2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events {
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
44 unsigned long mmcr[4];
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 unsigned int txn_flags;
55 u64 bhrb_filter; /* BHRB HW branch filter */
56 unsigned int bhrb_users;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 static struct power_pmu *ppmu;
68 * Normally, to ignore kernel events we set the FCS (freeze counters
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
83 #define MMCR0_PMCjCE MMCR0_PMCnCE
89 #define MMCR0_PMCC_U6 0
91 #define SPRN_MMCRA SPRN_MMCR2
92 #define MMCRA_SAMPLE_ENABLE 0
94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
103 static inline void perf_read_regs(struct pt_regs *regs)
107 static inline int perf_intr_is_nmi(struct pt_regs *regs)
112 static inline int siar_valid(struct pt_regs *regs)
117 static bool is_ebb_event(struct perf_event *event) { return false; }
118 static int ebb_event_check(struct perf_event *event) { return 0; }
119 static void ebb_event_add(struct perf_event *event) { }
120 static void ebb_switch_out(unsigned long mmcr0) { }
121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 return cpuhw->mmcr[0];
126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130 static void pmao_restore_workaround(bool ebb) { }
131 static bool use_ic(u64 event)
135 #endif /* CONFIG_PPC32 */
137 static bool regs_use_siar(struct pt_regs *regs)
140 * When we take a performance monitor exception the regs are setup
141 * using perf_read_regs() which overloads some fields, in particular
142 * regs->result to tell us whether to use SIAR.
144 * However if the regs are from another exception, eg. a syscall, then
145 * they have not been setup using perf_read_regs() and so regs->result
146 * is something random.
148 return ((TRAP(regs) == 0xf00) && regs->result);
152 * Things that are specific to 64-bit implementations.
156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
158 unsigned long mmcra = regs->dsisr;
160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
163 return 4 * (slot - 1);
170 * The user wants a data address recorded.
171 * If we're not doing instruction sampling, give them the SDAR
172 * (sampled data address). If we are doing instruction sampling, then
173 * only give them the SDAR if it corresponds to the instruction
174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
179 unsigned long mmcra = regs->dsisr;
182 if (ppmu->flags & PPMU_HAS_SIER)
183 sdar_valid = regs->dar & SIER_SDAR_VALID;
185 unsigned long sdsync;
187 if (ppmu->flags & PPMU_SIAR_VALID)
188 sdsync = POWER7P_MMCRA_SDAR_VALID;
189 else if (ppmu->flags & PPMU_ALT_SIPR)
190 sdsync = POWER6_MMCRA_SDSYNC;
191 else if (ppmu->flags & PPMU_NO_SIAR)
192 sdsync = MMCRA_SAMPLE_ENABLE;
194 sdsync = MMCRA_SDSYNC;
196 sdar_valid = mmcra & sdsync;
199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
200 *addrp = mfspr(SPRN_SDAR);
203 static bool regs_sihv(struct pt_regs *regs)
205 unsigned long sihv = MMCRA_SIHV;
207 if (ppmu->flags & PPMU_HAS_SIER)
208 return !!(regs->dar & SIER_SIHV);
210 if (ppmu->flags & PPMU_ALT_SIPR)
211 sihv = POWER6_MMCRA_SIHV;
213 return !!(regs->dsisr & sihv);
216 static bool regs_sipr(struct pt_regs *regs)
218 unsigned long sipr = MMCRA_SIPR;
220 if (ppmu->flags & PPMU_HAS_SIER)
221 return !!(regs->dar & SIER_SIPR);
223 if (ppmu->flags & PPMU_ALT_SIPR)
224 sipr = POWER6_MMCRA_SIPR;
226 return !!(regs->dsisr & sipr);
229 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
231 if (regs->msr & MSR_PR)
232 return PERF_RECORD_MISC_USER;
233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
234 return PERF_RECORD_MISC_HYPERVISOR;
235 return PERF_RECORD_MISC_KERNEL;
238 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
240 bool use_siar = regs_use_siar(regs);
243 return perf_flags_from_msr(regs);
246 * If we don't have flags in MMCRA, rather than using
247 * the MSR, we intuit the flags from the address in
248 * SIAR which should give slightly more reliable
251 if (ppmu->flags & PPMU_NO_SIPR) {
252 unsigned long siar = mfspr(SPRN_SIAR);
253 if (is_kernel_addr(siar))
254 return PERF_RECORD_MISC_KERNEL;
255 return PERF_RECORD_MISC_USER;
258 /* PR has priority over HV, so order below is important */
260 return PERF_RECORD_MISC_USER;
262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
263 return PERF_RECORD_MISC_HYPERVISOR;
265 return PERF_RECORD_MISC_KERNEL;
269 * Overload regs->dsisr to store MMCRA so we only need to read it once
271 * Overload regs->dar to store SIER if we have it.
