mc_recoverable_range[i].start_addr =
190                                         of_read_number(prop + (i * 5) + 0, 2);
191                 mc_recoverable_range[i].end_addr =
192                                         mc_recoverable_range[i].start_addr +
193                                         of_read_number(prop + (i * 5) + 2, 1);
194                 mc_recoverable_range[i].recover_addr =
195                                         of_read_number(prop + (i * 5) + 3, 2);
196
197                 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
198                                 mc_recoverable_range[i].start_addr,
199                                 mc_recoverable_range[i].end_addr,
200                                 mc_recoverable_range[i].recover_addr);
201         }
202         return 1;
203 }
204
205 static int __init opal_register_exception_handlers(void)
206 {
207 #ifdef __BIG_ENDIAN__
208         u64 glue;
209
210         if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
211                 return -ENODEV;
212
213         /* Hookup some exception handlers except machine check. We use the
214          * fwnmi area at 0x7000 to provide the glue space to OPAL
215          */
216         glue = 0x7000;
217
218         /*
219          * Only ancient OPAL firmware requires this.
220          * Specifically, firmware from FW810.00 (released June 2014)
221          * through FW810.20 (Released October 2014).
222          *
223          * Check if we are running on newer (post Oct 2014) firmware that
224          * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to
225          * patch the HMI interrupt and we catch it directly in Linux.
226          *
227          * For older firmware (i.e < FW810.20), we fallback to old behavior and
228          * let OPAL patch the HMI vector and handle it inside OPAL firmware.
229          *
230          * For newer firmware we catch/handle the HMI directly in Linux.
231          */
232         if (!opal_check_token(OPAL_HANDLE_HMI)) {
233                 pr_info("Old firmware detected, OPAL handles HMIs.\n");
234                 opal_register_exception_handler(
235                                 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
236                                 0, glue);
237                 glue += 128;
238         }
239
240         /*
241          * Only applicable to ancient firmware, all modern
242          * (post March 2015/skiboot 5.0) firmware will just return
243          * OPAL_UNSUPPORTED.
244          */
245         opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
246 #endif
247
248         return 0;
249 }
250 machine_early_initcall(powernv, opal_register_exception_handlers);
251
252 static void queue_replay_msg(void *msg)
253 {
254         struct opal_msg_node *msg_node;
255
256         if (msg_list_size < OPAL_MSG_QUEUE_MAX) {
257                 msg_node = kzalloc(sizeof(*msg_node), GFP_ATOMIC);
258                 if (msg_node) {
259                         INIT_LIST_HEAD(&msg_node->list);
260                         memcpy(&msg_node->msg, msg, sizeof(struct opal_msg));
261                         list_add_tail(&msg_node->list, &msg_list);
262                         msg_list_size++;
263                 } else
264                         pr_warn_once("message queue no memory\n");
265
266                 if (msg_list_size >= OPAL_MSG_QUEUE_MAX)
267                         pr_warn_once("message queue full\n");
268         }
269 }
270
271 static void dequeue_replay_msg(enum opal_msg_type msg_type)
272 {
273         struct opal_msg_node *msg_node, *tmp;
274
275         list_for_each_entry_safe(msg_node, tmp, &msg_list, list) {
276                 if (be32_to_cpu(msg_node->msg.msg_type) != msg_type)
277                         continue;
278
279                 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
280                                         msg_type,
281                                         &msg_node->msg);
282
283                 list_del(&msg_node->list);
284                 kfree(msg_node);
285                 msg_list_size--;
286         }
287 }
288
289 /*
290  * Opal message notifier based on message type. Allow subscribers to get
291  * notified for specific messgae type.
292  */
293 int opal_message_notifier_register(enum opal_msg_type msg_type,
294                                         struct notifier_block *nb)
295 {
296         int ret;
297         unsigned long flags;
298
299         if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
300                 pr_warn("%s: Invalid arguments, msg_type:%d\n",
301                         __func__, msg_type);
302                 return -EINVAL;
303         }
304
305         spin_lock_irqsave(&msg_list_lock, flags);
306         ret = atomic_notifier_chain_register(
307                 &opal_msg_notifier_head[msg_type], nb);
308
309         /*
310          * If the registration succeeded, replay any queued messages that came
311          * in prior to the notifier chain registration. msg_list_lock held here
312          * to ensure they're delivered prior to any subsequent messages.
