GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / powerpc / platforms / powernv / eeh-powernv.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerNV Platform dependent EEH operations
4  *
5  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
6  */
7
8 #include <linux/atomic.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/msi.h>
16 #include <linux/of.h>
17 #include <linux/pci.h>
18 #include <linux/proc_fs.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23
24 #include <asm/eeh.h>
25 #include <asm/eeh_event.h>
26 #include <asm/firmware.h>
27 #include <asm/io.h>
28 #include <asm/iommu.h>
29 #include <asm/machdep.h>
30 #include <asm/msi_bitmap.h>
31 #include <asm/opal.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/pnv-pci.h>
34
35 #include "powernv.h"
36 #include "pci.h"
37 #include "../../../../drivers/pci/pci.h"
38
39 static int eeh_event_irq = -EINVAL;
40
41 void pnv_pcibios_bus_add_device(struct pci_dev *pdev)
42 {
43         struct pci_dn *pdn = pci_get_pdn(pdev);
44
45         if (!pdn || eeh_has_flag(EEH_FORCE_DISABLED))
46                 return;
47
48         dev_dbg(&pdev->dev, "EEH: Setting up device\n");
49         eeh_add_device_early(pdn);
50         eeh_add_device_late(pdev);
51         eeh_sysfs_add_device(pdev);
52 }
53
54 static int pnv_eeh_init(void)
55 {
56         struct pci_controller *hose;
57         struct pnv_phb *phb;
58         int max_diag_size = PNV_PCI_DIAG_BUF_SIZE;
59
60         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
61                 pr_warn("%s: OPAL is required !\n",
62                         __func__);
63                 return -EINVAL;
64         }
65
66         /* Set probe mode */
67         eeh_add_flag(EEH_PROBE_MODE_DEV);
68
69         /*
70          * P7IOC blocks PCI config access to frozen PE, but PHB3
71          * doesn't do that. So we have to selectively enable I/O
72          * prior to collecting error log.
73          */
74         list_for_each_entry(hose, &hose_list, list_node) {
75                 phb = hose->private_data;
76
77                 if (phb->model == PNV_PHB_MODEL_P7IOC)
78                         eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
79
80                 if (phb->diag_data_size > max_diag_size)
81                         max_diag_size = phb->diag_data_size;
82
83                 /*
84                  * PE#0 should be regarded as valid by EEH core
85                  * if it's not the reserved one. Currently, we
86                  * have the reserved PE#255 and PE#127 for PHB3
87                  * and P7IOC separately. So we should regard
88                  * PE#0 as valid for PHB3 and P7IOC.
89                  */
90                 if (phb->ioda.reserved_pe_idx != 0)
91                         eeh_add_flag(EEH_VALID_PE_ZERO);
92
93                 break;
94         }
95
96         eeh_set_pe_aux_size(max_diag_size);
97         ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device;
98
99         return 0;
100 }
101
102 static irqreturn_t pnv_eeh_event(int irq, void *data)
103 {
104         /*
105          * We simply send a special EEH event if EEH has been
106          * enabled. We don't care about EEH events until we've
107          * finished processing the outstanding ones. Event processing
108          * gets unmasked in next_error() if EEH is enabled.
109          */
110         disable_irq_nosync(irq);
111
112         if (eeh_enabled())
113                 eeh_send_failure_event(NULL);
114
115         return IRQ_HANDLED;
116 }
117
118 #ifdef CONFIG_DEBUG_FS
119 static ssize_t pnv_eeh_ei_write(struct file *filp,
120                                 const char __user *user_buf,
121                                 size_t count, loff_t *ppos)
122 {
123         struct pci_controller *hose = filp->private_data;
124         struct eeh_pe *pe;
125         int pe_no, type, func;
126         unsigned long addr, mask;
127         char buf[50];
128         int ret;
129
130         if (!eeh_ops || !eeh_ops->err_inject)
131                 return -ENXIO;
132
133         /* Copy over argument buffer */
134         ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
135         if (!ret)
136                 return -EFAULT;
137
138         /* Retrieve parameters */
139         ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
140                      &pe_no, &type, &func, &addr, &mask);
141         if (ret != 5)
142                 return -EINVAL;
143
144         /* Retrieve PE */
145         pe = eeh_pe_get(hose, pe_no, 0);
146         if (!pe)
147                 return -ENODEV;
148
149         /* Do error injection */
150         ret = eeh_ops->err_inject(pe, type, func, addr, mask);
151         return ret < 0 ? ret : count;
152 }
153
154 static const struct file_operations pnv_eeh_ei_fops = {
155         .open   = simple_open,
156         .llseek = no_llseek,
157         .write  = pnv_eeh_ei_write,
158 };
159
160 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
161 {
162         struct pci_controller *hose = data;
163         struct pnv_phb *phb = hose->private_data;
164
165         out_be64(phb->regs + offset, val);
166         return 0;
167 }
168
169 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
170 {
171         struct pci_controller *hose = data;
172         struct pnv_phb *phb = hose->private_data;
173
174         *val = in_be64(phb->regs + offset);
175         return 0;
176 }
177
178 #define PNV_EEH_DBGFS_ENTRY(name, reg)                          \
179 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)        \
180 {                                                               \
181         return pnv_eeh_dbgfs_set(data, reg, val);               \
182 }                                                               \
183                                                                 \
184 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)       \
185 {                                                               \
186         return pnv_eeh_dbgfs_get(data, reg, val);               \
187 }                                                               \
188                                                                 \
189 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,               \
190                         pnv_eeh_dbgfs_get_##name,               \
191                         pnv_eeh_dbgfs_set_##name,               \
192                         "0x%llx\n")
193
194 PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
195 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
196 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
197
198 #endif /* CONFIG_DEBUG_FS */
199
200 void pnv_eeh_enable_phbs(void)
201 {
202         struct pci_controller *hose;
203         struct pnv_phb *phb;
204
205         list_for_each_entry(hose, &hose_list, list_node) {
206                 phb = hose->private_data;
207                 /*
208                  * If EEH is enabled, we're going to rely on that.
209                  * Otherwise, we restore to conventional mechanism
210                  * to clear frozen PE during PCI config access.
211                  */
212                 if (eeh_enabled())
213                         phb->flags |= PNV_PHB_FLAG_EEH;
214                 else
215                         phb->flags &= ~PNV_PHB_FLAG_EEH;
216         }
217 }
218
219 /**
220  * pnv_eeh_post_init - EEH platform dependent post initialization
221  *
222  * EEH platform dependent post initialization on powernv. When
223  * the function is called, the EEH PEs and devices should have
224  * been built. If the I/O cache staff has been built, EEH is
225  * ready to supply service.