272 * Overload regs->result to specify whether we should use the MSR (result
273 * is zero) or the SIAR (result is non zero).
275 static inline void perf_read_regs(struct pt_regs *regs)
277 unsigned long mmcra = mfspr(SPRN_MMCRA);
278 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
283 if (ppmu->flags & PPMU_HAS_SIER)
284 regs->dar = mfspr(SPRN_SIER);
287 * If this isn't a PMU exception (eg a software event) the SIAR is
288 * not valid. Use pt_regs.
290 * If it is a marked event use the SIAR.
292 * If the PMU doesn't update the SIAR for non marked events use
295 * If the PMU has HV/PR flags then check to see if they
296 * place the exception in userspace. If so, use pt_regs. In
297 * continuous sampling mode the SIAR and the PMU exception are
298 * not synchronised, so they may be many instructions apart.
299 * This can result in confusing backtraces. We still want
300 * hypervisor samples as well as samples in the kernel with
301 * interrupts off hence the userspace check.
303 if (TRAP(regs) != 0xf00)
305 else if ((ppmu->flags & PPMU_NO_SIAR))
309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
316 regs->result = use_siar;
320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
323 static inline int perf_intr_is_nmi(struct pt_regs *regs)
329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
330 * must be sampled only if the SIAR-valid bit is set.
332 * For unmarked instructions and for processors that don't have the SIAR-Valid
333 * bit, assume that SIAR is valid.
335 static inline int siar_valid(struct pt_regs *regs)
337 unsigned long mmcra = regs->dsisr;
338 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
341 if (ppmu->flags & PPMU_HAS_SIER)
342 return regs->dar & SIER_SIAR_VALID;
344 if (ppmu->flags & PPMU_SIAR_VALID)
345 return mmcra & POWER7P_MMCRA_SIAR_VALID;
352 /* Reset all possible BHRB entries */
353 static void power_pmu_bhrb_reset(void)
355 asm volatile(PPC_CLRBHRB);
358 static void power_pmu_bhrb_enable(struct perf_event *event)
360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
365 /* Clear BHRB if we changed task context to avoid data leaks */
366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
367 power_pmu_bhrb_reset();
368 cpuhw->bhrb_context = event->ctx;
371 perf_sched_cb_inc(event->ctx->pmu);
374 static void power_pmu_bhrb_disable(struct perf_event *event)
376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
381 WARN_ON_ONCE(!cpuhw->bhrb_users);
383 perf_sched_cb_dec(event->ctx->pmu);
385 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
386 /* BHRB cannot be turned off when other
387 * events are active on the PMU.
390 /* avoid stale pointer */
391 cpuhw->bhrb_context = NULL;
395 /* Called from ctxsw to prevent one process's branch entries to
396 * mingle with the other process's entries during context switch.