313          */
314         if (ret == 0)
315                 dequeue_replay_msg(msg_type);
316
317         spin_unlock_irqrestore(&msg_list_lock, flags);
318
319         return ret;
320 }
321 EXPORT_SYMBOL_GPL(opal_message_notifier_register);
322
323 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
324                                      struct notifier_block *nb)
325 {
326         return atomic_notifier_chain_unregister(
327                         &opal_msg_notifier_head[msg_type], nb);
328 }
329 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
330
331 static void opal_message_do_notify(uint32_t msg_type, void *msg)
332 {
333         unsigned long flags;
334         bool queued = false;
335
336         spin_lock_irqsave(&msg_list_lock, flags);
337         if (opal_msg_notifier_head[msg_type].head == NULL) {
338                 /*
339                  * Queue up the msg since no notifiers have registered
340                  * yet for this msg_type.
341                  */
342                 queue_replay_msg(msg);
343                 queued = true;
344         }
345         spin_unlock_irqrestore(&msg_list_lock, flags);
346
347         if (queued)
348                 return;
349
350         /* notify subscribers */
351         atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
352                                         msg_type, msg);
353 }
354
355 static void opal_handle_message(void)
356 {
357         s64 ret;
358         u32 type;
359
360         ret = opal_get_msg(__pa(opal_msg), opal_msg_size);
361         /* No opal message pending. */
362         if (ret == OPAL_RESOURCE)
363                 return;
364
365         /* check for errors. */
366         if (ret) {
367                 pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
368                         __func__, ret);
369                 return;
370         }
371
372         type = be32_to_cpu(opal_msg->msg_type);
373
374         /* Sanity check */
375         if (type >= OPAL_MSG_TYPE_MAX) {
376                 pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
377                 return;
378         }
379         opal_message_do_notify(type, (void *)opal_msg);
380 }
381
382 static irqreturn_t opal_message_notify(int irq, void *data)
383 {
384         opal_handle_message();
385         return IRQ_HANDLED;
386 }
387
388 static int __init opal_message_init(struct device_node *opal_node)
389 {
390         int ret, i, irq;
391
392         ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size);
393         if (ret) {
394                 pr_notice("Failed to read opal-msg-size property\n");
395                 opal_msg_size = sizeof(struct opal_msg);
396         }
397
398         opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
399         if (!opal_msg) {
400                 opal_msg_size = sizeof(struct opal_msg);
401                 /* Try to allocate fixed message size */
402                 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
403                 BUG_ON(opal_msg == NULL);
404         }
405
406         for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
407                 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
408
409         irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
410         if (!irq) {
411                 pr_err("%s: Can't register OPAL event irq (%d)\n",
412                        __func__, irq);
413                 return irq;
414         }
415
416         ret = request_irq(irq, opal_message_notify,
417                         IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
418         if (ret) {
419                 pr_err("%s: Can't request OPAL event irq (%d)\n",
420                        __func__, ret);
421                 return ret;
422         }
423
424         return 0;
425 }
426
427 int opal_get_chars(uint32_t vtermno, char *buf, int count)
428 {
429         s64 rc;
430         __be64 evt, len;
431
432         if (!opal.entry)
433                 return -ENODEV;
434         opal_poll_events(&evt);
435         if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
436                 return 0;
437         len = cpu_to_be64(count);
438         rc = opal_console_read(vtermno, &len, buf);
439         if (rc == OPAL_SUCCESS)
440                 return be64_to_cpu(len);
441         return 0;
442 }
443
444 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic)
445 {
446         unsigned long flags = 0 /* shut up gcc */;
447         int written;
448         __be64 olen;
449         s64 rc;
450
451         if (!opal.entry)
452                 return -ENODEV;
453
454         if (atomic)
455                 spin_lock_irqsave(&opal_write_lock, flags);
456         rc = opal_console_write_buffer_space(vtermno, &olen);
457         if (rc || be64_to_cpu(olen) < total_len) {
458                 /* Closed -> drop characters */
459                 if (rc)
460                         written = total_len;
461                 else
462                         written = -EAGAIN;
463                 goto out;
464         }
465
466         /* Should not get a partial write here because space is available. */
