Linux 6.7-rc7
[linux-modified.git] / arch / powerpc / platforms / cell / spufs / file.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SPU file system -- file contents
4  *
5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6  *
7  * Author: Arnd Bergmann <arndb@de.ibm.com>
8  */
9
10 #undef DEBUG
11
12 #include <linux/coredump.h>
13 #include <linux/fs.h>
14 #include <linux/ioctl.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/poll.h>
18 #include <linux/ptrace.h>
19 #include <linux/seq_file.h>
20 #include <linux/slab.h>
21
22 #include <asm/io.h>
23 #include <asm/time.h>
24 #include <asm/spu.h>
25 #include <asm/spu_info.h>
26 #include <linux/uaccess.h>
27
28 #include "spufs.h"
29 #include "sputrace.h"
30
31 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
32
33 /* Simple attribute files */
34 struct spufs_attr {
35         int (*get)(void *, u64 *);
36         int (*set)(void *, u64);
37         char get_buf[24];       /* enough to store a u64 and "\n\0" */
38         char set_buf[24];
39         void *data;
40         const char *fmt;        /* format for read operation */
41         struct mutex mutex;     /* protects access to these buffers */
42 };
43
44 static int spufs_attr_open(struct inode *inode, struct file *file,
45                 int (*get)(void *, u64 *), int (*set)(void *, u64),
46                 const char *fmt)
47 {
48         struct spufs_attr *attr;
49
50         attr = kmalloc(sizeof(*attr), GFP_KERNEL);
51         if (!attr)
52                 return -ENOMEM;
53
54         attr->get = get;
55         attr->set = set;
56         attr->data = inode->i_private;
57         attr->fmt = fmt;
58         mutex_init(&attr->mutex);
59         file->private_data = attr;
60
61         return nonseekable_open(inode, file);
62 }
63
64 static int spufs_attr_release(struct inode *inode, struct file *file)
65 {
66        kfree(file->private_data);
67         return 0;
68 }
69
70 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
71                 size_t len, loff_t *ppos)
72 {
73         struct spufs_attr *attr;
74         size_t size;
75         ssize_t ret;
76
77         attr = file->private_data;
78         if (!attr->get)
79                 return -EACCES;
80
81         ret = mutex_lock_interruptible(&attr->mutex);
82         if (ret)
83                 return ret;
84
85         if (*ppos) {            /* continued read */
86                 size = strlen(attr->get_buf);
87         } else {                /* first read */
88                 u64 val;
89                 ret = attr->get(attr->data, &val);
90                 if (ret)
91                         goto out;
92
93                 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
94                                  attr->fmt, (unsigned long long)val);
95         }
96
97         ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
98 out:
99         mutex_unlock(&attr->mutex);
100         return ret;
101 }
102
103 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
104                 size_t len, loff_t *ppos)
105 {
106         struct spufs_attr *attr;
107         u64 val;
108         size_t size;
109         ssize_t ret;
110
111         attr = file->private_data;
112         if (!attr->set)
113                 return -EACCES;
114
115         ret = mutex_lock_interruptible(&attr->mutex);
116         if (ret)
117                 return ret;
118
119         ret = -EFAULT;
120         size = min(sizeof(attr->set_buf) - 1, len);
121         if (copy_from_user(attr->set_buf, buf, size))
122                 goto out;
123
124         ret = len; /* claim we got the whole input */
125         attr->set_buf[size] = '\0';
126         val = simple_strtol(attr->set_buf, NULL, 0);
127         attr->set(attr->data, val);
128 out:
129         mutex_unlock(&attr->mutex);
130         return ret;
131 }
132
133 static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf,
134                 size_t size)
135 {
136         if (!dump_emit(cprm, buf, size))
137                 return -EIO;
138         return size;
139 }
140
141 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)      \
142 static int __fops ## _open(struct inode *inode, struct file *file)      \
143 {                                                                       \
144         __simple_attr_check_format(__fmt, 0ull);                        \
145         return spufs_attr_open(inode, file, __get, __set, __fmt);       \
146 }                                                                       \
147 static const struct file_operations __fops = {                          \
148         .open    = __fops ## _open,                                     \
149         .release = spufs_attr_release,                                  \
150         .read    = spufs_attr_read,                                     \
151         .write   = spufs_attr_write,                                    \
152         .llseek  = generic_file_llseek,                                 \
153 };
154
155
156 static int
157 spufs_mem_open(struct inode *inode, struct file *file)
158 {
159         struct spufs_inode_info *i = SPUFS_I(inode);
160         struct spu_context *ctx = i->i_ctx;
161
162         mutex_lock(&ctx->mapping_lock);
163         file->private_data = ctx;
164         if (!i->i_openers++)
165                 ctx->local_store = inode->i_mapping;
166         mutex_unlock(&ctx->mapping_lock);
167         return 0;
168 }
169
170 static int
171 spufs_mem_release(struct inode *inode, struct file *file)
172 {
173         struct spufs_inode_info *i = SPUFS_I(inode);
174         struct spu_context *ctx = i->i_ctx;
175
176         mutex_lock(&ctx->mapping_lock);
177         if (!--i->i_openers)
178                 ctx->local_store = NULL;
179         mutex_unlock(&ctx->mapping_lock);
180         return 0;
181 }
182
183 static ssize_t
184 spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm)
185 {
186         return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE);
187 }
188
189 static ssize_t
190 spufs_mem_read(struct file *file, char __user *buffer,
191                                 size_t size, loff_t *pos)
192 {
193         struct spu_context *ctx = file->private_data;
194         ssize_t ret;
195
196         ret = spu_acquire(ctx);
197         if (ret)
198                 return ret;
199         ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx),
200                                       LS_SIZE);
201         spu_release(ctx);
202
203         return ret;
204 }
205
206 static ssize_t
207 spufs_mem_write(struct file *file, const char __user *buffer,
208                                         size_t size, loff_t *ppos)
209 {
210         struct spu_context *ctx = file->private_data;
211         char *local_store;
212         loff_t pos = *ppos;
213         int ret;
214
215         if (pos > LS_SIZE)
216                 return -EFBIG;
217
218         ret = spu_acquire(ctx);
219         if (ret)
220                 return ret;
221
222         local_store = ctx->ops->get_ls(ctx);
223         size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
224         spu_release(ctx);
225
226         return size;
227 }
228
229 static vm_fault_t
230 spufs_mem_mmap_fault(struct vm_fault *vmf)
231 {
232         struct vm_area_struct *vma = vmf->vma;
233         struct spu_context *ctx = vma->vm_file->private_data;
234         unsigned long pfn, offset;
235         vm_fault_t ret;
236
237         offset = vmf->pgoff << PAGE_SHIFT;
238         if (offset >= LS_SIZE)
239                 return VM_FAULT_SIGBUS;
240
241         pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
242                         vmf->address, offset);
243
244         if (spu_acquire(ctx))
245                 return VM_FAULT_NOPAGE;
246
247         if (ctx->state == SPU_STATE_SAVED) {
248                 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
249                 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
250         } else {
251                 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
252                 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
253         }
254         ret = vmf_insert_pfn(vma, vmf->address, pfn);
255
256         spu_release(ctx);
257
258         return ret;
259 }
260
261 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
262                                 unsigned long address,
263                                 void *buf, int len, int write)
264 {
265         struct spu_context *ctx = vma->vm_file->private_data;
266         unsigned long offset = address - vma->vm_start;
267         char *local_store;
268
269         if (write && !(vma->vm_flags & VM_WRITE))
270                 return -EACCES;
271         if (spu_acquire(ctx))
272                 return -EINTR;
273         if ((offset + len) > vma->vm_end)
274                 len = vma->vm_end - offset;
275         local_store = ctx->ops->get_ls(ctx);
276         if (write)
277                 memcpy_toio(local_store + offset, buf, len);
278         else
279                 memcpy_fromio(buf, local_store + offset, len);
280         spu_release(ctx);
281         return len;
282 }
283
284 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
285         .fault = spufs_mem_mmap_fault,
286         .access = spufs_mem_mmap_access,
287 };
288
289 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
290 {
291         if (!(vma->vm_flags & VM_SHARED))
292                 return -EINVAL;
293
294         vm_flags_set(vma, VM_IO | VM_PFNMAP);
295         vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
296
297         vma->vm_ops = &spufs_mem_mmap_vmops;
298         return 0;
299 }
300
301 static const struct file_operations spufs_mem_fops = {
302         .open                   = spufs_mem_open,
303         .release                = spufs_mem_release,
304         .read                   = spufs_mem_read,
305         .write                  = spufs_mem_write,
306         .llseek                 = generic_file_llseek,
307         .mmap                   = spufs_mem_mmap,
308 };
309
310 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
311                                     unsigned long ps_offs,
312                                     unsigned long ps_size)
313 {
314         struct spu_context *ctx = vmf->vma->vm_file->private_data;
315         unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
316         int err = 0;
317         vm_fault_t ret = VM_FAULT_NOPAGE;
318
319         spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
320
321         if (offset >= ps_size)
322                 return VM_FAULT_SIGBUS;
323
324         if (fatal_signal_pending(current))
325                 return VM_FAULT_SIGBUS;
326
327         /*
328          * Because we release the mmap_lock, the context may be destroyed while
329          * we're in spu_wait. Grab an extra reference so it isn't destroyed
330          * in the meantime.
331          */
332         get_spu_context(ctx);
333
334         /*
335          * We have to wait for context to be loaded before we have
336          * pages to hand out to the user, but we don't want to wait
337          * with the mmap_lock held.
338          * It is possible to drop the mmap_lock here, but then we need
339          * to return VM_FAULT_NOPAGE because the mappings may have
340          * hanged.