398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
404 power_pmu_bhrb_reset();
406 /* Calculate the to address for a branch */
407 static __u64 power_pmu_bhrb_to(u64 addr)
413 if (is_kernel_addr(addr)) {
414 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
417 return branch_target(&instr);
420 /* Userspace: need copy instruction here then translate it */
422 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
429 target = branch_target(&instr);
430 if ((!target) || (instr & BRANCH_ABSOLUTE))
433 /* Translate relative branch target from kernel to user address */
434 return target - (unsigned long)&instr + addr;
437 /* Processing BHRB entries */
438 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
442 int r_index, u_index, pred;
446 while (r_index < ppmu->bhrb_nr) {
447 /* Assembly read function */
448 val = read_bhrb(r_index++);
450 /* Terminal marker: End of valid BHRB entries */
453 addr = val & BHRB_EA;
454 pred = val & BHRB_PREDICTION;
461 * BHRB rolling buffer could very much contain the kernel
462 * addresses at this point. Check the privileges before
463 * exporting it to userspace (avoid exposure of regions
464 * where we could have speculative execution)
466 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
467 is_kernel_addr(addr))
470 /* Branches are read most recent first (ie. mfbhrb 0 is
471 * the most recent branch).
472 * There are two types of valid entries:
473 * 1) a target entry which is the to address of a
474 * computed goto like a blr,bctr,btar. The next
475 * entry read from the bhrb will be branch
476 * corresponding to this target (ie. the actual
477 * blr/bctr/btar instruction).
478 * 2) a from address which is an actual branch. If a
479 * target entry proceeds this, then this is the
480 * matching branch for that target. If this is not
481 * following a target entry, then this is a branch
482 * where the target is given as an immediate field
483 * in the instruction (ie. an i or b form branch).
484 * In this case we need to read the instruction from
485 * memory to determine the target/to address.
488 if (val & BHRB_TARGET) {
489 /* Target branches use two entries
490 * (ie. computed gotos/XL form)
492 cpuhw->bhrb_entries[u_index].to = addr;
493 cpuhw->bhrb_entries[u_index].mispred = pred;
494 cpuhw->bhrb_entries[u_index].predicted = ~pred;
496 /* Get from address in next entry */
497 val = read_bhrb(r_index++);
498 addr = val & BHRB_EA;
499 if (val & BHRB_TARGET) {
500 /* Shouldn't have two targets in a
501 row.. Reset index and try again */
505 cpuhw->bhrb_entries[u_index].from = addr;
507 /* Branches to immediate field
509 cpuhw->bhrb_entries[u_index].from = addr;
510 cpuhw->bhrb_entries[u_index].to =
511 power_pmu_bhrb_to(addr);
512 cpuhw->bhrb_entries[u_index].mispred = pred;
513 cpuhw->bhrb_entries[u_index].predicted = ~pred;
519 cpuhw->bhrb_stack.nr = u_index;
523 static bool is_ebb_event(struct perf_event *event)
526 * This could be a per-PMU callback, but we'd rather avoid the cost. We
527 * check that the PMU supports EBB, meaning those that don't can still
528 * use bit 63 of the event code for something else if they wish.
530 return (ppmu->flags & PPMU_ARCH_207S) &&
531 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
534 static int ebb_event_check(struct perf_event *event)
536 struct perf_event *leader = event->group_leader;
538 /* Event and group leader must agree on EBB */
539 if (is_ebb_event(leader) != is_ebb_event(event))
542 if (is_ebb_event(event)) {
543 if (!(event->attach_state & PERF_ATTACH_TASK))
546 if (!leader->attr.pinned || !leader->attr.exclusive)
549 if (event->attr.freq ||
550 event->attr.inherit ||
551 event->attr.sample_type ||
552 event->attr.sample_period ||
553 event->attr.enable_on_exec)
560 static void ebb_event_add(struct perf_event *event)
562 if (!is_ebb_event(event) || current->thread.used_ebb)
566 * IFF this is the first time we've added an EBB event, set
567 * PMXE in the user MMCR0 so we can detect when it's cleared by
568 * userspace. We need this so that we can context switch while
569 * userspace is in the EBB handler (where PMXE is 0).