467         olen = cpu_to_be64(total_len);
468         rc = opal_console_write(vtermno, &olen, data);
469         if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
470                 if (rc == OPAL_BUSY_EVENT)
471                         opal_poll_events(NULL);
472                 written = -EAGAIN;
473                 goto out;
474         }
475
476         /* Closed or other error drop */
477         if (rc != OPAL_SUCCESS) {
478                 written = opal_error_code(rc);
479                 goto out;
480         }
481
482         written = be64_to_cpu(olen);
483         if (written < total_len) {
484                 if (atomic) {
485                         /* Should not happen */
486                         pr_warn("atomic console write returned partial "
487                                 "len=%d written=%d\n", total_len, written);
488                 }
489                 if (!written)
490                         written = -EAGAIN;
491         }
492
493 out:
494         if (atomic)
495                 spin_unlock_irqrestore(&opal_write_lock, flags);
496
497         return written;
498 }
499
500 int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
501 {
502         return __opal_put_chars(vtermno, data, total_len, false);
503 }
504
505 /*
506  * opal_put_chars_atomic will not perform partial-writes. Data will be
507  * atomically written to the terminal or not at all. This is not strictly
508  * true at the moment because console space can race with OPAL's console
509  * writes.
510  */
511 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len)
512 {
513         return __opal_put_chars(vtermno, data, total_len, true);
514 }
515
516 static s64 __opal_flush_console(uint32_t vtermno)
517 {
518         s64 rc;
519
520         if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
521                 __be64 evt;
522
523                 /*
524                  * If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
525                  * the console can still be flushed by calling the polling
526                  * function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
527                  */
528                 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
529
530                 opal_poll_events(&evt);
531                 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
532                         return OPAL_SUCCESS;
533                 return OPAL_BUSY;
534
535         } else {
536                 rc = opal_console_flush(vtermno);
537                 if (rc == OPAL_BUSY_EVENT) {
538                         opal_poll_events(NULL);
539                         rc = OPAL_BUSY;
540                 }
541                 return rc;
542         }
543
544 }
545
546 /*
547  * opal_flush_console spins until the console is flushed
548  */
549 int opal_flush_console(uint32_t vtermno)
550 {
551         for (;;) {
552                 s64 rc = __opal_flush_console(vtermno);
553
554                 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
555                         mdelay(1);
556                         continue;
557                 }
558
559                 return opal_error_code(rc);
560         }
561 }
562
563 /*
564  * opal_flush_chars is an hvc interface that sleeps until the console is
565  * flushed if wait, otherwise it will return -EBUSY if the console has data,
566  * -EAGAIN if it has data and some of it was flushed.
567  */
568 int opal_flush_chars(uint32_t vtermno, bool wait)
569 {
570         for (;;) {
571                 s64 rc = __opal_flush_console(vtermno);
572
573                 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
574                         if (wait) {
575                                 msleep(OPAL_BUSY_DELAY_MS);
576                                 continue;
577                         }
578                         if (rc == OPAL_PARTIAL)
579                                 return -EAGAIN;
580                 }
581
582                 return opal_error_code(rc);
583         }
584 }
585
586 static int opal_recover_mce(struct pt_regs *regs,
587                                         struct machine_check_event *evt)
588 {
589         int recovered = 0;
590
591         if (regs_is_unrecoverable(regs)) {
592                 /* If MSR_RI isn't set, we cannot recover */
593                 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
594                 recovered = 0;
595         } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
596                 /* Platform corrected itself */
597                 recovered = 1;
598         } else if (evt->severity == MCE_SEV_FATAL) {
599                 /* Fatal machine check */
600                 pr_err("Machine check interrupt is fatal\n");
601                 recovered = 0;
602         }
603
604         if (!recovered && evt->sync_error) {
605                 /*
606                  * Try to kill processes if we get a synchronous machine check
607                  * (e.g., one caused by execution of this instruction). This
608                  * will devolve into a panic if we try to kill init or are in
609                  * an interrupt etc.