226  */
227 int pnv_eeh_post_init(void)
228 {
229         struct pci_controller *hose;
230         struct pnv_phb *phb;
231         int ret = 0;
232
233         eeh_show_enabled();
234
235         /* Register OPAL event notifier */
236         eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
237         if (eeh_event_irq < 0) {
238                 pr_err("%s: Can't register OPAL event interrupt (%d)\n",
239                        __func__, eeh_event_irq);
240                 return eeh_event_irq;
241         }
242
243         ret = request_irq(eeh_event_irq, pnv_eeh_event,
244                           IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
245         if (ret < 0) {
246                 irq_dispose_mapping(eeh_event_irq);
247                 pr_err("%s: Can't request OPAL event interrupt (%d)\n",
248                        __func__, eeh_event_irq);
249                 return ret;
250         }
251
252         if (!eeh_enabled())
253                 disable_irq(eeh_event_irq);
254
255         pnv_eeh_enable_phbs();
256
257         list_for_each_entry(hose, &hose_list, list_node) {
258                 phb = hose->private_data;
259
260                 /* Create debugfs entries */
261 #ifdef CONFIG_DEBUG_FS
262                 if (phb->has_dbgfs || !phb->dbgfs)
263                         continue;
264
265                 phb->has_dbgfs = 1;
266                 debugfs_create_file("err_injct", 0200,
267                                     phb->dbgfs, hose,
268                                     &pnv_eeh_ei_fops);
269
270                 debugfs_create_file("err_injct_outbound", 0600,
271                                     phb->dbgfs, hose,
272                                     &pnv_eeh_dbgfs_ops_outb);
273                 debugfs_create_file("err_injct_inboundA", 0600,
274                                     phb->dbgfs, hose,
275                                     &pnv_eeh_dbgfs_ops_inbA);
276                 debugfs_create_file("err_injct_inboundB", 0600,
277                                     phb->dbgfs, hose,
278                                     &pnv_eeh_dbgfs_ops_inbB);
279 #endif /* CONFIG_DEBUG_FS */
280         }
281
282         return ret;
283 }
284
285 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
286 {
287         int pos = PCI_CAPABILITY_LIST;
288         int cnt = 48;   /* Maximal number of capabilities */
289         u32 status, id;
290
291         if (!pdn)
292                 return 0;
293
294         /* Check if the device supports capabilities */
295         pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
296         if (!(status & PCI_STATUS_CAP_LIST))
297                 return 0;
298
299         while (cnt--) {
300                 pnv_pci_cfg_read(pdn, pos, 1, &pos);
301                 if (pos < 0x40)
302                         break;
303
304                 pos &= ~3;
305                 pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
306                 if (id == 0xff)
307                         break;
308
309                 /* Found */
310                 if (id == cap)
311                         return pos;
312
313                 /* Next one */
314                 pos += PCI_CAP_LIST_NEXT;
315         }
316
317         return 0;
318 }
319
320 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
321 {
322         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
323         u32 header;
324         int pos = 256, ttl = (4096 - 256) / 8;
325
326         if (!edev || !edev->pcie_cap)
327                 return 0;
328         if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
329                 return 0;
330         else if (!header)
331                 return 0;
332
333         while (ttl-- > 0) {
334                 if (PCI_EXT_CAP_ID(header) == cap && pos)
335                         return pos;
336
337                 pos = PCI_EXT_CAP_NEXT(header);
338                 if (pos < 256)
339                         break;
340
341                 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
342                         break;
343         }
344
345         return 0;
346 }
347
348 /**
349  * pnv_eeh_probe - Do probe on PCI device
350  * @pdn: PCI device node
351  * @data: unused
352  *
353  * When EEH module is installed during system boot, all PCI devices
354  * are checked one by one to see if it supports EEH. The function
355  * is introduced for the purpose. By default, EEH has been enabled
356  * on all PCI devices. That's to say, we only need do necessary
357  * initialization on the corresponding eeh device and create PE
358  * accordingly.
359  *
360  * It's notable that's unsafe to retrieve the EEH device through
361  * the corresponding PCI device. During the PCI device hotplug, which
362  * was possiblly triggered by EEH core, the binding between EEH device
363  * and the PCI device isn't built yet.
364  */
365 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
366 {
367         struct pci_controller *hose = pdn->phb;
368         struct pnv_phb *phb = hose->private_data;
369         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
370         uint32_t pcie_flags;
371         int ret;
372         int config_addr = (pdn->busno << 8) | (pdn->devfn);
373
374         /*
375          * When probing the root bridge, which doesn't have any
376          * subordinate PCI devices. We don't have OF node for
377          * the root bridge. So it's not reasonable to continue
378          * the probing.
379          */
380         if (!edev || edev->pe)
381                 return NULL;
382
383         /* Skip for PCI-ISA bridge */
384         if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
385                 return NULL;
386
387         eeh_edev_dbg(edev, "Probing device\n");
388
389         /* Initialize eeh device */
390         edev->class_code = pdn->class_code;
391         edev->mode      &= 0xFFFFFF00;
392         edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
393         edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
394         edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
395         edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
396         if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
397                 edev->mode |= EEH_DEV_BRIDGE;
398                 if (edev->pcie_cap) {
399                         pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
400                                          2, &pcie_flags);
401                         pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
402                         if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
403                                 edev->mode |= EEH_DEV_ROOT_PORT;
404                         else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
405                                 edev->mode |= EEH_DEV_DS_PORT;
406                 }
407         }
408
409         edev->pe_config_addr = phb->ioda.pe_rmap[config_addr];
410
411         /* Create PE */
412         ret = eeh_add_to_parent_pe(edev);
413         if (ret) {
414                 eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret);
415                 return NULL;
416         }
417
418         /*
419          * If the PE contains any one of following adapters, the
420          * PCI config space can't be accessed when dumping EEH log.
421          * Otherwise, we will run into fenced PHB caused by shortage
422          * of outbound credits in the adapter. The PCI config access
423          * should be blocked until PE reset. MMIO access is dropped
424          * by hardware certainly. In order to drop PCI config requests,
425          * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
426          * will be checked in the backend for PE state retrival. If
427          * the PE becomes frozen for the first time and the flag has
428          * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
429          * that PE to block its config space.
430          *
431          * Broadcom BCM5718 2-ports NICs (14e4:1656)
432          * Broadcom Austin 4-ports NICs (14e4:1657)
433          * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
434          * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
435          */
436         if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
437              pdn->device_id == 0x1656) ||
438             (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
439              pdn->device_id == 0x1657) ||
440             (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
441              pdn->device_id == 0x168a) ||
442             (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
443              pdn->device_id == 0x168e))
444                 edev->pe->state |= EEH_PE_CFG_RESTRICTED;
445
446         /*
447          * Cache the PE primary bus, which can't be fetched when
448          * full hotplug is in progress. In that case, all child
449          * PCI devices of the PE are expected to be removed prior
450          * to PE reset.
451          */
452         if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
453                 edev->pe->bus = pci_find_bus(hose->global_number,
454                                              pdn->busno);
455                 if (edev->pe->bus)
456                         edev->pe->state |= EEH_PE_PRI_BUS;
457         }
458
459         /*
460          * Enable EEH explicitly so that we will do EEH check
461          * while accessing I/O stuff
462          */
463         if (!eeh_has_flag(EEH_ENABLED)) {
464                 enable_irq(eeh_event_irq);
465                 pnv_eeh_enable_phbs();
466                 eeh_add_flag(EEH_ENABLED);
467         }
468
469         /* Save memory bars */
470         eeh_save_bars(edev);
471
472         eeh_edev_dbg(edev, "EEH enabled on device\n");
473
474         return NULL;
475 }
476
477 /**
478  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
479  * @pe: EEH PE
480  * @option: operation to be issued
481  *
482  * The function is used to control the EEH functionality globally.