571 current->thread.used_ebb = 1;
572 current->thread.mmcr0 |= MMCR0_PMXE;
575 static void ebb_switch_out(unsigned long mmcr0)
577 if (!(mmcr0 & MMCR0_EBE))
580 current->thread.siar = mfspr(SPRN_SIAR);
581 current->thread.sier = mfspr(SPRN_SIER);
582 current->thread.sdar = mfspr(SPRN_SDAR);
583 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
584 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
587 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
589 unsigned long mmcr0 = cpuhw->mmcr[0];
594 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
595 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
598 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
599 * with pmao_restore_workaround() because we may add PMAO but we never
602 mmcr0 |= current->thread.mmcr0;
605 * Be careful not to set PMXE if userspace had it cleared. This is also
606 * compatible with pmao_restore_workaround() because it has already
607 * cleared PMXE and we leave PMAO alone.
609 if (!(current->thread.mmcr0 & MMCR0_PMXE))
610 mmcr0 &= ~MMCR0_PMXE;
612 mtspr(SPRN_SIAR, current->thread.siar);
613 mtspr(SPRN_SIER, current->thread.sier);
614 mtspr(SPRN_SDAR, current->thread.sdar);
617 * Merge the kernel & user values of MMCR2. The semantics we implement
618 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
619 * but not clear bits. If a task wants to be able to clear bits, ie.
620 * unfreeze counters, it should not set exclude_xxx in its events and
621 * instead manage the MMCR2 entirely by itself.
623 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
628 static void pmao_restore_workaround(bool ebb)
632 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
636 * On POWER8E there is a hardware defect which affects the PMU context
637 * switch logic, ie. power_pmu_disable/enable().
639 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
640 * by the hardware. Sometime later the actual PMU exception is
643 * If we context switch, or simply disable/enable, the PMU prior to the
644 * exception arriving, the exception will be lost when we clear PMAO.
646 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
647 * set, and this _should_ generate an exception. However because of the
648 * defect no exception is generated when we write PMAO, and we get
649 * stuck with no counters counting but no exception delivered.
651 * The workaround is to detect this case and tweak the hardware to
652 * create another pending PMU exception.
654 * We do that by setting up PMC6 (cycles) for an imminent overflow and
655 * enabling the PMU. That causes a new exception to be generated in the
656 * chip, but we don't take it yet because we have interrupts hard
657 * disabled. We then write back the PMU state as we want it to be seen
658 * by the exception handler. When we reenable interrupts the exception
659 * handler will be called and see the correct state.
661 * The logic is the same for EBB, except that the exception is gated by
662 * us having interrupts hard disabled as well as the fact that we are
663 * not in userspace. The exception is finally delivered when we return
667 /* Only if PMAO is set and PMAO_SYNC is clear */
668 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
671 /* If we're doing EBB, only if BESCR[GE] is set */
672 if (ebb && !(current->thread.bescr & BESCR_GE))
676 * We are already soft-disabled in power_pmu_enable(). We need to hard
677 * disable to actually prevent the PMU exception from firing.
682 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
683 * Using read/write_pmc() in a for loop adds 12 function calls and
684 * almost doubles our code size.
686 pmcs[0] = mfspr(SPRN_PMC1);
687 pmcs[1] = mfspr(SPRN_PMC2);
688 pmcs[2] = mfspr(SPRN_PMC3);
689 pmcs[3] = mfspr(SPRN_PMC4);
690 pmcs[4] = mfspr(SPRN_PMC5);
691 pmcs[5] = mfspr(SPRN_PMC6);
693 /* Ensure all freeze bits are unset */
694 mtspr(SPRN_MMCR2, 0);
696 /* Set up PMC6 to overflow in one cycle */
697 mtspr(SPRN_PMC6, 0x7FFFFFFE);
699 /* Enable exceptions and unfreeze PMC6 */
700 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
702 /* Now we need to refreeze and restore the PMCs */
703 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
705 mtspr(SPRN_PMC1, pmcs[0]);
706 mtspr(SPRN_PMC2, pmcs[1]);
707 mtspr(SPRN_PMC3, pmcs[2]);
708 mtspr(SPRN_PMC4, pmcs[3]);
709 mtspr(SPRN_PMC5, pmcs[4]);
710 mtspr(SPRN_PMC6, pmcs[5]);
713 static bool use_ic(u64 event)
715 if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
716 (event == 0x200f2 || event == 0x300f2))
721 #endif /* CONFIG_PPC64 */
723 static void perf_event_interrupt(struct pt_regs *regs);
726 * Read one performance monitor counter (PMC).