610                  *
611                  * TODO: Queue up this address for hwpoisioning later.
612                  * TODO: This is not quite right for d-side machine
613                  *       checks ->nip is not necessarily the important
614                  *       address.
615                  */
616                 if ((user_mode(regs))) {
617                         _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
618                         recovered = 1;
619                 } else if (die_will_crash()) {
620                         /*
621                          * die() would kill the kernel, so better to go via
622                          * the platform reboot code that will log the
623                          * machine check.
624                          */
625                         recovered = 0;
626                 } else {
627                         die_mce("Machine check", regs, SIGBUS);
628                         recovered = 1;
629                 }
630         }
631
632         return recovered;
633 }
634
635 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
636 {
637         panic_flush_kmsg_start();
638
639         pr_emerg("Hardware platform error: %s\n", msg);
640         if (regs)
641                 show_regs(regs);
642         smp_send_stop();
643
644         panic_flush_kmsg_end();
645
646         /*
647          * Don't bother to shut things down because this will
648          * xstop the system.
649          */
650         if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
651                                                 == OPAL_UNSUPPORTED) {
652                 pr_emerg("Reboot type %d not supported for %s\n",
653                                 OPAL_REBOOT_PLATFORM_ERROR, msg);
654         }
655
656         /*
657          * We reached here. There can be three possibilities:
658          * 1. We are running on a firmware level that do not support
659          *    opal_cec_reboot2()
660          * 2. We are running on a firmware level that do not support
661          *    OPAL_REBOOT_PLATFORM_ERROR reboot type.
662          * 3. We are running on FSP based system that does not need
663          *    opal to trigger checkstop explicitly for error analysis.
664          *    The FSP PRD component would have already got notified
665          *    about this error through other channels.
666          * 4. We are running on a newer skiboot that by default does
667          *    not cause a checkstop, drops us back to the kernel to
668          *    extract context and state at the time of the error.
669          */
670
671         panic(msg);
672 }
673
674 int opal_machine_check(struct pt_regs *regs)
675 {
676         struct machine_check_event evt;
677
678         if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
679                 return 0;
680
681         /* Print things out */
682         if (evt.version != MCE_V1) {
683                 pr_err("Machine Check Exception, Unknown event version %d !\n",
684                        evt.version);
685                 return 0;
686         }
687         machine_check_print_event_info(&evt, user_mode(regs), false);
688
689         if (opal_recover_mce(regs, &evt))
690                 return 1;
691
692         pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
693 }
694
695 /* Early hmi handler called in real mode. */
696 int opal_hmi_exception_early(struct pt_regs *regs)
697 {
698         s64 rc;
699
700         /*
701          * call opal hmi handler. Pass paca address as token.
702          * The return value OPAL_SUCCESS is an indication that there is
703          * an HMI event generated waiting to pull by Linux.
704          */
705         rc = opal_handle_hmi();
706         if (rc == OPAL_SUCCESS) {
707                 local_paca->hmi_event_available = 1;
708                 return 1;
709         }
710         return 0;
711 }
712
713 int opal_hmi_exception_early2(struct pt_regs *regs)
714 {
715         s64 rc;
716         __be64 out_flags;
717
718         /*
719          * call opal hmi handler.
720          * Check 64-bit flag mask to find out if an event was generated,
721          * and whether TB is still valid or not etc.
722          */
723         rc = opal_handle_hmi2(&out_flags);
724         if (rc != OPAL_SUCCESS)
725                 return 0;
726
727         if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT)
728                 local_paca->hmi_event_available = 1;
729         if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL)
730                 tb_invalid = true;
731         return 1;
732 }
733
734 /* HMI exception handler called in virtual mode when irqs are next enabled. */
735 int opal_handle_hmi_exception(struct pt_regs *regs)
736 {
737         /*
738          * Check if HMI event is available.
739          * if Yes, then wake kopald to process them.
