GNU Linux-libre 4.19.304-gnu1
[releases.git] / arch / powerpc / platforms / cell / spu_manage.c
1 /*
2  * spu management operations for of based platforms
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  * Copyright 2006 Sony Corp.
6  * (C) Copyright 2007 TOSHIBA CORPORATION
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21
22 #include <linux/interrupt.h>
23 #include <linux/list.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/wait.h>
27 #include <linux/mm.h>
28 #include <linux/io.h>
29 #include <linux/mutex.h>
30 #include <linux/device.h>
31
32 #include <asm/spu.h>
33 #include <asm/spu_priv1.h>
34 #include <asm/firmware.h>
35 #include <asm/prom.h>
36
37 #include "spufs/spufs.h"
38 #include "interrupt.h"
39
40 struct device_node *spu_devnode(struct spu *spu)
41 {
42         return spu->devnode;
43 }
44
45 EXPORT_SYMBOL_GPL(spu_devnode);
46
47 static u64 __init find_spu_unit_number(struct device_node *spe)
48 {
49         const unsigned int *prop;
50         int proplen;
51
52         /* new device trees should provide the physical-id attribute */
53         prop = of_get_property(spe, "physical-id", &proplen);
54         if (proplen == 4)
55                 return (u64)*prop;
56
57         /* celleb device tree provides the unit-id */
58         prop = of_get_property(spe, "unit-id", &proplen);
59         if (proplen == 4)
60                 return (u64)*prop;
61
62         /* legacy device trees provide the id in the reg attribute */
63         prop = of_get_property(spe, "reg", &proplen);
64         if (proplen == 4)
65                 return (u64)*prop;
66
67         return 0;
68 }
69
70 static void spu_unmap(struct spu *spu)
71 {
72         if (!firmware_has_feature(FW_FEATURE_LPAR))
73                 iounmap(spu->priv1);
74         iounmap(spu->priv2);
75         iounmap(spu->problem);
76         iounmap((__force u8 __iomem *)spu->local_store);
77 }
78
79 static int __init spu_map_interrupts_old(struct spu *spu,
80         struct device_node *np)
81 {
82         unsigned int isrc;
83         const u32 *tmp;
84         int nid;
85
86         /* Get the interrupt source unit from the device-tree */
87         tmp = of_get_property(np, "isrc", NULL);
88         if (!tmp)
89                 return -ENODEV;
90         isrc = tmp[0];
91
92         tmp = of_get_property(np->parent->parent, "node-id", NULL);
93         if (!tmp) {
94                 printk(KERN_WARNING "%s: can't find node-id\n", __func__);
95                 nid = spu->node;
96         } else
97                 nid = tmp[0];
98
99         /* Add the node number */
100         isrc |= nid << IIC_IRQ_NODE_SHIFT;
101
102         /* Now map interrupts of all 3 classes */
103         spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
104         spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
105         spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
106
107         /* Right now, we only fail if class 2 failed */
108         if (!spu->irqs[2])
109                 return -EINVAL;
110
111         return 0;
112 }
113
114 static void __iomem * __init spu_map_prop_old(struct spu *spu,
115                                               struct device_node *n,
116                                               const char *name)
117 {
118         const struct address_prop {
119                 unsigned long address;
120                 unsigned int len;
121         } __attribute__((packed)) *prop;
122         int proplen;
123
124         prop = of_get_property(n, name, &proplen);
125         if (prop == NULL || proplen != sizeof (struct address_prop))
126                 return NULL;
127
128         return ioremap(prop->address, prop->len);
129 }
130
131 static int __init spu_map_device_old(struct spu *spu)
132 {
133         struct device_node *node = spu->devnode;
134         const char *prop;
135         int ret;
136
137         ret = -ENODEV;
138         spu->name = of_get_property(node, "name", NULL);
139         if (!spu->name)
140                 goto out;
141
142         prop = of_get_property(node, "local-store", NULL);
143         if (!prop)
144                 goto out;
145         spu->local_store_phys = *(unsigned long *)prop;
146
147         /* we use local store as ram, not io memory */
148         spu->local_store = (void __force *)
149                 spu_map_prop_old(spu, node, "local-store");
150         if (!spu->local_store)
151                 goto out;
152
153         prop = of_get_property(node, "problem", NULL);
154         if (!prop)
155                 goto out_unmap;
156         spu->problem_phys = *(unsigned long *)prop;
157
158         spu->problem = spu_map_prop_old(spu, node, "problem");
159         if (!spu->problem)
160                 goto out_unmap;