341          */
342         if (spu_acquire(ctx))
343                 goto refault;
344
345         if (ctx->state == SPU_STATE_SAVED) {
346                 mmap_read_unlock(current->mm);
347                 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
348                 err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
349                 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
350                 mmap_read_lock(current->mm);
351         } else {
352                 area = ctx->spu->problem_phys + ps_offs;
353                 ret = vmf_insert_pfn(vmf->vma, vmf->address,
354                                 (area + offset) >> PAGE_SHIFT);
355                 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
356         }
357
358         if (!err)
359                 spu_release(ctx);
360
361 refault:
362         put_spu_context(ctx);
363         return ret;
364 }
365
366 #if SPUFS_MMAP_4K
367 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
368 {
369         return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
370 }
371
372 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
373         .fault = spufs_cntl_mmap_fault,
374 };
375
376 /*
377  * mmap support for problem state control area [0x4000 - 0x4fff].
378  */
379 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
380 {
381         if (!(vma->vm_flags & VM_SHARED))
382                 return -EINVAL;
383
384         vm_flags_set(vma, VM_IO | VM_PFNMAP);
385         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
386
387         vma->vm_ops = &spufs_cntl_mmap_vmops;
388         return 0;
389 }
390 #else /* SPUFS_MMAP_4K */
391 #define spufs_cntl_mmap NULL
392 #endif /* !SPUFS_MMAP_4K */
393
394 static int spufs_cntl_get(void *data, u64 *val)
395 {
396         struct spu_context *ctx = data;
397         int ret;
398
399         ret = spu_acquire(ctx);
400         if (ret)
401                 return ret;
402         *val = ctx->ops->status_read(ctx);
403         spu_release(ctx);
404
405         return 0;
406 }
407
408 static int spufs_cntl_set(void *data, u64 val)
409 {
410         struct spu_context *ctx = data;
411         int ret;
412
413         ret = spu_acquire(ctx);
414         if (ret)
415                 return ret;
416         ctx->ops->runcntl_write(ctx, val);
417         spu_release(ctx);
418
419         return 0;
420 }
421
422 static int spufs_cntl_open(struct inode *inode, struct file *file)
423 {
424         struct spufs_inode_info *i = SPUFS_I(inode);
425         struct spu_context *ctx = i->i_ctx;
426
427         mutex_lock(&ctx->mapping_lock);
428         file->private_data = ctx;
429         if (!i->i_openers++)
430                 ctx->cntl = inode->i_mapping;
431         mutex_unlock(&ctx->mapping_lock);
432         return simple_attr_open(inode, file, spufs_cntl_get,
433                                         spufs_cntl_set, "0x%08lx");
434 }
435
436 static int
437 spufs_cntl_release(struct inode *inode, struct file *file)
438 {
439         struct spufs_inode_info *i = SPUFS_I(inode);
440         struct spu_context *ctx = i->i_ctx;
441
442         simple_attr_release(inode, file);
443
444         mutex_lock(&ctx->mapping_lock);
445         if (!--i->i_openers)
446                 ctx->cntl = NULL;
447         mutex_unlock(&ctx->mapping_lock);
448         return 0;
449 }
450
451 static const struct file_operations spufs_cntl_fops = {
452         .open = spufs_cntl_open,
453         .release = spufs_cntl_release,
454         .read = simple_attr_read,
455         .write = simple_attr_write,
456         .llseek = no_llseek,
457         .mmap = spufs_cntl_mmap,
458 };
459
460 static int
461 spufs_regs_open(struct inode *inode, struct file *file)
462 {
463         struct spufs_inode_info *i = SPUFS_I(inode);
464         file->private_data = i->i_ctx;
465         return 0;
466 }
467
468 static ssize_t
469 spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm)
470 {
471         return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs,
472                                sizeof(ctx->csa.lscsa->gprs));
473 }
474
475 static ssize_t
476 spufs_regs_read(struct file *file, char __user *buffer,
477                 size_t size, loff_t *pos)
478 {
479         int ret;
480         struct spu_context *ctx = file->private_data;
481
482         /* pre-check for file position: if we'd return EOF, there's no point
483          * causing a deschedule */
484         if (*pos >= sizeof(ctx->csa.lscsa->gprs))
485                 return 0;
486
487         ret = spu_acquire_saved(ctx);
488         if (ret)
489                 return ret;
490         ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs,
491                                       sizeof(ctx->csa.lscsa->gprs));
492         spu_release_saved(ctx);
493         return ret;
494 }
495
496 static ssize_t
497 spufs_regs_write(struct file *file, const char __user *buffer,
498                  size_t size, loff_t *pos)
499 {
500         struct spu_context *ctx = file->private_data;
501         struct spu_lscsa *lscsa = ctx->csa.lscsa;
502         int ret;
503
504         if (*pos >= sizeof(lscsa->gprs))
505                 return -EFBIG;
506
507         ret = spu_acquire_saved(ctx);
508         if (ret)
509                 return ret;
510
511         size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
512                                         buffer, size);
513
514         spu_release_saved(ctx);
515         return size;
516 }
517
518 static const struct file_operations spufs_regs_fops = {
519         .open    = spufs_regs_open,
520         .read    = spufs_regs_read,
521         .write   = spufs_regs_write,
522         .llseek  = generic_file_llseek,
523 };
524
525 static ssize_t
526 spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm)
527 {
528         return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr,
529                                sizeof(ctx->csa.lscsa->fpcr));
530 }
531
532 static ssize_t
533 spufs_fpcr_read(struct file *file, char __user * buffer,
534                 size_t size, loff_t * pos)
535 {
536         int ret;
537         struct spu_context *ctx = file->private_data;
538
539         ret = spu_acquire_saved(ctx);
540         if (ret)
541                 return ret;
542         ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr,
543                                       sizeof(ctx->csa.lscsa->fpcr));
544         spu_release_saved(ctx);
545         return ret;
546 }
547
548 static ssize_t
549 spufs_fpcr_write(struct file *file, const char __user * buffer,
550                  size_t size, loff_t * pos)
551 {
552         struct spu_context *ctx = file->private_data;
553         struct spu_lscsa *lscsa = ctx->csa.lscsa;
554         int ret;
555
556         if (*pos >= sizeof(lscsa->fpcr))
557                 return -EFBIG;
558
559         ret = spu_acquire_saved(ctx);
560         if (ret)
561                 return ret;
562
563         size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
564                                         buffer, size);
565
566         spu_release_saved(ctx);
567         return size;
568 }
569
570 static const struct file_operations spufs_fpcr_fops = {
571         .open = spufs_regs_open,
572         .read = spufs_fpcr_read,
573         .write = spufs_fpcr_write,
574         .llseek = generic_file_llseek,
575 };
576
577 /* generic open function for all pipe-like files */
578 static int spufs_pipe_open(struct inode *inode, struct file *file)
579 {
580         struct spufs_inode_info *i = SPUFS_I(inode);
581         file->private_data = i->i_ctx;
582
583         return stream_open(inode, file);
584 }
585
586 /*
587  * Read as many bytes from the mailbox as possible, until
588  * one of the conditions becomes true:
589  *
590  * - no more data available in the mailbox
591  * - end of the user provided buffer
592  * - end of the mapped area
593  */
594 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
595                         size_t len, loff_t *pos)
596 {
597         struct spu_context *ctx = file->private_data;
598         u32 mbox_data, __user *udata = (void __user *)buf;
599         ssize_t count;
600
601         if (len < 4)
602                 return -EINVAL;
603
604         count = spu_acquire(ctx);
605         if (count)
606                 return count;
607
608         for (count = 0; (count + 4) <= len; count += 4, udata++) {
609                 int ret;
610                 ret = ctx->ops->mbox_read(ctx, &mbox_data);
611                 if (ret == 0)
612                         break;
613
614                 /*
615                  * at the end of the mapped area, we can fault
616                  * but still need to return the data we have
617                  * read successfully so far.
618                  */
619                 ret = put_user(mbox_data, udata);
620                 if (ret) {
621                         if (!count)
622                                 count = -EFAULT;
623                         break;
624                 }
625         }
626         spu_release(ctx);
627
628         if (!count)
629                 count = -EAGAIN;
630
631         return count;
632 }
633
634 static const struct file_operations spufs_mbox_fops = {
635         .open   = spufs_pipe_open,
636         .read   = spufs_mbox_read,
637         .llseek = no_llseek,
638 };
639
640 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
641                         size_t len, loff_t *pos)
642 {
643         struct spu_context *ctx = file->private_data;
644         ssize_t ret;
645         u32 mbox_stat;
646
647         if (len < 4)
648                 return -EINVAL;
649
650         ret = spu_acquire(ctx);
651         if (ret)
652                 return ret;
653
654         mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
655
656         spu_release(ctx);
657
658         if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
659                 return -EFAULT;
660
661         return 4;
662 }
663
664 static const struct file_operations spufs_mbox_stat_fops = {
665         .open   = spufs_pipe_open,
666         .read   = spufs_mbox_stat_read,
667         .llseek = no_llseek,
668 };
669
670 /* low-level ibox access function */
671 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
672 {
673         return ctx->ops->ibox_read(ctx, data);
674 }
675
676 /* interrupt-level ibox callback function. */
677 void spufs_ibox_callback(struct spu *spu)
678 {
679         struct spu_context *ctx = spu->ctx;
680
681         if (ctx)
682                 wake_up_all(&ctx->ibox_wq);
683 }
684
685 /*
686  * Read as many bytes from the interrupt mailbox as possible, until
687  * one of the conditions becomes true:
688  *
689  * - no more data available in the mailbox
690  * - end of the user provided buffer
691  * - end of the mapped area
692  *
693  * If the file is opened without O_NONBLOCK, we wait here until
694  * any data is available, but return when we have been able to
695  * read something.