740          */
741         if (!local_paca->hmi_event_available)
742                 return 0;
743
744         local_paca->hmi_event_available = 0;
745         opal_wake_poller();
746
747         return 1;
748 }
749
750 static uint64_t find_recovery_address(uint64_t nip)
751 {
752         int i;
753
754         for (i = 0; i < mc_recoverable_range_len; i++)
755                 if ((nip >= mc_recoverable_range[i].start_addr) &&
756                     (nip < mc_recoverable_range[i].end_addr))
757                     return mc_recoverable_range[i].recover_addr;
758         return 0;
759 }
760
761 bool opal_mce_check_early_recovery(struct pt_regs *regs)
762 {
763         uint64_t recover_addr = 0;
764
765         if (!opal.base || !opal.size)
766                 goto out;
767
768         if ((regs->nip >= opal.base) &&
769                         (regs->nip < (opal.base + opal.size)))
770                 recover_addr = find_recovery_address(regs->nip);
771
772         /*
773          * Setup regs->nip to rfi into fixup address.
774          */
775         if (recover_addr)
776                 regs_set_return_ip(regs, recover_addr);
777
778 out:
779         return !!recover_addr;
780 }
781
782 static int __init opal_sysfs_init(void)
783 {
784         opal_kobj = kobject_create_and_add("opal", firmware_kobj);
785         if (!opal_kobj) {
786                 pr_warn("kobject_create_and_add opal failed\n");
787                 return -ENOMEM;
788         }
789
790         return 0;
791 }
792
793 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj,
794                                 struct bin_attribute *bin_attr, char *buf,
795                                 loff_t off, size_t count)
796 {
797         return memory_read_from_buffer(buf, count, &off, bin_attr->private,
798                                        bin_attr->size);
799 }
800
801 static int opal_add_one_export(struct kobject *parent, const char *export_name,
802                                struct device_node *np, const char *prop_name)
803 {
804         struct bin_attribute *attr = NULL;
805         const char *name = NULL;
806         u64 vals[2];
807         int rc;
808
809         rc = of_property_read_u64_array(np, prop_name, &vals[0], 2);
810         if (rc)
811                 goto out;
812
813         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
814         if (!attr) {
815                 rc = -ENOMEM;
816                 goto out;
817         }
818         name = kstrdup(export_name, GFP_KERNEL);
819         if (!name) {
820                 rc = -ENOMEM;
821                 goto out;
822         }
823
824         sysfs_bin_attr_init(attr);
825         attr->attr.name = name;
826         attr->attr.mode = 0400;
827         attr->read = export_attr_read;
828         attr->private = __va(vals[0]);
829         attr->size = vals[1];
830
831         rc = sysfs_create_bin_file(parent, attr);
832 out:
833         if (rc) {
834                 kfree(name);
835                 kfree(attr);
836         }
837
838         return rc;
839 }
840
841 static void opal_add_exported_attrs(struct device_node *np,
842                                     struct kobject *kobj)
843 {
844         struct device_node *child;
845         struct property *prop;
846
847         for_each_property_of_node(np, prop) {
848                 int rc;
849
850                 if (!strcmp(prop->name, "name") ||
851                     !strcmp(prop->name, "phandle"))
852                         continue;
853
854                 rc = opal_add_one_export(kobj, prop->name, np, prop->name);
855                 if (rc) {
856                         pr_warn("Unable to add export %pOF/%s, rc = %d!\n",
857                                 np, prop->name, rc);
858                 }
859         }
860
861         for_each_child_of_node(np, child) {
862                 struct kobject *child_kobj;
863
864                 child_kobj = kobject_create_and_add(child->name, kobj);
865                 if (!child_kobj) {
866                         pr_err("Unable to create export dir for %pOF\n", child);
867                         continue;
868                 }
869
870                 opal_add_exported_attrs(child, child_kobj);
871         }
872 }
873
874 /*
875  * opal_export_attrs: creates a sysfs node for each property listed in
876  * the device-tree under /ibm,opal/firmware/exports/
877  * All new sysfs nodes are created under /opal/exports/.
878  * This allows for reserved memory regions (e.g. HDAT) to be read.
879  * The new sysfs nodes are only readable by root.