483  * Currently, following options are support according to PAPR:
484  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
485  */
486 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
487 {
488         struct pci_controller *hose = pe->phb;
489         struct pnv_phb *phb = hose->private_data;
490         bool freeze_pe = false;
491         int opt;
492         s64 rc;
493
494         switch (option) {
495         case EEH_OPT_DISABLE:
496                 return -EPERM;
497         case EEH_OPT_ENABLE:
498                 return 0;
499         case EEH_OPT_THAW_MMIO:
500                 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
501                 break;
502         case EEH_OPT_THAW_DMA:
503                 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
504                 break;
505         case EEH_OPT_FREEZE_PE:
506                 freeze_pe = true;
507                 opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
508                 break;
509         default:
510                 pr_warn("%s: Invalid option %d\n", __func__, option);
511                 return -EINVAL;
512         }
513
514         /* Freeze master and slave PEs if PHB supports compound PEs */
515         if (freeze_pe) {
516                 if (phb->freeze_pe) {
517                         phb->freeze_pe(phb, pe->addr);
518                         return 0;
519                 }
520
521                 rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
522                 if (rc != OPAL_SUCCESS) {
523                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
524                                 __func__, rc, phb->hose->global_number,
525                                 pe->addr);
526                         return -EIO;
527                 }
528
529                 return 0;
530         }
531
532         /* Unfreeze master and slave PEs if PHB supports */
533         if (phb->unfreeze_pe)
534                 return phb->unfreeze_pe(phb, pe->addr, opt);
535
536         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
537         if (rc != OPAL_SUCCESS) {
538                 pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
539                         __func__, rc, option, phb->hose->global_number,
540                         pe->addr);
541                 return -EIO;
542         }
543
544         return 0;
545 }
546
547 /**
548  * pnv_eeh_get_pe_addr - Retrieve PE address
549  * @pe: EEH PE
550  *
551  * Retrieve the PE address according to the given tranditional
552  * PCI BDF (Bus/Device/Function) address.
553  */
554 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
555 {
556         return pe->addr;
557 }
558
559 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
560 {
561         struct pnv_phb *phb = pe->phb->private_data;
562         s64 rc;
563
564         rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
565                                          phb->diag_data_size);
566         if (rc != OPAL_SUCCESS)
567                 pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
568                         __func__, rc, pe->phb->global_number);
569 }
570
571 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
572 {
573         struct pnv_phb *phb = pe->phb->private_data;
574         u8 fstate = 0;
575         __be16 pcierr = 0;
576         s64 rc;
577         int result = 0;
578
579         rc = opal_pci_eeh_freeze_status(phb->opal_id,
580                                         pe->addr,
581                                         &fstate,
582                                         &pcierr,
583                                         NULL);
584         if (rc != OPAL_SUCCESS) {
585                 pr_warn("%s: Failure %lld getting PHB#%x state\n",
586                         __func__, rc, phb->hose->global_number);
587                 return EEH_STATE_NOT_SUPPORT;
588         }
589
590         /*
591          * Check PHB state. If the PHB is frozen for the
592          * first time, to dump the PHB diag-data.
593          */
594         if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
595                 result = (EEH_STATE_MMIO_ACTIVE  |
596                           EEH_STATE_DMA_ACTIVE   |
597                           EEH_STATE_MMIO_ENABLED |
598                           EEH_STATE_DMA_ENABLED);
599         } else if (!(pe->state & EEH_PE_ISOLATED)) {
600                 eeh_pe_mark_isolated(pe);
601                 pnv_eeh_get_phb_diag(pe);
602
603                 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
604                         pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
605         }
606
607         return result;
608 }
609
610 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
611 {
612         struct pnv_phb *phb = pe->phb->private_data;
613         u8 fstate = 0;
614         __be16 pcierr = 0;
615         s64 rc;
616         int result;
617
618         /*
619          * We don't clobber hardware frozen state until PE
620          * reset is completed. In order to keep EEH core
621          * moving forward, we have to return operational
622          * state during PE reset.
623          */
624         if (pe->state & EEH_PE_RESET) {
625                 result = (EEH_STATE_MMIO_ACTIVE  |
626                           EEH_STATE_DMA_ACTIVE   |
627                           EEH_STATE_MMIO_ENABLED |
628                           EEH_STATE_DMA_ENABLED);
629                 return result;
630         }
631
632         /*
633          * Fetch PE state from hardware. If the PHB
634          * supports compound PE, let it handle that.
635          */
636         if (phb->get_pe_state) {
637                 fstate = phb->get_pe_state(phb, pe->addr);
638         } else {
639                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
640                                                 pe->addr,
641                                                 &fstate,
642                                                 &pcierr,
643                                                 NULL);
644                 if (rc != OPAL_SUCCESS) {
645                         pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
646                                 __func__, rc, phb->hose->global_number,
647                                 pe->addr);
648                         return EEH_STATE_NOT_SUPPORT;
649                 }
650         }
651
652         /* Figure out state */
653         switch (fstate) {
654         case OPAL_EEH_STOPPED_NOT_FROZEN:
655                 result = (EEH_STATE_MMIO_ACTIVE  |
656                           EEH_STATE_DMA_ACTIVE   |
657                           EEH_STATE_MMIO_ENABLED |
658                           EEH_STATE_DMA_ENABLED);
659                 break;
660         case OPAL_EEH_STOPPED_MMIO_FREEZE:
661                 result = (EEH_STATE_DMA_ACTIVE |
662                           EEH_STATE_DMA_ENABLED);
663                 break;
664         case OPAL_EEH_STOPPED_DMA_FREEZE:
665                 result = (EEH_STATE_MMIO_ACTIVE |
666                           EEH_STATE_MMIO_ENABLED);
667                 break;
668         case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
669                 result = 0;
670                 break;
671         case OPAL_EEH_STOPPED_RESET:
672                 result = EEH_STATE_RESET_ACTIVE;
673                 break;
674         case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
675                 result = EEH_STATE_UNAVAILABLE;
676                 break;
677         case OPAL_EEH_STOPPED_PERM_UNAVAIL:
678                 result = EEH_STATE_NOT_SUPPORT;
679                 break;
680         default:
681                 result = EEH_STATE_NOT_SUPPORT;
682                 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
683                         __func__, phb->hose->global_number,
684                         pe->addr, fstate);
685         }
686
687         /*
688          * If PHB supports compound PE, to freeze all
689          * slave PEs for consistency.
690          *
691          * If the PE is switching to frozen state for the
692          * first time, to dump the PHB diag-data.
693          */
694         if (!(result & EEH_STATE_NOT_SUPPORT) &&
695             !(result & EEH_STATE_UNAVAILABLE) &&
696             !(result & EEH_STATE_MMIO_ACTIVE) &&
697             !(result & EEH_STATE_DMA_ACTIVE)  &&
698             !(pe->state & EEH_PE_ISOLATED)) {
699                 if (phb->freeze_pe)
700                         phb->freeze_pe(phb, pe->addr);
701
702                 eeh_pe_mark_isolated(pe);
703                 pnv_eeh_get_phb_diag(pe);
704
705                 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
706                         pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
707         }
708
709         return result;
710 }
711
712 /**
713  * pnv_eeh_get_state - Retrieve PE state
714  * @pe: EEH PE
715  * @delay: delay while PE state is temporarily unavailable
716  *
717  * Retrieve the state of the specified PE. For IODA-compitable
718  * platform, it should be retrieved from IODA table. Therefore,
719  * we prefer passing down to hardware implementation to handle
720  * it.