696  */
697 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
698                         size_t len, loff_t *pos)
699 {
700         struct spu_context *ctx = file->private_data;
701         u32 ibox_data, __user *udata = (void __user *)buf;
702         ssize_t count;
703
704         if (len < 4)
705                 return -EINVAL;
706
707         count = spu_acquire(ctx);
708         if (count)
709                 goto out;
710
711         /* wait only for the first element */
712         count = 0;
713         if (file->f_flags & O_NONBLOCK) {
714                 if (!spu_ibox_read(ctx, &ibox_data)) {
715                         count = -EAGAIN;
716                         goto out_unlock;
717                 }
718         } else {
719                 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
720                 if (count)
721                         goto out;
722         }
723
724         /* if we can't write at all, return -EFAULT */
725         count = put_user(ibox_data, udata);
726         if (count)
727                 goto out_unlock;
728
729         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
730                 int ret;
731                 ret = ctx->ops->ibox_read(ctx, &ibox_data);
732                 if (ret == 0)
733                         break;
734                 /*
735                  * at the end of the mapped area, we can fault
736                  * but still need to return the data we have
737                  * read successfully so far.
738                  */
739                 ret = put_user(ibox_data, udata);
740                 if (ret)
741                         break;
742         }
743
744 out_unlock:
745         spu_release(ctx);
746 out:
747         return count;
748 }
749
750 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
751 {
752         struct spu_context *ctx = file->private_data;
753         __poll_t mask;
754
755         poll_wait(file, &ctx->ibox_wq, wait);
756
757         /*
758          * For now keep this uninterruptible and also ignore the rule
759          * that poll should not sleep.  Will be fixed later.
760          */
761         mutex_lock(&ctx->state_mutex);
762         mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
763         spu_release(ctx);
764
765         return mask;
766 }
767
768 static const struct file_operations spufs_ibox_fops = {
769         .open   = spufs_pipe_open,
770         .read   = spufs_ibox_read,
771         .poll   = spufs_ibox_poll,
772         .llseek = no_llseek,
773 };
774
775 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
776                         size_t len, loff_t *pos)
777 {
778         struct spu_context *ctx = file->private_data;
779         ssize_t ret;
780         u32 ibox_stat;
781
782         if (len < 4)
783                 return -EINVAL;
784
785         ret = spu_acquire(ctx);
786         if (ret)
787                 return ret;
788         ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
789         spu_release(ctx);
790
791         if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
792                 return -EFAULT;
793
794         return 4;
795 }
796
797 static const struct file_operations spufs_ibox_stat_fops = {
798         .open   = spufs_pipe_open,
799         .read   = spufs_ibox_stat_read,
800         .llseek = no_llseek,
801 };
802
803 /* low-level mailbox write */
804 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
805 {
806         return ctx->ops->wbox_write(ctx, data);
807 }
808
809 /* interrupt-level wbox callback function. */
810 void spufs_wbox_callback(struct spu *spu)
811 {
812         struct spu_context *ctx = spu->ctx;
813
814         if (ctx)
815                 wake_up_all(&ctx->wbox_wq);
816 }
817
818 /*
819  * Write as many bytes to the interrupt mailbox as possible, until
820  * one of the conditions becomes true:
821  *
822  * - the mailbox is full
823  * - end of the user provided buffer
824  * - end of the mapped area
825  *
826  * If the file is opened without O_NONBLOCK, we wait here until
827  * space is available, but return when we have been able to
828  * write something.
829  */
830 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
831                         size_t len, loff_t *pos)
832 {
833         struct spu_context *ctx = file->private_data;
834         u32 wbox_data, __user *udata = (void __user *)buf;
835         ssize_t count;
836
837         if (len < 4)
838                 return -EINVAL;
839
840         if (get_user(wbox_data, udata))
841                 return -EFAULT;
842
843         count = spu_acquire(ctx);
844         if (count)
845                 goto out;
846
847         /*
848          * make sure we can at least write one element, by waiting
849          * in case of !O_NONBLOCK
850          */
851         count = 0;
852         if (file->f_flags & O_NONBLOCK) {
853                 if (!spu_wbox_write(ctx, wbox_data)) {
854                         count = -EAGAIN;
855                         goto out_unlock;
856                 }
857         } else {
858                 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
859                 if (count)
860                         goto out;
861         }
862
863
864         /* write as much as possible */
865         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
866                 int ret;
867                 ret = get_user(wbox_data, udata);
868                 if (ret)
869                         break;
870
871                 ret = spu_wbox_write(ctx, wbox_data);
872                 if (ret == 0)
873                         break;
874         }
875
876 out_unlock:
877         spu_release(ctx);
878 out:
879         return count;
880 }
881
882 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
883 {
884         struct spu_context *ctx = file->private_data;
885         __poll_t mask;
886
887         poll_wait(file, &ctx->wbox_wq, wait);
888
889         /*
890          * For now keep this uninterruptible and also ignore the rule
891          * that poll should not sleep.  Will be fixed later.
892          */
893         mutex_lock(&ctx->state_mutex);
894         mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
895         spu_release(ctx);
896
897         return mask;
898 }
899
900 static const struct file_operations spufs_wbox_fops = {
901         .open   = spufs_pipe_open,
902         .write  = spufs_wbox_write,
903         .poll   = spufs_wbox_poll,
904         .llseek = no_llseek,
905 };
906
907 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
908                         size_t len, loff_t *pos)
909 {
910         struct spu_context *ctx = file->private_data;
911         ssize_t ret;
912         u32 wbox_stat;
913
914         if (len < 4)
915                 return -EINVAL;
916
917         ret = spu_acquire(ctx);
918         if (ret)
919                 return ret;
920         wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
921         spu_release(ctx);
922
923         if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
924                 return -EFAULT;
925
926         return 4;
927 }
928
929 static const struct file_operations spufs_wbox_stat_fops = {
930         .open   = spufs_pipe_open,
931         .read   = spufs_wbox_stat_read,
932         .llseek = no_llseek,
933 };
934
935 static int spufs_signal1_open(struct inode *inode, struct file *file)
936 {
937         struct spufs_inode_info *i = SPUFS_I(inode);
938         struct spu_context *ctx = i->i_ctx;
939
940         mutex_lock(&ctx->mapping_lock);
941         file->private_data = ctx;
942         if (!i->i_openers++)
943                 ctx->signal1 = inode->i_mapping;
944         mutex_unlock(&ctx->mapping_lock);
945         return nonseekable_open(inode, file);
946 }
947
948 static int
949 spufs_signal1_release(struct inode *inode, struct file *file)
950 {
951         struct spufs_inode_info *i = SPUFS_I(inode);
952         struct spu_context *ctx = i->i_ctx;
953
954         mutex_lock(&ctx->mapping_lock);
955         if (!--i->i_openers)
956                 ctx->signal1 = NULL;
957         mutex_unlock(&ctx->mapping_lock);
958         return 0;
959 }
960
961 static ssize_t spufs_signal1_dump(struct spu_context *ctx,
962                 struct coredump_params *cprm)
963 {
964         if (!ctx->csa.spu_chnlcnt_RW[3])
965                 return 0;
966         return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3],
967                                sizeof(ctx->csa.spu_chnldata_RW[3]));
968 }
969
970 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
971                         size_t len)
972 {
973         if (len < sizeof(ctx->csa.spu_chnldata_RW[3]))
974                 return -EINVAL;
975         if (!ctx->csa.spu_chnlcnt_RW[3])
976                 return 0;
977         if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3],
978                          sizeof(ctx->csa.spu_chnldata_RW[3])))
979                 return -EFAULT;
980         return sizeof(ctx->csa.spu_chnldata_RW[3]);
981 }
982
983 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
984                         size_t len, loff_t *pos)
985 {
986         int ret;
987         struct spu_context *ctx = file->private_data;
988
989         ret = spu_acquire_saved(ctx);
990         if (ret)
991                 return ret;
992         ret = __spufs_signal1_read(ctx, buf, len);
993         spu_release_saved(ctx);
994
995         return ret;
996 }
997
998 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
999                         size_t len, loff_t *pos)
1000 {
1001         struct spu_context *ctx;
1002         ssize_t ret;
1003         u32 data;
1004
1005         ctx = file->private_data;
1006
1007         if (len < 4)
1008                 return -EINVAL;
1009
1010         if (copy_from_user(&data, buf, 4))
1011                 return -EFAULT;
1012
1013         ret = spu_acquire(ctx);
1014         if (ret)
1015                 return ret;
1016         ctx->ops->signal1_write(ctx, data);
1017         spu_release(ctx);
1018
1019         return 4;
1020 }
1021
1022 static vm_fault_t
1023 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1024 {
1025 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1026         return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1027 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1028         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1029          * signal 1 and 2 area
1030          */
1031         return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1032 #else
1033 #error unsupported page size
1034 #endif
1035 }
1036
1037 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1038         .fault = spufs_signal1_mmap_fault,
1039 };
1040
1041 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1042 {
1043         if (!(vma->vm_flags & VM_SHARED))
1044                 return -EINVAL;
1045
1046         vm_flags_set(vma, VM_IO | VM_PFNMAP);
1047         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1048