880  */
881 static void opal_export_attrs(void)
882 {
883         struct device_node *np;
884         struct kobject *kobj;
885         int rc;
886
887         np = of_find_node_by_path("/ibm,opal/firmware/exports");
888         if (!np)
889                 return;
890
891         /* Create new 'exports' directory - /sys/firmware/opal/exports */
892         kobj = kobject_create_and_add("exports", opal_kobj);
893         if (!kobj) {
894                 pr_warn("kobject_create_and_add() of exports failed\n");
895                 of_node_put(np);
896                 return;
897         }
898
899         opal_add_exported_attrs(np, kobj);
900
901         /*
902          * NB: symbol_map existed before the generic export interface so it
903          * lives under the top level opal_kobj.
904          */
905         rc = opal_add_one_export(opal_kobj, "symbol_map",
906                                  np->parent, "symbol-map");
907         if (rc)
908                 pr_warn("Error %d creating OPAL symbols file\n", rc);
909
910         of_node_put(np);
911 }
912
913 static void __init opal_dump_region_init(void)
914 {
915         void *addr;
916         uint64_t size;
917         int rc;
918
919         if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
920                 return;
921
922         /* Register kernel log buffer */
923         addr = log_buf_addr_get();
924         if (addr == NULL)
925                 return;
926
927         size = log_buf_len_get();
928         if (size == 0)
929                 return;
930
931         rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
932                                        __pa(addr), size);
933         /* Don't warn if this is just an older OPAL that doesn't
934          * know about that call
935          */
936         if (rc && rc != OPAL_UNSUPPORTED)
937                 pr_warn("DUMP: Failed to register kernel log buffer. "
938                         "rc = %d\n", rc);
939 }
940
941 static void __init opal_pdev_init(const char *compatible)
942 {
943         struct device_node *np;
944
945         for_each_compatible_node(np, NULL, compatible)
946                 of_platform_device_create(np, NULL, NULL);
947 }
948
949 static void __init opal_imc_init_dev(void)
950 {
951         struct device_node *np;
952
953         np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
954         if (np)
955                 of_platform_device_create(np, NULL, NULL);
956
957         of_node_put(np);
958 }
959
960 static int kopald(void *unused)
961 {
962         unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
963
964         set_freezable();
965         do {
966                 try_to_freeze();
967
968                 opal_handle_events();
969
970                 set_current_state(TASK_INTERRUPTIBLE);
971                 if (opal_have_pending_events())
972                         __set_current_state(TASK_RUNNING);
973                 else
974                         schedule_timeout(timeout);
975
976         } while (!kthread_should_stop());
977
978         return 0;
979 }
980
981 void opal_wake_poller(void)
982 {
983         if (kopald_tsk)
984                 wake_up_process(kopald_tsk);
985 }
986
987 static void __init opal_init_heartbeat(void)
988 {
989         /* Old firwmware, we assume the HVC heartbeat is sufficient */
990         if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
991                                  &opal_heartbeat) != 0)
992                 opal_heartbeat = 0;
993
994         if (opal_heartbeat)
995                 kopald_tsk = kthread_run(kopald, NULL, "kopald");
996 }
997
998 static int __init opal_init(void)
999 {
1000         struct device_node *np, *consoles, *leds;
1001         int rc;
1002
1003         opal_node = of_find_node_by_path("/ibm,opal");
1004         if (!opal_node) {
1005                 pr_warn("Device node not found\n");
1006                 return -ENODEV;
1007         }
1008
1009         /* Register OPAL consoles if any ports */
1010         consoles = of_find_node_by_path("/ibm,opal/consoles");
1011         if (consoles) {
1012                 for_each_child_of_node(consoles, np) {
1013                         if (!of_node_name_eq(np, "serial"))
1014                                 continue;
1015                         of_platform_device_create(np, NULL, NULL);