721  */
722 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
723 {
724         int ret;
725
726         if (pe->type & EEH_PE_PHB)
727                 ret = pnv_eeh_get_phb_state(pe);
728         else
729                 ret = pnv_eeh_get_pe_state(pe);
730
731         if (!delay)
732                 return ret;
733
734         /*
735          * If the PE state is temporarily unavailable,
736          * to inform the EEH core delay for default
737          * period (1 second)
738          */
739         *delay = 0;
740         if (ret & EEH_STATE_UNAVAILABLE)
741                 *delay = 1000;
742
743         return ret;
744 }
745
746 static s64 pnv_eeh_poll(unsigned long id)
747 {
748         s64 rc = OPAL_HARDWARE;
749
750         while (1) {
751                 rc = opal_pci_poll(id);
752                 if (rc <= 0)
753                         break;
754
755                 if (system_state < SYSTEM_RUNNING)
756                         udelay(1000 * rc);
757                 else
758                         msleep(rc);
759         }
760
761         return rc;
762 }
763
764 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
765 {
766         struct pnv_phb *phb = hose->private_data;
767         s64 rc = OPAL_HARDWARE;
768
769         pr_debug("%s: Reset PHB#%x, option=%d\n",
770                  __func__, hose->global_number, option);
771
772         /* Issue PHB complete reset request */
773         if (option == EEH_RESET_FUNDAMENTAL ||
774             option == EEH_RESET_HOT)
775                 rc = opal_pci_reset(phb->opal_id,
776                                     OPAL_RESET_PHB_COMPLETE,
777                                     OPAL_ASSERT_RESET);
778         else if (option == EEH_RESET_DEACTIVATE)
779                 rc = opal_pci_reset(phb->opal_id,
780                                     OPAL_RESET_PHB_COMPLETE,
781                                     OPAL_DEASSERT_RESET);
782         if (rc < 0)
783                 goto out;
784
785         /*
786          * Poll state of the PHB until the request is done
787          * successfully. The PHB reset is usually PHB complete
788          * reset followed by hot reset on root bus. So we also
789          * need the PCI bus settlement delay.
790          */
791         if (rc > 0)
792                 rc = pnv_eeh_poll(phb->opal_id);
793         if (option == EEH_RESET_DEACTIVATE) {
794                 if (system_state < SYSTEM_RUNNING)
795                         udelay(1000 * EEH_PE_RST_SETTLE_TIME);
796                 else
797                         msleep(EEH_PE_RST_SETTLE_TIME);
798         }
799 out:
800         if (rc != OPAL_SUCCESS)
801                 return -EIO;
802
803         return 0;
804 }
805
806 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
807 {
808         struct pnv_phb *phb = hose->private_data;
809         s64 rc = OPAL_HARDWARE;
810
811         pr_debug("%s: Reset PHB#%x, option=%d\n",
812                  __func__, hose->global_number, option);
813
814         /*
815          * During the reset deassert time, we needn't care
816          * the reset scope because the firmware does nothing
817          * for fundamental or hot reset during deassert phase.
818          */
819         if (option == EEH_RESET_FUNDAMENTAL)
820                 rc = opal_pci_reset(phb->opal_id,
821                                     OPAL_RESET_PCI_FUNDAMENTAL,
822                                     OPAL_ASSERT_RESET);
823         else if (option == EEH_RESET_HOT)
824                 rc = opal_pci_reset(phb->opal_id,
825                                     OPAL_RESET_PCI_HOT,
826                                     OPAL_ASSERT_RESET);
827         else if (option == EEH_RESET_DEACTIVATE)
828                 rc = opal_pci_reset(phb->opal_id,
829                                     OPAL_RESET_PCI_HOT,
830                                     OPAL_DEASSERT_RESET);
831         if (rc < 0)
832                 goto out;
833
834         /* Poll state of the PHB until the request is done */
835         if (rc > 0)
836                 rc = pnv_eeh_poll(phb->opal_id);
837         if (option == EEH_RESET_DEACTIVATE)
838                 msleep(EEH_PE_RST_SETTLE_TIME);
839 out:
840         if (rc != OPAL_SUCCESS)
841                 return -EIO;
842
843         return 0;
844 }
845
846 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
847 {
848         struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
849         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
850         int aer = edev ? edev->aer_cap : 0;
851         u32 ctrl;
852
853         pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n",
854                  __func__, pci_domain_nr(dev->bus),
855                  dev->bus->number, option);
856
857         switch (option) {
858         case EEH_RESET_FUNDAMENTAL:
859         case EEH_RESET_HOT:
860                 /* Don't report linkDown event */
861                 if (aer) {
862                         eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
863                                              4, &ctrl);
864                         ctrl |= PCI_ERR_UNC_SURPDN;
865                         eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
866                                               4, ctrl);
867                 }
868
869                 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
870                 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
871                 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
872
873                 msleep(EEH_PE_RST_HOLD_TIME);
874                 break;
875         case EEH_RESET_DEACTIVATE:
876                 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
877                 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
878                 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
879
880                 msleep(EEH_PE_RST_SETTLE_TIME);
881
882                 /* Continue reporting linkDown event */
883                 if (aer) {
884                         eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
885                                              4, &ctrl);
886                         ctrl &= ~PCI_ERR_UNC_SURPDN;
887                         eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
888                                               4, ctrl);
889                 }
890
891                 break;
892         }
893
894         return 0;
895 }
896
897 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
898 {
899         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
900         struct pnv_phb *phb = hose->private_data;
901         struct device_node *dn = pci_device_to_OF_node(pdev);
902         uint64_t id = PCI_SLOT_ID(phb->opal_id,
903                                   (pdev->bus->number << 8) | pdev->devfn);
904         uint8_t scope;
905         int64_t rc;
906
907         /* Hot reset to the bus if firmware cannot handle */
908         if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
909                 return __pnv_eeh_bridge_reset(pdev, option);
910
911         pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n",
912                  __func__, pci_domain_nr(pdev->bus),
913                  pdev->bus->number, option);
914
915         switch (option) {
916         case EEH_RESET_FUNDAMENTAL:
917                 scope = OPAL_RESET_PCI_FUNDAMENTAL;
918                 break;
919         case EEH_RESET_HOT:
920                 scope = OPAL_RESET_PCI_HOT;
921                 break;
922         case EEH_RESET_DEACTIVATE:
923                 return 0;
924         default:
925                 dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
926                         __func__, option);
927                 return -EINVAL;
928         }
929
930         rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
931         if (rc <= OPAL_SUCCESS)
932                 goto out;
933
934         rc = pnv_eeh_poll(id);
935 out:
936         return (rc == OPAL_SUCCESS) ? 0 : -EIO;
937 }
938
939 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
940 {
941         struct pci_controller *hose;
942
943         if (pci_is_root_bus(dev->bus)) {
944                 hose = pci_bus_to_host(dev->bus);
945                 pnv_eeh_root_reset(hose, EEH_RESET_HOT);
946                 pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