1049         vma->vm_ops = &spufs_signal1_mmap_vmops;
1050         return 0;
1051 }
1052
1053 static const struct file_operations spufs_signal1_fops = {
1054         .open = spufs_signal1_open,
1055         .release = spufs_signal1_release,
1056         .read = spufs_signal1_read,
1057         .write = spufs_signal1_write,
1058         .mmap = spufs_signal1_mmap,
1059         .llseek = no_llseek,
1060 };
1061
1062 static const struct file_operations spufs_signal1_nosched_fops = {
1063         .open = spufs_signal1_open,
1064         .release = spufs_signal1_release,
1065         .write = spufs_signal1_write,
1066         .mmap = spufs_signal1_mmap,
1067         .llseek = no_llseek,
1068 };
1069
1070 static int spufs_signal2_open(struct inode *inode, struct file *file)
1071 {
1072         struct spufs_inode_info *i = SPUFS_I(inode);
1073         struct spu_context *ctx = i->i_ctx;
1074
1075         mutex_lock(&ctx->mapping_lock);
1076         file->private_data = ctx;
1077         if (!i->i_openers++)
1078                 ctx->signal2 = inode->i_mapping;
1079         mutex_unlock(&ctx->mapping_lock);
1080         return nonseekable_open(inode, file);
1081 }
1082
1083 static int
1084 spufs_signal2_release(struct inode *inode, struct file *file)
1085 {
1086         struct spufs_inode_info *i = SPUFS_I(inode);
1087         struct spu_context *ctx = i->i_ctx;
1088
1089         mutex_lock(&ctx->mapping_lock);
1090         if (!--i->i_openers)
1091                 ctx->signal2 = NULL;
1092         mutex_unlock(&ctx->mapping_lock);
1093         return 0;
1094 }
1095
1096 static ssize_t spufs_signal2_dump(struct spu_context *ctx,
1097                 struct coredump_params *cprm)
1098 {
1099         if (!ctx->csa.spu_chnlcnt_RW[4])
1100                 return 0;
1101         return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4],
1102                                sizeof(ctx->csa.spu_chnldata_RW[4]));
1103 }
1104
1105 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1106                         size_t len)
1107 {
1108         if (len < sizeof(ctx->csa.spu_chnldata_RW[4]))
1109                 return -EINVAL;
1110         if (!ctx->csa.spu_chnlcnt_RW[4])
1111                 return 0;
1112         if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4],
1113                          sizeof(ctx->csa.spu_chnldata_RW[4])))
1114                 return -EFAULT;
1115         return sizeof(ctx->csa.spu_chnldata_RW[4]);
1116 }
1117
1118 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1119                         size_t len, loff_t *pos)
1120 {
1121         struct spu_context *ctx = file->private_data;
1122         int ret;
1123
1124         ret = spu_acquire_saved(ctx);
1125         if (ret)
1126                 return ret;
1127         ret = __spufs_signal2_read(ctx, buf, len);
1128         spu_release_saved(ctx);
1129
1130         return ret;
1131 }
1132
1133 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1134                         size_t len, loff_t *pos)
1135 {
1136         struct spu_context *ctx;
1137         ssize_t ret;
1138         u32 data;
1139
1140         ctx = file->private_data;
1141
1142         if (len < 4)
1143                 return -EINVAL;
1144
1145         if (copy_from_user(&data, buf, 4))
1146                 return -EFAULT;
1147
1148         ret = spu_acquire(ctx);
1149         if (ret)
1150                 return ret;
1151         ctx->ops->signal2_write(ctx, data);
1152         spu_release(ctx);
1153
1154         return 4;
1155 }
1156
1157 #if SPUFS_MMAP_4K
1158 static vm_fault_t
1159 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1160 {
1161 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1162         return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1163 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1164         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1165          * signal 1 and 2 area
1166          */
1167         return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1168 #else
1169 #error unsupported page size
1170 #endif
1171 }
1172
1173 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1174         .fault = spufs_signal2_mmap_fault,
1175 };
1176
1177 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1178 {
1179         if (!(vma->vm_flags & VM_SHARED))
1180                 return -EINVAL;
1181
1182         vm_flags_set(vma, VM_IO | VM_PFNMAP);
1183         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1184
1185         vma->vm_ops = &spufs_signal2_mmap_vmops;
1186         return 0;
1187 }
1188 #else /* SPUFS_MMAP_4K */
1189 #define spufs_signal2_mmap NULL
1190 #endif /* !SPUFS_MMAP_4K */
1191
1192 static const struct file_operations spufs_signal2_fops = {
1193         .open = spufs_signal2_open,
1194         .release = spufs_signal2_release,
1195         .read = spufs_signal2_read,
1196         .write = spufs_signal2_write,
1197         .mmap = spufs_signal2_mmap,
1198         .llseek = no_llseek,
1199 };
1200
1201 static const struct file_operations spufs_signal2_nosched_fops = {
1202         .open = spufs_signal2_open,
1203         .release = spufs_signal2_release,
1204         .write = spufs_signal2_write,
1205         .mmap = spufs_signal2_mmap,
1206         .llseek = no_llseek,
1207 };
1208
1209 /*
1210  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1211  * work of acquiring (or not) the SPU context before calling through
1212  * to the actual get routine. The set routine is called directly.
1213  */
1214 #define SPU_ATTR_NOACQUIRE      0
1215 #define SPU_ATTR_ACQUIRE        1
1216 #define SPU_ATTR_ACQUIRE_SAVED  2
1217
1218 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)  \
1219 static int __##__get(void *data, u64 *val)                              \
1220 {                                                                       \
1221         struct spu_context *ctx = data;                                 \
1222         int ret = 0;                                                    \
1223                                                                         \
1224         if (__acquire == SPU_ATTR_ACQUIRE) {                            \
1225                 ret = spu_acquire(ctx);                                 \
1226                 if (ret)                                                \
1227                         return ret;                                     \
1228                 *val = __get(ctx);                                      \
1229                 spu_release(ctx);                                       \
1230         } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) {               \
1231                 ret = spu_acquire_saved(ctx);                           \
1232                 if (ret)                                                \
1233                         return ret;                                     \
1234                 *val = __get(ctx);                                      \
1235                 spu_release_saved(ctx);                                 \
1236         } else                                                          \
1237                 *val = __get(ctx);                                      \
1238                                                                         \
1239         return 0;                                                       \
1240 }                                                                       \
1241 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1242
1243 static int spufs_signal1_type_set(void *data, u64 val)
1244 {
1245         struct spu_context *ctx = data;
1246         int ret;
1247
1248         ret = spu_acquire(ctx);
1249         if (ret)
1250                 return ret;
1251         ctx->ops->signal1_type_set(ctx, val);
1252         spu_release(ctx);
1253
1254         return 0;
1255 }
1256
1257 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1258 {
1259         return ctx->ops->signal1_type_get(ctx);
1260 }
1261 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1262                        spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1263
1264
1265 static int spufs_signal2_type_set(void *data, u64 val)
1266 {
1267         struct spu_context *ctx = data;
1268         int ret;
1269
1270         ret = spu_acquire(ctx);
1271         if (ret)
1272                 return ret;
1273         ctx->ops->signal2_type_set(ctx, val);
1274         spu_release(ctx);
1275
1276         return 0;
1277 }
1278
1279 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1280 {
1281         return ctx->ops->signal2_type_get(ctx);
1282 }
1283 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1284                        spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1285
1286 #if SPUFS_MMAP_4K
1287 static vm_fault_t
1288 spufs_mss_mmap_fault(struct vm_fault *vmf)
1289 {
1290         return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1291 }
1292
1293 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1294         .fault = spufs_mss_mmap_fault,
1295 };
1296
1297 /*
1298  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1299  */
1300 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1301 {
1302         if (!(vma->vm_flags & VM_SHARED))
1303                 return -EINVAL;
1304
1305         vm_flags_set(vma, VM_IO | VM_PFNMAP);
1306         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1307
1308         vma->vm_ops = &spufs_mss_mmap_vmops;
1309         return 0;
1310 }
1311 #else /* SPUFS_MMAP_4K */
1312 #define spufs_mss_mmap NULL
1313 #endif /* !SPUFS_MMAP_4K */
1314
1315 static int spufs_mss_open(struct inode *inode, struct file *file)
1316 {
1317         struct spufs_inode_info *i = SPUFS_I(inode);
1318         struct spu_context *ctx = i->i_ctx;
1319
1320         file->private_data = i->i_ctx;
1321
1322         mutex_lock(&ctx->mapping_lock);
1323         if (!i->i_openers++)
1324                 ctx->mss = inode->i_mapping;
1325         mutex_unlock(&ctx->mapping_lock);
1326         return nonseekable_open(inode, file);
1327 }
1328
1329 static int
1330 spufs_mss_release(struct inode *inode, struct file *file)
1331 {
1332         struct spufs_inode_info *i = SPUFS_I(inode);
1333         struct spu_context *ctx = i->i_ctx;
1334
1335         mutex_lock(&ctx->mapping_lock);
1336         if (!--i->i_openers)
1337                 ctx->mss = NULL;
1338         mutex_unlock(&ctx->mapping_lock);
1339         return 0;
1340 }
1341
1342 static const struct file_operations spufs_mss_fops = {
1343         .open    = spufs_mss_open,
1344         .release = spufs_mss_release,
1345         .mmap    = spufs_mss_mmap,
1346         .llseek  = no_llseek,
1347 };
1348
1349 static vm_fault_t
1350 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1351 {
1352         return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1353 }
1354
1355 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1356         .fault = spufs_psmap_mmap_fault,
1357 };
1358
1359 /*
1360  * mmap support for full problem state area [0x00000 - 0x1ffff].