1016                 }
1017                 of_node_put(consoles);
1018         }
1019
1020         /* Initialise OPAL messaging system */
1021         opal_message_init(opal_node);
1022
1023         /* Initialise OPAL asynchronous completion interface */
1024         opal_async_comp_init();
1025
1026         /* Initialise OPAL sensor interface */
1027         opal_sensor_init();
1028
1029         /* Initialise OPAL hypervisor maintainence interrupt handling */
1030         opal_hmi_handler_init();
1031
1032         /* Create i2c platform devices */
1033         opal_pdev_init("ibm,opal-i2c");
1034
1035         /* Handle non-volatile memory devices */
1036         opal_pdev_init("pmem-region");
1037
1038         /* Setup a heatbeat thread if requested by OPAL */
1039         opal_init_heartbeat();
1040
1041         /* Detect In-Memory Collection counters and create devices*/
1042         opal_imc_init_dev();
1043
1044         /* Create leds platform devices */
1045         leds = of_find_node_by_path("/ibm,opal/leds");
1046         if (leds) {
1047                 of_platform_device_create(leds, "opal_leds", NULL);
1048                 of_node_put(leds);
1049         }
1050
1051         /* Initialise OPAL message log interface */
1052         opal_msglog_init();
1053
1054         /* Create "opal" kobject under /sys/firmware */
1055         rc = opal_sysfs_init();
1056         if (rc == 0) {
1057                 /* Setup dump region interface */
1058                 opal_dump_region_init();
1059                 /* Setup error log interface */
1060                 rc = opal_elog_init();
1061                 /* Setup code update interface */
1062                 opal_flash_update_init();
1063                 /* Setup platform dump extract interface */
1064                 opal_platform_dump_init();
1065                 /* Setup system parameters interface */
1066                 opal_sys_param_init();
1067                 /* Setup message log sysfs interface. */
1068                 opal_msglog_sysfs_init();
1069                 /* Add all export properties*/
1070                 opal_export_attrs();
1071         }
1072
1073         /* Initialize platform devices: IPMI backend, PRD & flash interface */
1074         opal_pdev_init("ibm,opal-ipmi");
1075         opal_pdev_init("ibm,opal-flash");
1076         opal_pdev_init("ibm,opal-prd");
1077
1078         /* Initialise platform device: oppanel interface */
1079         opal_pdev_init("ibm,opal-oppanel");
1080
1081         /* Initialise OPAL kmsg dumper for flushing console on panic */
1082         opal_kmsg_init();
1083
1084         /* Initialise OPAL powercap interface */
1085         opal_powercap_init();
1086
1087         /* Initialise OPAL Power-Shifting-Ratio interface */
1088         opal_psr_init();
1089
1090         /* Initialise OPAL sensor groups */
1091         opal_sensor_groups_init();
1092
1093         /* Initialise OPAL Power control interface */
1094         opal_power_control_init();
1095
1096         /* Initialize OPAL secure variables */
1097         opal_pdev_init("ibm,secvar-backend");
1098
1099         return 0;
1100 }
1101 machine_subsys_initcall(powernv, opal_init);
1102
1103 void opal_shutdown(void)
1104 {
1105         long rc = OPAL_BUSY;
1106
1107         opal_event_shutdown();
1108
1109         /*
1110          * Then sync with OPAL which ensure anything that can
1111          * potentially write to our memory has completed such
1112          * as an ongoing dump retrieval
1113          */
1114         while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
1115                 rc = opal_sync_host_reboot();
1116                 if (rc == OPAL_BUSY)
1117                         opal_poll_events(NULL);
1118                 else
1119                         mdelay(10);
1120         }
1121
1122         /* Unregister memory dump region */
1123         if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
1124                 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
1125 }
1126
1127 /* Export this so that test modules can use it */
1128 EXPORT_SYMBOL_GPL(opal_invalid_call);
1129 EXPORT_SYMBOL_GPL(opal_xscom_read);
1130 EXPORT_SYMBOL_GPL(opal_xscom_write);
1131 EXPORT_SYMBOL_GPL(opal_ipmi_send);
1132 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