161
162         spu->priv2 = spu_map_prop_old(spu, node, "priv2");
163         if (!spu->priv2)
164                 goto out_unmap;
165
166         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
167                 spu->priv1 = spu_map_prop_old(spu, node, "priv1");
168                 if (!spu->priv1)
169                         goto out_unmap;
170         }
171
172         ret = 0;
173         goto out;
174
175 out_unmap:
176         spu_unmap(spu);
177 out:
178         return ret;
179 }
180
181 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
182 {
183         struct of_phandle_args oirq;
184         int ret;
185         int i;
186
187         for (i=0; i < 3; i++) {
188                 ret = of_irq_parse_one(np, i, &oirq);
189                 if (ret) {
190                         pr_debug("spu_new: failed to get irq %d\n", i);
191                         goto err;
192                 }
193                 ret = -EINVAL;
194                 pr_debug("  irq %d no 0x%x on %pOF\n", i, oirq.args[0],
195                          oirq.np);
196                 spu->irqs[i] = irq_create_of_mapping(&oirq);
197                 if (!spu->irqs[i]) {
198                         pr_debug("spu_new: failed to map it !\n");
199                         goto err;
200                 }
201         }
202         return 0;
203
204 err:
205         pr_debug("failed to map irq %x for spu %s\n", *oirq.args,
206                 spu->name);
207         for (; i >= 0; i--) {
208                 if (spu->irqs[i])
209                         irq_dispose_mapping(spu->irqs[i]);
210         }
211         return ret;
212 }
213
214 static int spu_map_resource(struct spu *spu, int nr,
215                             void __iomem** virt, unsigned long *phys)
216 {
217         struct device_node *np = spu->devnode;
218         struct resource resource = { };
219         unsigned long len;
220         int ret;
221
222         ret = of_address_to_resource(np, nr, &resource);
223         if (ret)
224                 return ret;
225         if (phys)
226                 *phys = resource.start;
227         len = resource_size(&resource);
228         *virt = ioremap(resource.start, len);
229         if (!*virt)
230                 return -EINVAL;
231         return 0;
232 }
233
234 static int __init spu_map_device(struct spu *spu)
235 {
236         struct device_node *np = spu->devnode;
237         int ret = -ENODEV;
238
239         spu->name = of_get_property(np, "name", NULL);
240         if (!spu->name)
241                 goto out;
242
243         ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
244                                &spu->local_store_phys);
245         if (ret) {
246                 pr_debug("spu_new: failed to map %pOF resource 0\n",
247                          np);
248                 goto out;
249         }
250         ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
251                                &spu->problem_phys);
252         if (ret) {
253                 pr_debug("spu_new: failed to map %pOF resource 1\n",
254                          np);
255                 goto out_unmap;
256         }
257         ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
258         if (ret) {
259                 pr_debug("spu_new: failed to map %pOF resource 2\n",
260                          np);
261                 goto out_unmap;
262         }
263         if (!firmware_has_feature(FW_FEATURE_LPAR))
264                 ret = spu_map_resource(spu, 3,
265                                (void __iomem**)&spu->priv1, NULL);
266         if (ret) {
267                 pr_debug("spu_new: failed to map %pOF resource 3\n",
268                          np);
269                 goto out_unmap;
270         }
271         pr_debug("spu_new: %pOF maps:\n", np);
272         pr_debug("  local store   : 0x%016lx -> 0x%p\n",
273                  spu->local_store_phys, spu->local_store);
274         pr_debug("  problem state : 0x%016lx -> 0x%p\n",
275                  spu->problem_phys, spu->problem);
276         pr_debug("  priv2         :                       0x%p\n", spu->priv2);
277         pr_debug("  priv1         :                       0x%p\n", spu->priv1);
278
279         return 0;
280
281 out_unmap:
282         spu_unmap(spu);
283 out:
284         pr_debug("failed to map spe %s: %d\n", spu->name, ret);
285         return ret;
286 }
287
288 static int __init of_enumerate_spus(int (*fn)(void *data))
289 {
290         int ret;
291         struct device_node *node;
292         unsigned int n = 0;
293
294         ret = -ENODEV;
295         for_each_node_by_type(node, "spe") {
296                 ret = fn(node);
297                 if (ret) {
298                         printk(KERN_WARNING "%s: Error initializing %s\n",