1361  */
1362 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1363 {
1364         if (!(vma->vm_flags & VM_SHARED))
1365                 return -EINVAL;
1366
1367         vm_flags_set(vma, VM_IO | VM_PFNMAP);
1368         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1369
1370         vma->vm_ops = &spufs_psmap_mmap_vmops;
1371         return 0;
1372 }
1373
1374 static int spufs_psmap_open(struct inode *inode, struct file *file)
1375 {
1376         struct spufs_inode_info *i = SPUFS_I(inode);
1377         struct spu_context *ctx = i->i_ctx;
1378
1379         mutex_lock(&ctx->mapping_lock);
1380         file->private_data = i->i_ctx;
1381         if (!i->i_openers++)
1382                 ctx->psmap = inode->i_mapping;
1383         mutex_unlock(&ctx->mapping_lock);
1384         return nonseekable_open(inode, file);
1385 }
1386
1387 static int
1388 spufs_psmap_release(struct inode *inode, struct file *file)
1389 {
1390         struct spufs_inode_info *i = SPUFS_I(inode);
1391         struct spu_context *ctx = i->i_ctx;
1392
1393         mutex_lock(&ctx->mapping_lock);
1394         if (!--i->i_openers)
1395                 ctx->psmap = NULL;
1396         mutex_unlock(&ctx->mapping_lock);
1397         return 0;
1398 }
1399
1400 static const struct file_operations spufs_psmap_fops = {
1401         .open    = spufs_psmap_open,
1402         .release = spufs_psmap_release,
1403         .mmap    = spufs_psmap_mmap,
1404         .llseek  = no_llseek,
1405 };
1406
1407
1408 #if SPUFS_MMAP_4K
1409 static vm_fault_t
1410 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1411 {
1412         return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1413 }
1414
1415 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1416         .fault = spufs_mfc_mmap_fault,
1417 };
1418
1419 /*
1420  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1421  */
1422 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1423 {
1424         if (!(vma->vm_flags & VM_SHARED))
1425                 return -EINVAL;
1426
1427         vm_flags_set(vma, VM_IO | VM_PFNMAP);
1428         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1429
1430         vma->vm_ops = &spufs_mfc_mmap_vmops;
1431         return 0;
1432 }
1433 #else /* SPUFS_MMAP_4K */
1434 #define spufs_mfc_mmap NULL
1435 #endif /* !SPUFS_MMAP_4K */
1436
1437 static int spufs_mfc_open(struct inode *inode, struct file *file)
1438 {
1439         struct spufs_inode_info *i = SPUFS_I(inode);
1440         struct spu_context *ctx = i->i_ctx;
1441
1442         /* we don't want to deal with DMA into other processes */
1443         if (ctx->owner != current->mm)
1444                 return -EINVAL;
1445
1446         if (atomic_read(&inode->i_count) != 1)
1447                 return -EBUSY;
1448
1449         mutex_lock(&ctx->mapping_lock);
1450         file->private_data = ctx;
1451         if (!i->i_openers++)
1452                 ctx->mfc = inode->i_mapping;
1453         mutex_unlock(&ctx->mapping_lock);
1454         return nonseekable_open(inode, file);
1455 }
1456
1457 static int
1458 spufs_mfc_release(struct inode *inode, struct file *file)
1459 {
1460         struct spufs_inode_info *i = SPUFS_I(inode);
1461         struct spu_context *ctx = i->i_ctx;
1462
1463         mutex_lock(&ctx->mapping_lock);
1464         if (!--i->i_openers)
1465                 ctx->mfc = NULL;
1466         mutex_unlock(&ctx->mapping_lock);
1467         return 0;
1468 }
1469
1470 /* interrupt-level mfc callback function. */
1471 void spufs_mfc_callback(struct spu *spu)
1472 {
1473         struct spu_context *ctx = spu->ctx;
1474
1475         if (ctx)
1476                 wake_up_all(&ctx->mfc_wq);
1477 }
1478
1479 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1480 {
1481         /* See if there is one tag group is complete */
1482         /* FIXME we need locking around tagwait */
1483         *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1484         ctx->tagwait &= ~*status;
1485         if (*status)
1486                 return 1;
1487
1488         /* enable interrupt waiting for any tag group,
1489            may silently fail if interrupts are already enabled */
1490         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1491         return 0;
1492 }
1493
1494 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1495                         size_t size, loff_t *pos)
1496 {
1497         struct spu_context *ctx = file->private_data;
1498         int ret = -EINVAL;
1499         u32 status;
1500
1501         if (size != 4)
1502                 goto out;
1503
1504         ret = spu_acquire(ctx);
1505         if (ret)
1506                 return ret;
1507
1508         ret = -EINVAL;
1509         if (file->f_flags & O_NONBLOCK) {
1510                 status = ctx->ops->read_mfc_tagstatus(ctx);
1511                 if (!(status & ctx->tagwait))
1512                         ret = -EAGAIN;
1513                 else
1514                         /* XXX(hch): shouldn't we clear ret here? */
1515                         ctx->tagwait &= ~status;
1516         } else {
1517                 ret = spufs_wait(ctx->mfc_wq,
1518                            spufs_read_mfc_tagstatus(ctx, &status));
1519                 if (ret)
1520                         goto out;
1521         }
1522         spu_release(ctx);
1523
1524         ret = 4;
1525         if (copy_to_user(buffer, &status, 4))
1526                 ret = -EFAULT;
1527
1528 out:
1529         return ret;
1530 }
1531
1532 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1533 {
1534         pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1535                  cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1536
1537         switch (cmd->cmd) {
1538         case MFC_PUT_CMD:
1539         case MFC_PUTF_CMD:
1540         case MFC_PUTB_CMD:
1541         case MFC_GET_CMD:
1542         case MFC_GETF_CMD:
1543         case MFC_GETB_CMD:
1544                 break;
1545         default:
1546                 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1547                 return -EIO;
1548         }
1549
1550         if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1551                 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1552                                 cmd->ea, cmd->lsa);
1553                 return -EIO;
1554         }
1555
1556         switch (cmd->size & 0xf) {
1557         case 1:
1558                 break;
1559         case 2:
1560                 if (cmd->lsa & 1)
1561                         goto error;
1562                 break;
1563         case 4:
1564                 if (cmd->lsa & 3)
1565                         goto error;
1566                 break;
1567         case 8:
1568                 if (cmd->lsa & 7)
1569                         goto error;
1570                 break;
1571         case 0:
1572                 if (cmd->lsa & 15)
1573                         goto error;
1574                 break;
1575         error:
1576         default:
1577                 pr_debug("invalid DMA alignment %x for size %x\n",
1578                         cmd->lsa & 0xf, cmd->size);
1579                 return -EIO;
1580         }
1581
1582         if (cmd->size > 16 * 1024) {
1583                 pr_debug("invalid DMA size %x\n", cmd->size);
1584                 return -EIO;
1585         }
1586
1587         if (cmd->tag & 0xfff0) {
1588                 /* we reserve the higher tag numbers for kernel use */
1589                 pr_debug("invalid DMA tag\n");
1590                 return -EIO;
1591         }
1592
1593         if (cmd->class) {
1594                 /* not supported in this version */
1595                 pr_debug("invalid DMA class\n");
1596                 return -EIO;
1597         }
1598
1599         return 0;
1600 }
1601
1602 static int spu_send_mfc_command(struct spu_context *ctx,
1603                                 struct mfc_dma_command cmd,
1604                                 int *error)
1605 {
1606         *error = ctx->ops->send_mfc_command(ctx, &cmd);
1607         if (*error == -EAGAIN) {
1608                 /* wait for any tag group to complete
1609                    so we have space for the new command */
1610                 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1611                 /* try again, because the queue might be
1612                    empty again */
1613                 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1614                 if (*error == -EAGAIN)
1615                         return 0;
1616         }
1617         return 1;
1618 }
1619
1620 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1621                         size_t size, loff_t *pos)
1622 {
1623         struct spu_context *ctx = file->private_data;
1624         struct mfc_dma_command cmd;
1625         int ret = -EINVAL;
1626
1627         if (size != sizeof cmd)
1628                 goto out;
1629
1630         ret = -EFAULT;
1631         if (copy_from_user(&cmd, buffer, sizeof cmd))
1632                 goto out;
1633
1634         ret = spufs_check_valid_dma(&cmd);
1635         if (ret)
1636                 goto out;
1637
1638         ret = spu_acquire(ctx);
1639         if (ret)
1640                 goto out;
1641
1642         ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1643         if (ret)
1644                 goto out;
1645
1646         if (file->f_flags & O_NONBLOCK) {
1647                 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1648         } else {
1649                 int status;
1650                 ret = spufs_wait(ctx->mfc_wq,
1651                                  spu_send_mfc_command(ctx, cmd, &status));
1652                 if (ret)
1653                         goto out;
1654                 if (status)
1655                         ret = status;
1656         }
1657
1658         if (ret)
1659                 goto out_unlock;
1660
1661         ctx->tagwait |= 1 << cmd.tag;
1662         ret = size;
1663
1664 out_unlock:
1665         spu_release(ctx);
1666 out:
1667         return ret;
1668 }
1669
1670 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1671 {
1672         struct spu_context *ctx = file->private_data;
1673         u32 free_elements, tagstatus;
1674         __poll_t mask;
1675
1676         poll_wait(file, &ctx->mfc_wq, wait);
1677
1678         /*
1679          * For now keep this uninterruptible and also ignore the rule
1680          * that poll should not sleep.  Will be fixed later.