1133 EXPORT_SYMBOL_GPL(opal_flash_read);
1134 EXPORT_SYMBOL_GPL(opal_flash_write);
1135 EXPORT_SYMBOL_GPL(opal_flash_erase);
1136 EXPORT_SYMBOL_GPL(opal_prd_msg);
1137 EXPORT_SYMBOL_GPL(opal_check_token);
1138
1139 /* Convert a region of vmalloc memory to an opal sg list */
1140 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
1141                                              unsigned long vmalloc_size)
1142 {
1143         struct opal_sg_list *sg, *first = NULL;
1144         unsigned long i = 0;
1145
1146         sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
1147         if (!sg)
1148                 goto nomem;
1149
1150         first = sg;
1151
1152         while (vmalloc_size > 0) {
1153                 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
1154                 uint64_t length = min(vmalloc_size, PAGE_SIZE);
1155
1156                 sg->entry[i].data = cpu_to_be64(data);
1157                 sg->entry[i].length = cpu_to_be64(length);
1158                 i++;
1159
1160                 if (i >= SG_ENTRIES_PER_NODE) {
1161                         struct opal_sg_list *next;
1162
1163                         next = kzalloc(PAGE_SIZE, GFP_KERNEL);
1164                         if (!next)
1165                                 goto nomem;
1166
1167                         sg->length = cpu_to_be64(
1168                                         i * sizeof(struct opal_sg_entry) + 16);
1169                         i = 0;
1170                         sg->next = cpu_to_be64(__pa(next));
1171                         sg = next;
1172                 }
1173
1174                 vmalloc_addr += length;
1175                 vmalloc_size -= length;
1176         }
1177
1178         sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
1179
1180         return first;
1181
1182 nomem:
1183         pr_err("%s : Failed to allocate memory\n", __func__);
1184         opal_free_sg_list(first);
1185         return NULL;
1186 }
1187
1188 void opal_free_sg_list(struct opal_sg_list *sg)
1189 {
1190         while (sg) {
1191                 uint64_t next = be64_to_cpu(sg->next);
1192
1193                 kfree(sg);
1194
1195                 if (next)
1196                         sg = __va(next);
1197                 else
1198                         sg = NULL;
1199         }
1200 }
1201
1202 int opal_error_code(int rc)
1203 {
1204         switch (rc) {
1205         case OPAL_SUCCESS:              return 0;
1206
1207         case OPAL_PARAMETER:            return -EINVAL;
1208         case OPAL_ASYNC_COMPLETION:     return -EINPROGRESS;
1209         case OPAL_BUSY:
1210         case OPAL_BUSY_EVENT:           return -EBUSY;
1211         case OPAL_NO_MEM:               return -ENOMEM;
1212         case OPAL_PERMISSION:           return -EPERM;
1213
1214         case OPAL_UNSUPPORTED:          return -EIO;
1215         case OPAL_HARDWARE:             return -EIO;
1216         case OPAL_INTERNAL_ERROR:       return -EIO;
1217         case OPAL_TIMEOUT:              return -ETIMEDOUT;
1218         default:
1219                 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
1220                 return -EIO;
1221         }
1222 }
1223
1224 void powernv_set_nmmu_ptcr(unsigned long ptcr)
1225 {
1226         int rc;
1227
1228         if (firmware_has_feature(FW_FEATURE_OPAL)) {
1229                 rc = opal_nmmu_set_ptcr(-1UL, ptcr);
1230                 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1231                         pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
1232         }
1233 }
1234
1235 EXPORT_SYMBOL_GPL(opal_poll_events);
1236 EXPORT_SYMBOL_GPL(opal_rtc_read);
1237 EXPORT_SYMBOL_GPL(opal_rtc_write);
1238 EXPORT_SYMBOL_GPL(opal_tpo_read);
1239 EXPORT_SYMBOL_GPL(opal_tpo_write);
1240 EXPORT_SYMBOL_GPL(opal_i2c_request);
1241 /* Export these symbols for PowerNV LED class driver */
1242 EXPORT_SYMBOL_GPL(opal_leds_get_ind);
1243 EXPORT_SYMBOL_GPL(opal_leds_set_ind);
1244 /* Export this symbol for PowerNV Operator Panel class driver */
1245 EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
1246 /* Export this for KVM */
1247 EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
1248 EXPORT_SYMBOL_GPL(opal_int_eoi);
1249 EXPORT_SYMBOL_GPL(opal_error_code);
1250 /* Export the below symbol for NX compression */
1251 EXPORT_SYMBOL(opal_nx_coproc_init);