947         } else {
948                 pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
949                 pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
950         }
951 }
952
953 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
954                                      int pos, u16 mask)
955 {
956         int i, status = 0;
957
958         /* Wait for Transaction Pending bit to be cleared */
959         for (i = 0; i < 4; i++) {
960                 eeh_ops->read_config(pdn, pos, 2, &status);
961                 if (!(status & mask))
962                         return;
963
964                 msleep((1 << i) * 100);
965         }
966
967         pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
968                 __func__, type,
969                 pdn->phb->global_number, pdn->busno,
970                 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
971 }
972
973 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
974 {
975         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
976         u32 reg = 0;
977
978         if (WARN_ON(!edev->pcie_cap))
979                 return -ENOTTY;
980
981         eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
982         if (!(reg & PCI_EXP_DEVCAP_FLR))
983                 return -ENOTTY;
984
985         switch (option) {
986         case EEH_RESET_HOT:
987         case EEH_RESET_FUNDAMENTAL:
988                 pnv_eeh_wait_for_pending(pdn, "",
989                                          edev->pcie_cap + PCI_EXP_DEVSTA,
990                                          PCI_EXP_DEVSTA_TRPND);
991                 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
992                                      4, &reg);
993                 reg |= PCI_EXP_DEVCTL_BCR_FLR;
994                 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
995                                       4, reg);
996                 msleep(EEH_PE_RST_HOLD_TIME);
997                 break;
998         case EEH_RESET_DEACTIVATE:
999                 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1000                                      4, &reg);
1001                 reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
1002                 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1003                                       4, reg);
1004                 msleep(EEH_PE_RST_SETTLE_TIME);
1005                 break;
1006         }
1007
1008         return 0;
1009 }
1010
1011 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
1012 {
1013         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1014         u32 cap = 0;
1015
1016         if (WARN_ON(!edev->af_cap))
1017                 return -ENOTTY;
1018
1019         eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
1020         if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
1021                 return -ENOTTY;
1022
1023         switch (option) {
1024         case EEH_RESET_HOT:
1025         case EEH_RESET_FUNDAMENTAL:
1026                 /*
1027                  * Wait for Transaction Pending bit to clear. A word-aligned
1028                  * test is used, so we use the conrol offset rather than status
1029                  * and shift the test bit to match.
1030                  */
1031                 pnv_eeh_wait_for_pending(pdn, "AF",
1032                                          edev->af_cap + PCI_AF_CTRL,
1033                                          PCI_AF_STATUS_TP << 8);
1034                 eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
1035                                       1, PCI_AF_CTRL_FLR);
1036                 msleep(EEH_PE_RST_HOLD_TIME);
1037                 break;
1038         case EEH_RESET_DEACTIVATE:
1039                 eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
1040                 msleep(EEH_PE_RST_SETTLE_TIME);
1041                 break;
1042         }
1043
1044         return 0;
1045 }
1046
1047 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1048 {
1049         struct eeh_dev *edev;
1050         struct pci_dn *pdn;
1051         int ret;
1052
1053         /* The VF PE should have only one child device */
1054         edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
1055         pdn = eeh_dev_to_pdn(edev);
1056         if (!pdn)
1057                 return -ENXIO;
1058
1059         ret = pnv_eeh_do_flr(pdn, option);
1060         if (!ret)
1061                 return ret;
1062
1063         return pnv_eeh_do_af_flr(pdn, option);
1064 }
1065
1066 /**
1067  * pnv_eeh_reset - Reset the specified PE
1068  * @pe: EEH PE
1069  * @option: reset option
1070  *
1071  * Do reset on the indicated PE. For PCI bus sensitive PE,
1072  * we need to reset the parent p2p bridge. The PHB has to
1073  * be reinitialized if the p2p bridge is root bridge. For
1074  * PCI device sensitive PE, we will try to reset the device
1075  * through FLR. For now, we don't have OPAL APIs to do HARD
1076  * reset yet, so all reset would be SOFT (HOT) reset.
1077  */
1078 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1079 {
1080         struct pci_controller *hose = pe->phb;
1081         struct pnv_phb *phb;
1082         struct pci_bus *bus;
1083         int64_t rc;
1084
1085         /*
1086          * For PHB reset, we always have complete reset. For those PEs whose
1087          * primary bus derived from root complex (root bus) or root port
1088          * (usually bus#1), we apply hot or fundamental reset on the root port.
1089          * For other PEs, we always have hot reset on the PE primary bus.
1090          *
1091          * Here, we have different design to pHyp, which always clear the
1092          * frozen state during PE reset. However, the good idea here from
1093          * benh is to keep frozen state before we get PE reset done completely
1094          * (until BAR restore). With the frozen state, HW drops illegal IO
1095          * or MMIO access, which can incur recrusive frozen PE during PE
1096          * reset. The side effect is that EEH core has to clear the frozen
1097          * state explicitly after BAR restore.
1098          */
1099         if (pe->type & EEH_PE_PHB)
1100                 return pnv_eeh_phb_reset(hose, option);
1101
1102         /*
1103          * The frozen PE might be caused by PAPR error injection
1104          * registers, which are expected to be cleared after hitting
1105          * frozen PE as stated in the hardware spec. Unfortunately,
1106          * that's not true on P7IOC. So we have to clear it manually
1107          * to avoid recursive EEH errors during recovery.
1108          */
1109         phb = hose->private_data;
1110         if (phb->model == PNV_PHB_MODEL_P7IOC &&
1111             (option == EEH_RESET_HOT ||
1112              option == EEH_RESET_FUNDAMENTAL)) {
1113                 rc = opal_pci_reset(phb->opal_id,
1114                                     OPAL_RESET_PHB_ERROR,
1115                                     OPAL_ASSERT_RESET);
1116                 if (rc != OPAL_SUCCESS) {
1117                         pr_warn("%s: Failure %lld clearing error injection registers\n",
1118                                 __func__, rc);
1119                         return -EIO;
1120                 }
1121         }
1122
1123         if (pe->type & EEH_PE_VF)
1124                 return pnv_eeh_reset_vf_pe(pe, option);
1125
1126         bus = eeh_pe_bus_get(pe);
1127         if (!bus) {
1128                 pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n",
1129                         __func__, pe->phb->global_number, pe->addr);
1130                 return -EIO;
1131         }
1132
1133         if (pci_is_root_bus(bus))
1134                 return pnv_eeh_root_reset(hose, option);
1135
1136         /*
1137          * For hot resets try use the generic PCI error recovery reset
1138          * functions. These correctly handles the case where the secondary
1139          * bus is behind a hotplug slot and it will use the slot provided
1140          * reset methods to prevent spurious hotplug events during the reset.
1141          *
1142          * Fundemental resets need to be handled internally to EEH since the
1143          * PCI core doesn't really have a concept of a fundemental reset,
1144          * mainly because there's no standard way to generate one. Only a
1145          * few devices require an FRESET so it should be fine.