1681          */
1682         mutex_lock(&ctx->state_mutex);
1683         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1684         free_elements = ctx->ops->get_mfc_free_elements(ctx);
1685         tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1686         spu_release(ctx);
1687
1688         mask = 0;
1689         if (free_elements & 0xffff)
1690                 mask |= EPOLLOUT | EPOLLWRNORM;
1691         if (tagstatus & ctx->tagwait)
1692                 mask |= EPOLLIN | EPOLLRDNORM;
1693
1694         pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1695                 free_elements, tagstatus, ctx->tagwait);
1696
1697         return mask;
1698 }
1699
1700 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1701 {
1702         struct spu_context *ctx = file->private_data;
1703         int ret;
1704
1705         ret = spu_acquire(ctx);
1706         if (ret)
1707                 goto out;
1708 #if 0
1709 /* this currently hangs */
1710         ret = spufs_wait(ctx->mfc_wq,
1711                          ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1712         if (ret)
1713                 goto out;
1714         ret = spufs_wait(ctx->mfc_wq,
1715                          ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1716         if (ret)
1717                 goto out;
1718 #else
1719         ret = 0;
1720 #endif
1721         spu_release(ctx);
1722 out:
1723         return ret;
1724 }
1725
1726 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1727 {
1728         struct inode *inode = file_inode(file);
1729         int err = file_write_and_wait_range(file, start, end);
1730         if (!err) {
1731                 inode_lock(inode);
1732                 err = spufs_mfc_flush(file, NULL);
1733                 inode_unlock(inode);
1734         }
1735         return err;
1736 }
1737
1738 static const struct file_operations spufs_mfc_fops = {
1739         .open    = spufs_mfc_open,
1740         .release = spufs_mfc_release,
1741         .read    = spufs_mfc_read,
1742         .write   = spufs_mfc_write,
1743         .poll    = spufs_mfc_poll,
1744         .flush   = spufs_mfc_flush,
1745         .fsync   = spufs_mfc_fsync,
1746         .mmap    = spufs_mfc_mmap,
1747         .llseek  = no_llseek,
1748 };
1749
1750 static int spufs_npc_set(void *data, u64 val)
1751 {
1752         struct spu_context *ctx = data;
1753         int ret;
1754
1755         ret = spu_acquire(ctx);
1756         if (ret)
1757                 return ret;
1758         ctx->ops->npc_write(ctx, val);
1759         spu_release(ctx);
1760
1761         return 0;
1762 }
1763
1764 static u64 spufs_npc_get(struct spu_context *ctx)
1765 {
1766         return ctx->ops->npc_read(ctx);
1767 }
1768 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1769                        "0x%llx\n", SPU_ATTR_ACQUIRE);
1770
1771 static int spufs_decr_set(void *data, u64 val)
1772 {
1773         struct spu_context *ctx = data;
1774         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1775         int ret;
1776
1777         ret = spu_acquire_saved(ctx);
1778         if (ret)
1779                 return ret;
1780         lscsa->decr.slot[0] = (u32) val;
1781         spu_release_saved(ctx);
1782
1783         return 0;
1784 }
1785
1786 static u64 spufs_decr_get(struct spu_context *ctx)
1787 {
1788         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1789         return lscsa->decr.slot[0];
1790 }
1791 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1792                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1793
1794 static int spufs_decr_status_set(void *data, u64 val)
1795 {
1796         struct spu_context *ctx = data;
1797         int ret;
1798
1799         ret = spu_acquire_saved(ctx);
1800         if (ret)
1801                 return ret;
1802         if (val)
1803                 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1804         else
1805                 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1806         spu_release_saved(ctx);
1807
1808         return 0;
1809 }
1810
1811 static u64 spufs_decr_status_get(struct spu_context *ctx)
1812 {
1813         if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1814                 return SPU_DECR_STATUS_RUNNING;
1815         else
1816                 return 0;
1817 }
1818 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1819                        spufs_decr_status_set, "0x%llx\n",
1820                        SPU_ATTR_ACQUIRE_SAVED);
1821
1822 static int spufs_event_mask_set(void *data, u64 val)
1823 {
1824         struct spu_context *ctx = data;
1825         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1826         int ret;
1827
1828         ret = spu_acquire_saved(ctx);
1829         if (ret)
1830                 return ret;
1831         lscsa->event_mask.slot[0] = (u32) val;
1832         spu_release_saved(ctx);
1833
1834         return 0;
1835 }
1836
1837 static u64 spufs_event_mask_get(struct spu_context *ctx)
1838 {
1839         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1840         return lscsa->event_mask.slot[0];
1841 }
1842
1843 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1844                        spufs_event_mask_set, "0x%llx\n",
1845                        SPU_ATTR_ACQUIRE_SAVED);
1846
1847 static u64 spufs_event_status_get(struct spu_context *ctx)
1848 {
1849         struct spu_state *state = &ctx->csa;
1850         u64 stat;
1851         stat = state->spu_chnlcnt_RW[0];
1852         if (stat)
1853                 return state->spu_chnldata_RW[0];
1854         return 0;
1855 }
1856 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1857                        NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1858
1859 static int spufs_srr0_set(void *data, u64 val)
1860 {
1861         struct spu_context *ctx = data;
1862         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1863         int ret;
1864
1865         ret = spu_acquire_saved(ctx);
1866         if (ret)
1867                 return ret;
1868         lscsa->srr0.slot[0] = (u32) val;
1869         spu_release_saved(ctx);
1870
1871         return 0;
1872 }
1873
1874 static u64 spufs_srr0_get(struct spu_context *ctx)
1875 {
1876         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1877         return lscsa->srr0.slot[0];
1878 }
1879 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1880                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1881
1882 static u64 spufs_id_get(struct spu_context *ctx)
1883 {
1884         u64 num;
1885
1886         if (ctx->state == SPU_STATE_RUNNABLE)
1887                 num = ctx->spu->number;
1888         else
1889                 num = (unsigned int)-1;
1890
1891         return num;
1892 }
1893 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1894                        SPU_ATTR_ACQUIRE)
1895
1896 static u64 spufs_object_id_get(struct spu_context *ctx)
1897 {
1898         /* FIXME: Should there really be no locking here? */
1899         return ctx->object_id;
1900 }
1901
1902 static int spufs_object_id_set(void *data, u64 id)
1903 {
1904         struct spu_context *ctx = data;
1905         ctx->object_id = id;
1906
1907         return 0;
1908 }
1909
1910 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1911                        spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1912
1913 static u64 spufs_lslr_get(struct spu_context *ctx)
1914 {
1915         return ctx->csa.priv2.spu_lslr_RW;
1916 }
1917 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1918                        SPU_ATTR_ACQUIRE_SAVED);
1919
1920 static int spufs_info_open(struct inode *inode, struct file *file)
1921 {
1922         struct spufs_inode_info *i = SPUFS_I(inode);
1923         struct spu_context *ctx = i->i_ctx;
1924         file->private_data = ctx;
1925         return 0;
1926 }
1927
1928 static int spufs_caps_show(struct seq_file *s, void *private)
1929 {
1930         struct spu_context *ctx = s->private;
1931
1932         if (!(ctx->flags & SPU_CREATE_NOSCHED))
1933                 seq_puts(s, "sched\n");
1934         if (!(ctx->flags & SPU_CREATE_ISOLATE))
1935                 seq_puts(s, "step\n");
1936         return 0;
1937 }
1938
1939 static int spufs_caps_open(struct inode *inode, struct file *file)
1940 {
1941         return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1942 }
1943
1944 static const struct file_operations spufs_caps_fops = {
1945         .open           = spufs_caps_open,
1946         .read           = seq_read,
1947         .llseek         = seq_lseek,
1948         .release        = single_release,
1949 };
1950
1951 static ssize_t spufs_mbox_info_dump(struct spu_context *ctx,
1952                 struct coredump_params *cprm)
1953 {
1954         if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1955                 return 0;
1956         return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R,
1957                                sizeof(ctx->csa.prob.pu_mb_R));
1958 }
1959
1960 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1961                                    size_t len, loff_t *pos)
1962 {
1963         struct spu_context *ctx = file->private_data;
1964         u32 stat, data;
1965         int ret;
1966
1967         ret = spu_acquire_saved(ctx);
1968         if (ret)
1969                 return ret;
1970         spin_lock(&ctx->csa.register_lock);
1971         stat = ctx->csa.prob.mb_stat_R;
1972         data = ctx->csa.prob.pu_mb_R;
1973         spin_unlock(&ctx->csa.register_lock);
1974         spu_release_saved(ctx);
1975
1976         /* EOF if there's no entry in the mbox */
1977         if (!(stat & 0x0000ff))
1978                 return 0;
1979
1980         return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
1981 }
1982
1983 static const struct file_operations spufs_mbox_info_fops = {
1984         .open = spufs_info_open,
1985         .read = spufs_mbox_info_read,
1986         .llseek  = generic_file_llseek,
1987 };
1988
1989 static ssize_t spufs_ibox_info_dump(struct spu_context *ctx,
1990                 struct coredump_params *cprm)
1991 {
1992         if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
1993                 return 0;
1994         return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R,
1995                                sizeof(ctx->csa.priv2.puint_mb_R));
1996 }
1997
1998 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1999                                    size_t len, loff_t *pos)
2000 {
2001         struct spu_context *ctx = file->private_data;
2002         u32 stat, data;
2003         int ret;
2004
2005         ret = spu_acquire_saved(ctx);
2006         if (ret)
2007                 return ret;
2008         spin_lock(&ctx->csa.register_lock);
2009         stat = ctx->csa.prob.mb_stat_R;
2010         data = ctx->csa.priv2.puint_mb_R;
2011         spin_unlock(&ctx->csa.register_lock);
2012         spu_release_saved(ctx);
2013
2014         /* EOF if there's no entry in the ibox */
2015         if (!(stat & 0xff0000))
2016                 return 0;
2017
2018         return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
2019 }
2020
2021 static const struct file_operations spufs_ibox_info_fops = {
2022         .open = spufs_info_open,
2023         .read = spufs_ibox_info_read,
2024         .llseek  = generic_file_llseek,
2025 };
2026
2027 static size_t spufs_wbox_info_cnt(struct spu_context *ctx)
2028 {
2029         return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32);
2030 }
2031
2032 static ssize_t spufs_wbox_info_dump(struct spu_context *ctx,
2033                 struct coredump_params *cprm)
2034 {
2035         return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data,
2036                         spufs_wbox_info_cnt(ctx));
2037 }
2038
2039 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2040                                    size_t len, loff_t *pos)
2041 {
2042         struct spu_context *ctx = file->private_data;
2043         u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)];
2044         int ret, count;
2045
2046         ret = spu_acquire_saved(ctx);
2047         if (ret)
2048                 return ret;
2049         spin_lock(&ctx->csa.register_lock);
2050         count = spufs_wbox_info_cnt(ctx);
2051         memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data));