299                                 __func__, node->name);
300                         of_node_put(node);
301                         break;
302                 }
303                 n++;
304         }
305         return ret ? ret : n;
306 }
307
308 static int __init of_create_spu(struct spu *spu, void *data)
309 {
310         int ret;
311         struct device_node *spe = (struct device_node *)data;
312         static int legacy_map = 0, legacy_irq = 0;
313
314         spu->devnode = of_node_get(spe);
315         spu->spe_id = find_spu_unit_number(spe);
316
317         spu->node = of_node_to_nid(spe);
318         if (spu->node >= MAX_NUMNODES) {
319                 printk(KERN_WARNING "SPE %pOF on node %d ignored,"
320                        " node number too big\n", spe, spu->node);
321                 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
322                 ret = -ENODEV;
323                 goto out;
324         }
325
326         ret = spu_map_device(spu);
327         if (ret) {
328                 if (!legacy_map) {
329                         legacy_map = 1;
330                         printk(KERN_WARNING "%s: Legacy device tree found, "
331                                 "trying to map old style\n", __func__);
332                 }
333                 ret = spu_map_device_old(spu);
334                 if (ret) {
335                         printk(KERN_ERR "Unable to map %s\n",
336                                 spu->name);
337                         goto out;
338                 }
339         }
340
341         ret = spu_map_interrupts(spu, spe);
342         if (ret) {
343                 if (!legacy_irq) {
344                         legacy_irq = 1;
345                         printk(KERN_WARNING "%s: Legacy device tree found, "
346                                 "trying old style irq\n", __func__);
347                 }
348                 ret = spu_map_interrupts_old(spu, spe);
349                 if (ret) {
350                         printk(KERN_ERR "%s: could not map interrupts\n",
351                                 spu->name);
352                         goto out_unmap;
353                 }
354         }
355
356         pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
357                 spu->local_store, spu->problem, spu->priv1,
358                 spu->priv2, spu->number);
359         goto out;
360
361 out_unmap:
362         spu_unmap(spu);
363 out:
364         return ret;
365 }
366
367 static int of_destroy_spu(struct spu *spu)
368 {
369         spu_unmap(spu);
370         of_node_put(spu->devnode);
371         return 0;
372 }
373
374 static void enable_spu_by_master_run(struct spu_context *ctx)
375 {
376         ctx->ops->master_start(ctx);
377 }
378
379 static void disable_spu_by_master_run(struct spu_context *ctx)
380 {
381         ctx->ops->master_stop(ctx);
382 }
383
384 /* Hardcoded affinity idxs for qs20 */
385 #define QS20_SPES_PER_BE 8
386 static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
387 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
388
389 static struct spu *spu_lookup_reg(int node, u32 reg)
390 {
391         struct spu *spu;
392         const u32 *spu_reg;
393
394         list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
395                 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
396                 if (*spu_reg == reg)
397                         return spu;
398         }
399         return NULL;
400 }
401
402 static void init_affinity_qs20_harcoded(void)
403 {
404         int node, i;
405         struct spu *last_spu, *spu;
406         u32 reg;
407
408         for (node = 0; node < MAX_NUMNODES; node++) {
409                 last_spu = NULL;
410                 for (i = 0; i < QS20_SPES_PER_BE; i++) {
411                         reg = qs20_reg_idxs[i];
412                         spu = spu_lookup_reg(node, reg);
413                         if (!spu)
414                                 continue;
415                         spu->has_mem_affinity = qs20_reg_memory[reg];
416                         if (last_spu)
417                                 list_add_tail(&spu->aff_list,
418                                                 &last_spu->aff_list);
419                         last_spu = spu;
420                 }
421         }
422 }
423
424 static int of_has_vicinity(void)
425 {
426         struct device_node *dn;
427
428         for_each_node_by_type(dn, "spe") {
429                 if (of_find_property(dn, "vicinity", NULL))  {
430                         of_node_put(dn);
431                         return 1;
432                 }
433         }
434         return 0;
435 }
436
437 static struct spu *devnode_spu(int cbe, struct device_node *dn)