1146          */
1147         if (option != EEH_RESET_FUNDAMENTAL) {
1148                 /*
1149                  * NB: Skiboot and pnv_eeh_bridge_reset() also no-op the
1150                  *     de-assert step. It's like the OPAL reset API was
1151                  *     poorly designed or something...
1152                  */
1153                 if (option == EEH_RESET_DEACTIVATE)
1154                         return 0;
1155
1156                 rc = pci_bus_error_reset(bus->self);
1157                 if (!rc)
1158                         return 0;
1159         }
1160
1161         /* otherwise, use the generic bridge reset. this might call into FW */
1162         if (pci_is_root_bus(bus->parent))
1163                 return pnv_eeh_root_reset(hose, option);
1164         return pnv_eeh_bridge_reset(bus->self, option);
1165 }
1166
1167 /**
1168  * pnv_eeh_get_log - Retrieve error log
1169  * @pe: EEH PE
1170  * @severity: temporary or permanent error log
1171  * @drv_log: driver log to be combined with retrieved error log
1172  * @len: length of driver log
1173  *
1174  * Retrieve the temporary or permanent error from the PE.
1175  */
1176 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1177                            char *drv_log, unsigned long len)
1178 {
1179         if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1180                 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1181
1182         return 0;
1183 }
1184
1185 /**
1186  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1187  * @pe: EEH PE
1188  *
1189  * The function will be called to reconfigure the bridges included
1190  * in the specified PE so that the mulfunctional PE would be recovered
1191  * again.
1192  */
1193 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1194 {
1195         return 0;
1196 }
1197
1198 /**
1199  * pnv_pe_err_inject - Inject specified error to the indicated PE
1200  * @pe: the indicated PE
1201  * @type: error type
1202  * @func: specific error type
1203  * @addr: address
1204  * @mask: address mask
1205  *
1206  * The routine is called to inject specified error, which is
1207  * determined by @type and @func, to the indicated PE for
1208  * testing purpose.
1209  */
1210 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1211                               unsigned long addr, unsigned long mask)
1212 {
1213         struct pci_controller *hose = pe->phb;
1214         struct pnv_phb *phb = hose->private_data;
1215         s64 rc;
1216
1217         if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1218             type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1219                 pr_warn("%s: Invalid error type %d\n",
1220                         __func__, type);
1221                 return -ERANGE;
1222         }
1223
1224         if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1225             func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1226                 pr_warn("%s: Invalid error function %d\n",
1227                         __func__, func);
1228                 return -ERANGE;
1229         }
1230
1231         /* Firmware supports error injection ? */
1232         if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1233                 pr_warn("%s: Firmware doesn't support error injection\n",
1234                         __func__);
1235                 return -ENXIO;
1236         }
1237
1238         /* Do error injection */
1239         rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1240                                  type, func, addr, mask);
1241         if (rc != OPAL_SUCCESS) {
1242                 pr_warn("%s: Failure %lld injecting error "
1243                         "%d-%d to PHB#%x-PE#%x\n",
1244                         __func__, rc, type, func,
1245                         hose->global_number, pe->addr);
1246                 return -EIO;
1247         }
1248
1249         return 0;
1250 }
1251
1252 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1253 {
1254         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1255
1256         if (!edev || !edev->pe)
1257                 return false;
1258
1259         /*
1260          * We will issue FLR or AF FLR to all VFs, which are contained
1261          * in VF PE. It relies on the EEH PCI config accessors. So we
1262          * can't block them during the window.
1263          */
1264         if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1265                 return false;
1266
1267         if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1268                 return true;
1269
1270         return false;
1271 }
1272
1273 static int pnv_eeh_read_config(struct pci_dn *pdn,
1274                                int where, int size, u32 *val)
1275 {
1276         if (!pdn)
1277                 return PCIBIOS_DEVICE_NOT_FOUND;
1278
1279         if (pnv_eeh_cfg_blocked(pdn)) {
1280                 *val = 0xFFFFFFFF;
1281                 return PCIBIOS_SET_FAILED;
1282         }
1283
1284         return pnv_pci_cfg_read(pdn, where, size, val);
1285 }
1286
1287 static int pnv_eeh_write_config(struct pci_dn *pdn,
1288                                 int where, int size, u32 val)
1289 {
1290         if (!pdn)
1291                 return PCIBIOS_DEVICE_NOT_FOUND;
1292
1293         if (pnv_eeh_cfg_blocked(pdn))
1294                 return PCIBIOS_SET_FAILED;
1295
1296         return pnv_pci_cfg_write(pdn, where, size, val);
1297 }
1298
1299 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1300 {
1301         /* GEM */
1302         if (data->gemXfir || data->gemRfir ||
1303             data->gemRirqfir || data->gemMask || data->gemRwof)
1304                 pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1305                         be64_to_cpu(data->gemXfir),
1306                         be64_to_cpu(data->gemRfir),
1307                         be64_to_cpu(data->gemRirqfir),
1308                         be64_to_cpu(data->gemMask),
1309                         be64_to_cpu(data->gemRwof));
1310
1311         /* LEM */
1312         if (data->lemFir || data->lemErrMask ||
1313             data->lemAction0 || data->lemAction1 || data->lemWof)
1314                 pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1315                         be64_to_cpu(data->lemFir),
1316                         be64_to_cpu(data->lemErrMask),
1317                         be64_to_cpu(data->lemAction0),
1318                         be64_to_cpu(data->lemAction1),
1319                         be64_to_cpu(data->lemWof));
1320 }
1321
1322 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1323 {
1324         struct pnv_phb *phb = hose->private_data;
1325         struct OpalIoP7IOCErrorData *data =
1326                 (struct OpalIoP7IOCErrorData*)phb->diag_data;
1327         long rc;
1328
1329         rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1330         if (rc != OPAL_SUCCESS) {
1331                 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1332                         __func__, phb->hub_id, rc);
1333                 return;
1334         }
1335
1336         switch (be16_to_cpu(data->type)) {
1337         case OPAL_P7IOC_DIAG_TYPE_RGC:
1338                 pr_info("P7IOC diag-data for RGC\n\n");
1339                 pnv_eeh_dump_hub_diag_common(data);
1340                 if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1341                         pr_info("  RGC: %016llx %016llx\n",
1342                                 be64_to_cpu(data->rgc.rgcStatus),
1343                                 be64_to_cpu(data->rgc.rgcLdcp));
1344                 break;
1345         case OPAL_P7IOC_DIAG_TYPE_BI:
1346                 pr_info("P7IOC diag-data for BI %s\n\n",
1347                         data->bi.biDownbound ? "Downbound" : "Upbound");
1348                 pnv_eeh_dump_hub_diag_common(data);
1349                 if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1350                     data->bi.biLdcp2 || data->bi.biFenceStatus)
1351                         pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1352                                 be64_to_cpu(data->bi.biLdcp0),
1353                                 be64_to_cpu(data->bi.biLdcp1),
1354                                 be64_to_cpu(data->bi.biLdcp2),
1355                                 be64_to_cpu(data->bi.biFenceStatus));
1356                 break;
1357         case OPAL_P7IOC_DIAG_TYPE_CI:
1358                 pr_info("P7IOC diag-data for CI Port %d\n\n",
1359                         data->ci.ciPort);
1360                 pnv_eeh_dump_hub_diag_common(data);
1361                 if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1362                         pr_info("  CI:  %016llx %016llx\n",
1363                                 be64_to_cpu(data->ci.ciPortStatus),
1364                                 be64_to_cpu(data->ci.ciPortLdcp));
1365                 break;
1366         case OPAL_P7IOC_DIAG_TYPE_MISC:
1367                 pr_info("P7IOC diag-data for MISC\n\n");
1368                 pnv_eeh_dump_hub_diag_common(data);
1369                 break;
1370         case OPAL_P7IOC_DIAG_TYPE_I2C:
1371                 pr_info("P7IOC diag-data for I2C\n\n");
1372                 pnv_eeh_dump_hub_diag_common(data);
1373                 break;
1374         default:
1375                 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1376                         __func__, phb->hub_id, data->type);
1377         }
1378 }
1379
1380 static int pnv_eeh_get_pe(struct pci_controller *hose,
1381                           u16 pe_no, struct eeh_pe **pe)
1382 {
1383         struct pnv_phb *phb = hose->private_data;
1384         struct pnv_ioda_pe *pnv_pe;
1385         struct eeh_pe *dev_pe;
1386
1387         /*
1388          * If PHB supports compound PE, to fetch
1389          * the master PE because slave PE is invisible
1390          * to EEH core.