2052         spin_unlock(&ctx->csa.register_lock);
2053         spu_release_saved(ctx);
2054
2055         return simple_read_from_buffer(buf, len, pos, &data,
2056                                 count * sizeof(u32));
2057 }
2058
2059 static const struct file_operations spufs_wbox_info_fops = {
2060         .open = spufs_info_open,
2061         .read = spufs_wbox_info_read,
2062         .llseek  = generic_file_llseek,
2063 };
2064
2065 static void spufs_get_dma_info(struct spu_context *ctx,
2066                 struct spu_dma_info *info)
2067 {
2068         int i;
2069
2070         info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2071         info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2072         info->dma_info_status = ctx->csa.spu_chnldata_RW[24];
2073         info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2074         info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2075         for (i = 0; i < 16; i++) {
2076                 struct mfc_cq_sr *qp = &info->dma_info_command_data[i];
2077                 struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i];
2078
2079                 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2080                 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2081                 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2082                 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2083         }
2084 }
2085
2086 static ssize_t spufs_dma_info_dump(struct spu_context *ctx,
2087                 struct coredump_params *cprm)
2088 {
2089         struct spu_dma_info info;
2090
2091         spufs_get_dma_info(ctx, &info);
2092         return spufs_dump_emit(cprm, &info, sizeof(info));
2093 }
2094
2095 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2096                               size_t len, loff_t *pos)
2097 {
2098         struct spu_context *ctx = file->private_data;
2099         struct spu_dma_info info;
2100         int ret;
2101
2102         ret = spu_acquire_saved(ctx);
2103         if (ret)
2104                 return ret;
2105         spin_lock(&ctx->csa.register_lock);
2106         spufs_get_dma_info(ctx, &info);
2107         spin_unlock(&ctx->csa.register_lock);
2108         spu_release_saved(ctx);
2109
2110         return simple_read_from_buffer(buf, len, pos, &info,
2111                                 sizeof(info));
2112 }
2113
2114 static const struct file_operations spufs_dma_info_fops = {
2115         .open = spufs_info_open,
2116         .read = spufs_dma_info_read,
2117         .llseek = no_llseek,
2118 };
2119
2120 static void spufs_get_proxydma_info(struct spu_context *ctx,
2121                 struct spu_proxydma_info *info)
2122 {
2123         int i;
2124
2125         info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2126         info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2127         info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2128
2129         for (i = 0; i < 8; i++) {
2130                 struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i];
2131                 struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i];
2132
2133                 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2134                 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2135                 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2136                 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2137         }
2138 }
2139
2140 static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx,
2141                 struct coredump_params *cprm)
2142 {
2143         struct spu_proxydma_info info;
2144
2145         spufs_get_proxydma_info(ctx, &info);
2146         return spufs_dump_emit(cprm, &info, sizeof(info));
2147 }
2148
2149 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2150                                    size_t len, loff_t *pos)
2151 {
2152         struct spu_context *ctx = file->private_data;
2153         struct spu_proxydma_info info;
2154         int ret;
2155
2156         if (len < sizeof(info))
2157                 return -EINVAL;
2158
2159         ret = spu_acquire_saved(ctx);
2160         if (ret)
2161                 return ret;
2162         spin_lock(&ctx->csa.register_lock);
2163         spufs_get_proxydma_info(ctx, &info);
2164         spin_unlock(&ctx->csa.register_lock);
2165         spu_release_saved(ctx);
2166
2167         return simple_read_from_buffer(buf, len, pos, &info,
2168                                 sizeof(info));
2169 }
2170
2171 static const struct file_operations spufs_proxydma_info_fops = {
2172         .open = spufs_info_open,
2173         .read = spufs_proxydma_info_read,
2174         .llseek = no_llseek,
2175 };
2176
2177 static int spufs_show_tid(struct seq_file *s, void *private)
2178 {
2179         struct spu_context *ctx = s->private;
2180
2181         seq_printf(s, "%d\n", ctx->tid);
2182         return 0;
2183 }
2184
2185 static int spufs_tid_open(struct inode *inode, struct file *file)
2186 {
2187         return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2188 }
2189
2190 static const struct file_operations spufs_tid_fops = {
2191         .open           = spufs_tid_open,
2192         .read           = seq_read,
2193         .llseek         = seq_lseek,
2194         .release        = single_release,
2195 };
2196
2197 static const char *ctx_state_names[] = {
2198         "user", "system", "iowait", "loaded"
2199 };
2200
2201 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2202                 enum spu_utilization_state state)
2203 {
2204         unsigned long long time = ctx->stats.times[state];
2205
2206         /*
2207          * In general, utilization statistics are updated by the controlling
2208          * thread as the spu context moves through various well defined
2209          * state transitions, but if the context is lazily loaded its
2210          * utilization statistics are not updated as the controlling thread
2211          * is not tightly coupled with the execution of the spu context.  We
2212          * calculate and apply the time delta from the last recorded state
2213          * of the spu context.
2214          */
2215         if (ctx->spu && ctx->stats.util_state == state) {
2216                 time += ktime_get_ns() - ctx->stats.tstamp;
2217         }
2218
2219         return time / NSEC_PER_MSEC;
2220 }
2221
2222 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2223 {
2224         unsigned long long slb_flts = ctx->stats.slb_flt;
2225
2226         if (ctx->state == SPU_STATE_RUNNABLE) {
2227                 slb_flts += (ctx->spu->stats.slb_flt -
2228                              ctx->stats.slb_flt_base);
2229         }
2230
2231         return slb_flts;
2232 }
2233
2234 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2235 {
2236         unsigned long long class2_intrs = ctx->stats.class2_intr;
2237
2238         if (ctx->state == SPU_STATE_RUNNABLE) {
2239                 class2_intrs += (ctx->spu->stats.class2_intr -
2240                                  ctx->stats.class2_intr_base);
2241         }
2242
2243         return class2_intrs;
2244 }
2245
2246
2247 static int spufs_show_stat(struct seq_file *s, void *private)
2248 {
2249         struct spu_context *ctx = s->private;
2250         int ret;
2251
2252         ret = spu_acquire(ctx);
2253         if (ret)
2254                 return ret;
2255
2256         seq_printf(s, "%s %llu %llu %llu %llu "
2257                       "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2258                 ctx_state_names[ctx->stats.util_state],
2259                 spufs_acct_time(ctx, SPU_UTIL_USER),
2260                 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2261                 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2262                 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2263                 ctx->stats.vol_ctx_switch,
2264                 ctx->stats.invol_ctx_switch,
2265                 spufs_slb_flts(ctx),
2266                 ctx->stats.hash_flt,
2267                 ctx->stats.min_flt,
2268                 ctx->stats.maj_flt,
2269                 spufs_class2_intrs(ctx),
2270                 ctx->stats.libassist);
2271         spu_release(ctx);
2272         return 0;
2273 }
2274
2275 static int spufs_stat_open(struct inode *inode, struct file *file)
2276 {
2277         return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2278 }
2279
2280 static const struct file_operations spufs_stat_fops = {
2281         .open           = spufs_stat_open,
2282         .read           = seq_read,
2283         .llseek         = seq_lseek,
2284         .release        = single_release,
2285 };
2286
2287 static inline int spufs_switch_log_used(struct spu_context *ctx)
2288 {
2289         return (ctx->switch_log->head - ctx->switch_log->tail) %
2290                 SWITCH_LOG_BUFSIZE;
2291 }
2292
2293 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2294 {
2295         return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2296 }
2297
2298 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2299 {
2300         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2301         int rc;
2302
2303         rc = spu_acquire(ctx);
2304         if (rc)
2305                 return rc;
2306
2307         if (ctx->switch_log) {
2308                 rc = -EBUSY;
2309                 goto out;
2310         }
2311
2312         ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2313                                   SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2314
2315         if (!ctx->switch_log) {
2316                 rc = -ENOMEM;
2317                 goto out;
2318         }
2319
2320         ctx->switch_log->head = ctx->switch_log->tail = 0;
2321         init_waitqueue_head(&ctx->switch_log->wait);
2322         rc = 0;
2323
2324 out:
2325         spu_release(ctx);
2326         return rc;
2327 }
2328
2329 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2330 {
2331         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2332         int rc;
2333
2334         rc = spu_acquire(ctx);
2335         if (rc)
2336                 return rc;
2337
2338         kfree(ctx->switch_log);
2339         ctx->switch_log = NULL;
2340         spu_release(ctx);
2341
2342         return 0;
2343 }
2344
2345 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2346 {
2347         struct switch_log_entry *p;
2348
2349         p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2350
2351         return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2352                         (unsigned long long) p->tstamp.tv_sec,
2353                         (unsigned int) p->tstamp.tv_nsec,
2354                         p->spu_id,
2355                         (unsigned int) p->type,
2356                         (unsigned int) p->val,
2357                         (unsigned long long) p->timebase);
2358 }
2359
2360 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2361                              size_t len, loff_t *ppos)
2362 {
2363         struct inode *inode = file_inode(file);
2364         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2365         int error = 0, cnt = 0;
2366
2367         if (!buf)
2368                 return -EINVAL;
2369
2370         error = spu_acquire(ctx);
2371         if (error)
2372                 return error;
2373
2374         while (cnt < len) {
2375                 char tbuf[128];
2376                 int width;
2377
2378                 if (spufs_switch_log_used(ctx) == 0) {
2379                         if (cnt > 0) {
2380                                 /* If there's data ready to go, we can
2381                                  * just return straight away */
2382                                 break;
2383
2384                         } else if (file->f_flags & O_NONBLOCK) {
2385                                 error = -EAGAIN;
2386                                 break;
2387
2388                         } else {
2389                                 /* spufs_wait will drop the mutex and
2390                                  * re-acquire, but since we're in read(), the
2391                                  * file cannot be _released (and so
2392                                  * ctx->switch_log is stable).