438 {
439         struct spu *spu;
440
441         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
442                 if (spu_devnode(spu) == dn)
443                         return spu;
444         return NULL;
445 }
446
447 static struct spu *
448 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
449 {
450         struct spu *spu;
451         struct device_node *spu_dn;
452         const phandle *vic_handles;
453         int lenp, i;
454
455         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
456                 spu_dn = spu_devnode(spu);
457                 if (spu_dn == avoid)
458                         continue;
459                 vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
460                 for (i=0; i < (lenp / sizeof(phandle)); i++) {
461                         if (vic_handles[i] == target->phandle)
462                                 return spu;
463                 }
464         }
465         return NULL;
466 }
467
468 static void init_affinity_node(int cbe)
469 {
470         struct spu *spu, *last_spu;
471         struct device_node *vic_dn, *last_spu_dn;
472         phandle avoid_ph;
473         const phandle *vic_handles;
474         const char *name;
475         int lenp, i, added;
476
477         last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
478                                                                 cbe_list);
479         avoid_ph = 0;
480         for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
481                 last_spu_dn = spu_devnode(last_spu);
482                 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
483
484                 /*
485                  * Walk through each phandle in vicinity property of the spu
486                  * (tipically two vicinity phandles per spe node)
487                  */
488                 for (i = 0; i < (lenp / sizeof(phandle)); i++) {
489                         if (vic_handles[i] == avoid_ph)
490                                 continue;
491
492                         vic_dn = of_find_node_by_phandle(vic_handles[i]);
493                         if (!vic_dn)
494                                 continue;
495
496                         /* a neighbour might be spe, mic-tm, or bif0 */
497                         name = of_get_property(vic_dn, "name", NULL);
498                         if (!name)
499                                 continue;
500
501                         if (strcmp(name, "spe") == 0) {
502                                 spu = devnode_spu(cbe, vic_dn);
503                                 avoid_ph = last_spu_dn->phandle;
504                         } else {
505                                 /*
506                                  * "mic-tm" and "bif0" nodes do not have
507                                  * vicinity property. So we need to find the
508                                  * spe which has vic_dn as neighbour, but
509                                  * skipping the one we came from (last_spu_dn)
510                                  */
511                                 spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
512                                 if (!spu)
513                                         continue;
514                                 if (!strcmp(name, "mic-tm")) {
515                                         last_spu->has_mem_affinity = 1;
516                                         spu->has_mem_affinity = 1;
517                                 }
518                                 avoid_ph = vic_dn->phandle;
519                         }
520
521                         list_add_tail(&spu->aff_list, &last_spu->aff_list);
522                         last_spu = spu;
523                         break;
524                 }
525         }
526 }
527
528 static void init_affinity_fw(void)
529 {
530         int cbe;
531
532         for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
533                 init_affinity_node(cbe);
534 }
535
536 static int __init init_affinity(void)
537 {
538         if (of_has_vicinity()) {
539                 init_affinity_fw();
540         } else {
541                 if (of_machine_is_compatible("IBM,CPBW-1.0"))
542                         init_affinity_qs20_harcoded();
543                 else
544                         printk("No affinity configuration found\n");
545         }
546
547         return 0;
548 }
549
550 const struct spu_management_ops spu_management_of_ops = {
551         .enumerate_spus = of_enumerate_spus,
552         .create_spu = of_create_spu,
553         .destroy_spu = of_destroy_spu,
554         .enable_spu = enable_spu_by_master_run,
555         .disable_spu = disable_spu_by_master_run,
556         .init_affinity = init_affinity,
557 };