1391          */
1392         pnv_pe = &phb->ioda.pe_array[pe_no];
1393         if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1394                 pnv_pe = pnv_pe->master;
1395                 WARN_ON(!pnv_pe ||
1396                         !(pnv_pe->flags & PNV_IODA_PE_MASTER));
1397                 pe_no = pnv_pe->pe_number;
1398         }
1399
1400         /* Find the PE according to PE# */
1401         dev_pe = eeh_pe_get(hose, pe_no, 0);
1402         if (!dev_pe)
1403                 return -EEXIST;
1404
1405         /* Freeze the (compound) PE */
1406         *pe = dev_pe;
1407         if (!(dev_pe->state & EEH_PE_ISOLATED))
1408                 phb->freeze_pe(phb, pe_no);
1409
1410         /*
1411          * At this point, we're sure the (compound) PE should
1412          * have been frozen. However, we still need poke until
1413          * hitting the frozen PE on top level.
1414          */
1415         dev_pe = dev_pe->parent;
1416         while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1417                 int ret;
1418                 ret = eeh_ops->get_state(dev_pe, NULL);
1419                 if (ret <= 0 || eeh_state_active(ret)) {
1420                         dev_pe = dev_pe->parent;
1421                         continue;
1422                 }
1423
1424                 /* Frozen parent PE */
1425                 *pe = dev_pe;
1426                 if (!(dev_pe->state & EEH_PE_ISOLATED))
1427                         phb->freeze_pe(phb, dev_pe->addr);
1428
1429                 /* Next one */
1430                 dev_pe = dev_pe->parent;
1431         }
1432
1433         return 0;
1434 }
1435
1436 /**
1437  * pnv_eeh_next_error - Retrieve next EEH error to handle
1438  * @pe: Affected PE
1439  *
1440  * The function is expected to be called by EEH core while it gets
1441  * special EEH event (without binding PE). The function calls to
1442  * OPAL APIs for next error to handle. The informational error is
1443  * handled internally by platform. However, the dead IOC, dead PHB,
1444  * fenced PHB and frozen PE should be handled by EEH core eventually.
1445  */
1446 static int pnv_eeh_next_error(struct eeh_pe **pe)
1447 {
1448         struct pci_controller *hose;
1449         struct pnv_phb *phb;
1450         struct eeh_pe *phb_pe, *parent_pe;
1451         __be64 frozen_pe_no;
1452         __be16 err_type, severity;
1453         long rc;
1454         int state, ret = EEH_NEXT_ERR_NONE;
1455
1456         /*
1457          * While running here, it's safe to purge the event queue. The
1458          * event should still be masked.
1459          */
1460         eeh_remove_event(NULL, false);
1461
1462         list_for_each_entry(hose, &hose_list, list_node) {
1463                 /*
1464                  * If the subordinate PCI buses of the PHB has been
1465                  * removed or is exactly under error recovery, we
1466                  * needn't take care of it any more.
1467                  */
1468                 phb = hose->private_data;
1469                 phb_pe = eeh_phb_pe_get(hose);
1470                 if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1471                         continue;
1472
1473                 rc = opal_pci_next_error(phb->opal_id,
1474                                          &frozen_pe_no, &err_type, &severity);
1475                 if (rc != OPAL_SUCCESS) {
1476                         pr_devel("%s: Invalid return value on "
1477                                  "PHB#%x (0x%lx) from opal_pci_next_error",
1478                                  __func__, hose->global_number, rc);
1479                         continue;
1480                 }
1481
1482                 /* If the PHB doesn't have error, stop processing */
1483                 if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1484                     be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1485                         pr_devel("%s: No error found on PHB#%x\n",
1486                                  __func__, hose->global_number);
1487                         continue;
1488                 }
1489
1490                 /*
1491                  * Processing the error. We're expecting the error with
1492                  * highest priority reported upon multiple errors on the
1493                  * specific PHB.
1494                  */
1495                 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1496                         __func__, be16_to_cpu(err_type),
1497                         be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1498                         hose->global_number);
1499                 switch (be16_to_cpu(err_type)) {
1500                 case OPAL_EEH_IOC_ERROR:
1501                         if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1502                                 pr_err("EEH: dead IOC detected\n");
1503                                 ret = EEH_NEXT_ERR_DEAD_IOC;
1504                         } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1505                                 pr_info("EEH: IOC informative error "
1506                                         "detected\n");
1507                                 pnv_eeh_get_and_dump_hub_diag(hose);
1508                                 ret = EEH_NEXT_ERR_NONE;
1509                         }
1510
1511                         break;
1512                 case OPAL_EEH_PHB_ERROR:
1513                         if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1514                                 *pe = phb_pe;
1515                                 pr_err("EEH: dead PHB#%x detected, "
1516                                        "location: %s\n",
1517                                         hose->global_number,
1518                                         eeh_pe_loc_get(phb_pe));
1519                                 ret = EEH_NEXT_ERR_DEAD_PHB;
1520                         } else if (be16_to_cpu(severity) ==
1521                                    OPAL_EEH_SEV_PHB_FENCED) {
1522                                 *pe = phb_pe;
1523                                 pr_err("EEH: Fenced PHB#%x detected, "
1524                                        "location: %s\n",
1525                                         hose->global_number,
1526                                         eeh_pe_loc_get(phb_pe));
1527                                 ret = EEH_NEXT_ERR_FENCED_PHB;
1528                         } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1529                                 pr_info("EEH: PHB#%x informative error "
1530                                         "detected, location: %s\n",
1531                                         hose->global_number,
1532                                         eeh_pe_loc_get(phb_pe));
1533                                 pnv_eeh_get_phb_diag(phb_pe);
1534                                 pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1535                                 ret = EEH_NEXT_ERR_NONE;
1536                         }
1537
1538                         break;
1539                 case OPAL_EEH_PE_ERROR:
1540                         /*
1541                          * If we can't find the corresponding PE, we
1542                          * just try to unfreeze.