2393                                  */
2394                                 error = spufs_wait(ctx->switch_log->wait,
2395                                                 spufs_switch_log_used(ctx) > 0);
2396
2397                                 /* On error, spufs_wait returns without the
2398                                  * state mutex held */
2399                                 if (error)
2400                                         return error;
2401
2402                                 /* We may have had entries read from underneath
2403                                  * us while we dropped the mutex in spufs_wait,
2404                                  * so re-check */
2405                                 if (spufs_switch_log_used(ctx) == 0)
2406                                         continue;
2407                         }
2408                 }
2409
2410                 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2411                 if (width < len)
2412                         ctx->switch_log->tail =
2413                                 (ctx->switch_log->tail + 1) %
2414                                  SWITCH_LOG_BUFSIZE;
2415                 else
2416                         /* If the record is greater than space available return
2417                          * partial buffer (so far) */
2418                         break;
2419
2420                 error = copy_to_user(buf + cnt, tbuf, width);
2421                 if (error)
2422                         break;
2423                 cnt += width;
2424         }
2425
2426         spu_release(ctx);
2427
2428         return cnt == 0 ? error : cnt;
2429 }
2430
2431 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2432 {
2433         struct inode *inode = file_inode(file);
2434         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2435         __poll_t mask = 0;
2436         int rc;
2437
2438         poll_wait(file, &ctx->switch_log->wait, wait);
2439
2440         rc = spu_acquire(ctx);
2441         if (rc)
2442                 return rc;
2443
2444         if (spufs_switch_log_used(ctx) > 0)
2445                 mask |= EPOLLIN;
2446
2447         spu_release(ctx);
2448
2449         return mask;
2450 }
2451
2452 static const struct file_operations spufs_switch_log_fops = {
2453         .open           = spufs_switch_log_open,
2454         .read           = spufs_switch_log_read,
2455         .poll           = spufs_switch_log_poll,
2456         .release        = spufs_switch_log_release,
2457         .llseek         = no_llseek,
2458 };
2459
2460 /**
2461  * Log a context switch event to a switch log reader.
2462  *
2463  * Must be called with ctx->state_mutex held.
2464  */
2465 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2466                 u32 type, u32 val)
2467 {
2468         if (!ctx->switch_log)
2469                 return;
2470
2471         if (spufs_switch_log_avail(ctx) > 1) {
2472                 struct switch_log_entry *p;
2473
2474                 p = ctx->switch_log->log + ctx->switch_log->head;
2475                 ktime_get_ts64(&p->tstamp);
2476                 p->timebase = get_tb();
2477                 p->spu_id = spu ? spu->number : -1;
2478                 p->type = type;
2479                 p->val = val;
2480
2481                 ctx->switch_log->head =
2482                         (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2483         }
2484
2485         wake_up(&ctx->switch_log->wait);
2486 }
2487
2488 static int spufs_show_ctx(struct seq_file *s, void *private)
2489 {
2490         struct spu_context *ctx = s->private;
2491         u64 mfc_control_RW;
2492
2493         mutex_lock(&ctx->state_mutex);
2494         if (ctx->spu) {
2495                 struct spu *spu = ctx->spu;
2496                 struct spu_priv2 __iomem *priv2 = spu->priv2;
2497
2498                 spin_lock_irq(&spu->register_lock);
2499                 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2500                 spin_unlock_irq(&spu->register_lock);
2501         } else {
2502                 struct spu_state *csa = &ctx->csa;
2503
2504                 mfc_control_RW = csa->priv2.mfc_control_RW;
2505         }
2506
2507         seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2508                 " %c %llx %llx %llx %llx %x %x\n",
2509                 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2510                 ctx->flags,
2511                 ctx->sched_flags,
2512                 ctx->prio,
2513                 ctx->time_slice,
2514                 ctx->spu ? ctx->spu->number : -1,
2515                 !list_empty(&ctx->rq) ? 'q' : ' ',
2516                 ctx->csa.class_0_pending,
2517                 ctx->csa.class_0_dar,
2518                 ctx->csa.class_1_dsisr,
2519                 mfc_control_RW,
2520                 ctx->ops->runcntl_read(ctx),
2521                 ctx->ops->status_read(ctx));
2522
2523         mutex_unlock(&ctx->state_mutex);
2524
2525         return 0;
2526 }
2527
2528 static int spufs_ctx_open(struct inode *inode, struct file *file)
2529 {
2530         return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2531 }
2532
2533 static const struct file_operations spufs_ctx_fops = {
2534         .open           = spufs_ctx_open,
2535         .read           = seq_read,
2536         .llseek         = seq_lseek,
2537         .release        = single_release,
2538 };
2539
2540 const struct spufs_tree_descr spufs_dir_contents[] = {
2541         { "capabilities", &spufs_caps_fops, 0444, },
2542         { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2543         { "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2544         { "mbox", &spufs_mbox_fops, 0444, },
2545         { "ibox", &spufs_ibox_fops, 0444, },
2546         { "wbox", &spufs_wbox_fops, 0222, },
2547         { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2548         { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2549         { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2550         { "signal1", &spufs_signal1_fops, 0666, },
2551         { "signal2", &spufs_signal2_fops, 0666, },
2552         { "signal1_type", &spufs_signal1_type, 0666, },
2553         { "signal2_type", &spufs_signal2_type, 0666, },
2554         { "cntl", &spufs_cntl_fops,  0666, },
2555         { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2556         { "lslr", &spufs_lslr_ops, 0444, },
2557         { "mfc", &spufs_mfc_fops, 0666, },
2558         { "mss", &spufs_mss_fops, 0666, },
2559         { "npc", &spufs_npc_ops, 0666, },
2560         { "srr0", &spufs_srr0_ops, 0666, },
2561         { "decr", &spufs_decr_ops, 0666, },
2562         { "decr_status", &spufs_decr_status_ops, 0666, },
2563         { "event_mask", &spufs_event_mask_ops, 0666, },
2564         { "event_status", &spufs_event_status_ops, 0444, },
2565         { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2566         { "phys-id", &spufs_id_ops, 0666, },
2567         { "object-id", &spufs_object_id_ops, 0666, },
2568         { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2569         { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2570         { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2571         { "dma_info", &spufs_dma_info_fops, 0444,
2572                 sizeof(struct spu_dma_info), },
2573         { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2574                 sizeof(struct spu_proxydma_info)},
2575         { "tid", &spufs_tid_fops, 0444, },
2576         { "stat", &spufs_stat_fops, 0444, },
2577         { "switch_log", &spufs_switch_log_fops, 0444 },
2578         {},
2579 };
2580
2581 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2582         { "capabilities", &spufs_caps_fops, 0444, },
2583         { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2584         { "mbox", &spufs_mbox_fops, 0444, },
2585         { "ibox", &spufs_ibox_fops, 0444, },
2586         { "wbox", &spufs_wbox_fops, 0222, },
2587         { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2588         { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2589         { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2590         { "signal1", &spufs_signal1_nosched_fops, 0222, },
2591         { "signal2", &spufs_signal2_nosched_fops, 0222, },
2592         { "signal1_type", &spufs_signal1_type, 0666, },
2593         { "signal2_type", &spufs_signal2_type, 0666, },
2594         { "mss", &spufs_mss_fops, 0666, },
2595         { "mfc", &spufs_mfc_fops, 0666, },
2596         { "cntl", &spufs_cntl_fops,  0666, },
2597         { "npc", &spufs_npc_ops, 0666, },
2598         { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2599         { "phys-id", &spufs_id_ops, 0666, },
2600         { "object-id", &spufs_object_id_ops, 0666, },
2601         { "tid", &spufs_tid_fops, 0444, },
2602         { "stat", &spufs_stat_fops, 0444, },
2603         {},
2604 };
2605
2606 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2607         { ".ctx", &spufs_ctx_fops, 0444, },
2608         {},
2609 };
2610
2611 const struct spufs_coredump_reader spufs_coredump_read[] = {
2612         { "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])},
2613         { "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) },
2614         { "lslr", NULL, spufs_lslr_get, 19 },
2615         { "decr", NULL, spufs_decr_get, 19 },
2616         { "decr_status", NULL, spufs_decr_status_get, 19 },
2617         { "mem", spufs_mem_dump, NULL, LS_SIZE, },
2618         { "signal1", spufs_signal1_dump, NULL, sizeof(u32) },
2619         { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2620         { "signal2", spufs_signal2_dump, NULL, sizeof(u32) },
2621         { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2622         { "event_mask", NULL, spufs_event_mask_get, 19 },
2623         { "event_status", NULL, spufs_event_status_get, 19 },
2624         { "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) },
2625         { "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) },
2626         { "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)},
2627         { "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)},
2628         { "proxydma_info", spufs_proxydma_info_dump,
2629                            NULL, sizeof(struct spu_proxydma_info)},
2630         { "object-id", NULL, spufs_object_id_get, 19 },
2631         { "npc", NULL, spufs_npc_get, 19 },
2632         { NULL },
2633 };