1543                          */
1544                         if (pnv_eeh_get_pe(hose,
1545                                 be64_to_cpu(frozen_pe_no), pe)) {
1546                                 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1547                                         hose->global_number, be64_to_cpu(frozen_pe_no));
1548                                 pr_info("EEH: PHB location: %s\n",
1549                                         eeh_pe_loc_get(phb_pe));
1550
1551                                 /* Dump PHB diag-data */
1552                                 rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1553                                         phb->diag_data, phb->diag_data_size);
1554                                 if (rc == OPAL_SUCCESS)
1555                                         pnv_pci_dump_phb_diag_data(hose,
1556                                                         phb->diag_data);
1557
1558                                 /* Try best to clear it */
1559                                 opal_pci_eeh_freeze_clear(phb->opal_id,
1560                                         be64_to_cpu(frozen_pe_no),
1561                                         OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1562                                 ret = EEH_NEXT_ERR_NONE;
1563                         } else if ((*pe)->state & EEH_PE_ISOLATED ||
1564                                    eeh_pe_passed(*pe)) {
1565                                 ret = EEH_NEXT_ERR_NONE;
1566                         } else {
1567                                 pr_err("EEH: Frozen PE#%x "
1568                                        "on PHB#%x detected\n",
1569                                        (*pe)->addr,
1570                                         (*pe)->phb->global_number);
1571                                 pr_err("EEH: PE location: %s, "
1572                                        "PHB location: %s\n",
1573                                        eeh_pe_loc_get(*pe),
1574                                        eeh_pe_loc_get(phb_pe));
1575                                 ret = EEH_NEXT_ERR_FROZEN_PE;
1576                         }
1577
1578                         break;
1579                 default:
1580                         pr_warn("%s: Unexpected error type %d\n",
1581                                 __func__, be16_to_cpu(err_type));
1582                 }
1583
1584                 /*
1585                  * EEH core will try recover from fenced PHB or
1586                  * frozen PE. In the time for frozen PE, EEH core
1587                  * enable IO path for that before collecting logs,
1588                  * but it ruins the site. So we have to dump the
1589                  * log in advance here.
1590                  */
1591                 if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1592                     ret == EEH_NEXT_ERR_FENCED_PHB) &&
1593                     !((*pe)->state & EEH_PE_ISOLATED)) {
1594                         eeh_pe_mark_isolated(*pe);
1595                         pnv_eeh_get_phb_diag(*pe);
1596
1597                         if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1598                                 pnv_pci_dump_phb_diag_data((*pe)->phb,
1599                                                            (*pe)->data);
1600                 }
1601
1602                 /*
1603                  * We probably have the frozen parent PE out there and
1604                  * we need have to handle frozen parent PE firstly.
1605                  */
1606                 if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1607                         parent_pe = (*pe)->parent;
1608                         while (parent_pe) {
1609                                 /* Hit the ceiling ? */
1610                                 if (parent_pe->type & EEH_PE_PHB)
1611                                         break;
1612
1613                                 /* Frozen parent PE ? */
1614                                 state = eeh_ops->get_state(parent_pe, NULL);
1615                                 if (state > 0 && !eeh_state_active(state))
1616                                         *pe = parent_pe;
1617
1618                                 /* Next parent level */
1619                                 parent_pe = parent_pe->parent;
1620                         }
1621
1622                         /* We possibly migrate to another PE */
1623                         eeh_pe_mark_isolated(*pe);
1624                 }
1625
1626                 /*
1627                  * If we have no errors on the specific PHB or only
1628                  * informative error there, we continue poking it.
1629                  * Otherwise, we need actions to be taken by upper
1630                  * layer.
1631                  */
1632                 if (ret > EEH_NEXT_ERR_INF)
1633                         break;
1634         }
1635
1636         /* Unmask the event */
1637         if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1638                 enable_irq(eeh_event_irq);
1639
1640         return ret;
1641 }
1642
1643 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1644 {
1645         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1646         struct pnv_phb *phb;
1647         s64 ret = 0;
1648         int config_addr = (pdn->busno << 8) | (pdn->devfn);
1649
1650         if (!edev)
1651                 return -EEXIST;
1652
1653         /*
1654          * We have to restore the PCI config space after reset since the
1655          * firmware can't see SRIOV VFs.
1656          *
1657          * FIXME: The MPS, error routing rules, timeout setting are worthy
1658          * to be exported by firmware in extendible way.
1659          */
1660         if (edev->physfn) {
1661                 ret = eeh_restore_vf_config(pdn);
1662         } else {
1663                 phb = pdn->phb->private_data;
1664                 ret = opal_pci_reinit(phb->opal_id,
1665                                       OPAL_REINIT_PCI_DEV, config_addr);
1666         }
1667
1668         if (ret) {
1669                 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1670                         __func__, config_addr, ret);
1671                 return -EIO;
1672         }
1673
1674         return ret;
1675 }
1676
1677 static struct eeh_ops pnv_eeh_ops = {
1678         .name                   = "powernv",
1679         .init                   = pnv_eeh_init,
1680         .probe                  = pnv_eeh_probe,
1681         .set_option             = pnv_eeh_set_option,
1682         .get_pe_addr            = pnv_eeh_get_pe_addr,
1683         .get_state              = pnv_eeh_get_state,
1684         .reset                  = pnv_eeh_reset,
1685         .get_log                = pnv_eeh_get_log,
1686         .configure_bridge       = pnv_eeh_configure_bridge,
1687         .err_inject             = pnv_eeh_err_inject,
1688         .read_config            = pnv_eeh_read_config,
1689         .write_config           = pnv_eeh_write_config,
1690         .next_error             = pnv_eeh_next_error,
1691         .restore_config         = pnv_eeh_restore_config,
1692         .notify_resume          = NULL
1693 };
1694
1695 #ifdef CONFIG_PCI_IOV
1696 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
1697 {
1698         struct pci_dn *pdn = pci_get_pdn(pdev);
1699         int parent_mps;
1700
1701         if (!pdev->is_virtfn)
1702                 return;
1703
1704         /* Synchronize MPS for VF and PF */
1705         parent_mps = pcie_get_mps(pdev->physfn);
1706         if ((128 << pdev->pcie_mpss) >= parent_mps)
1707                 pcie_set_mps(pdev, parent_mps);
1708         pdn->mps = pcie_get_mps(pdev);
1709 }
1710 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
1711 #endif /* CONFIG_PCI_IOV */
1712
1713 /**
1714  * eeh_powernv_init - Register platform dependent EEH operations
1715  *
1716  * EEH initialization on powernv platform. This function should be
1717  * called before any EEH related functions.
1718  */
1719 static int __init eeh_powernv_init(void)
1720 {
1721         int ret = -EINVAL;
1722
1723         ret = eeh_ops_register(&pnv_eeh_ops);
1724         if (!ret)
1725                 pr_info("EEH: PowerNV platform initialized\n");
1726         else
1727                 pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1728
1729         return ret;
1730 }
1731 machine_early_initcall(powernv, eeh_powernv_init);