728 static unsigned long read_pmc(int idx)
734 val = mfspr(SPRN_PMC1);
737 val = mfspr(SPRN_PMC2);
740 val = mfspr(SPRN_PMC3);
743 val = mfspr(SPRN_PMC4);
746 val = mfspr(SPRN_PMC5);
749 val = mfspr(SPRN_PMC6);
753 val = mfspr(SPRN_PMC7);
756 val = mfspr(SPRN_PMC8);
758 #endif /* CONFIG_PPC64 */
760 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
769 static void write_pmc(int idx, unsigned long val)
773 mtspr(SPRN_PMC1, val);
776 mtspr(SPRN_PMC2, val);
779 mtspr(SPRN_PMC3, val);
782 mtspr(SPRN_PMC4, val);
785 mtspr(SPRN_PMC5, val);
788 mtspr(SPRN_PMC6, val);
792 mtspr(SPRN_PMC7, val);
795 mtspr(SPRN_PMC8, val);
797 #endif /* CONFIG_PPC64 */
799 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
803 /* Called from sysrq_handle_showregs() */
804 void perf_event_print_debug(void)
806 unsigned long sdar, sier, flags;
807 u32 pmcs[MAX_HWEVENTS];
811 pr_info("Performance monitor hardware not registered.\n");
815 if (!ppmu->n_counter)
818 local_irq_save(flags);
820 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
821 smp_processor_id(), ppmu->name, ppmu->n_counter);
823 for (i = 0; i < ppmu->n_counter; i++)
824 pmcs[i] = read_pmc(i + 1);
826 for (; i < MAX_HWEVENTS; i++)
827 pmcs[i] = 0xdeadbeef;
829 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
830 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
832 if (ppmu->n_counter > 4)
833 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
834 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
836 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
837 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
841 sdar = mfspr(SPRN_SDAR);
843 if (ppmu->flags & PPMU_HAS_SIER)
844 sier = mfspr(SPRN_SIER);
846 if (ppmu->flags & PPMU_ARCH_207S) {
847 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
848 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
849 pr_info("EBBRR: %016lx BESCR: %016lx\n",
850 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
853 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
854 mfspr(SPRN_SIAR), sdar, sier);
856 local_irq_restore(flags);
860 * Check if a set of events can all go on the PMU at once.
861 * If they can't, this will look at alternative codes for the events
862 * and see if any combination of alternative codes is feasible.
863 * The feasible set is returned in event_id[].
865 static int power_check_constraints(struct cpu_hw_events *cpuhw,
866 u64 event_id[], unsigned int cflags[],
869 unsigned long mask, value, nv;
870 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
871 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
873 unsigned long addf = ppmu->add_fields;
874 unsigned long tadd = ppmu->test_adder;
876 if (n_ev > ppmu->n_counter)
879 /* First see if the events will go on as-is */
880 for (i = 0; i < n_ev; ++i) {
881 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
882 && !ppmu->limited_pmc_event(event_id[i])) {
883 ppmu->get_alternatives(event_id[i], cflags[i],
884 cpuhw->alternatives[i]);
885 event_id[i] = cpuhw->alternatives[i][0];
887 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
888 &cpuhw->avalues[i][0]))
892 for (i = 0; i < n_ev; ++i) {
893 nv = (value | cpuhw->avalues[i][0]) +
894 (value & cpuhw->avalues[i][0] & addf);
895 if ((((nv + tadd) ^ value) & mask) != 0 ||
896 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
897 cpuhw->amasks[i][0]) != 0)
900 mask |= cpuhw->amasks[i][0];
903 return 0; /* all OK */
905 /* doesn't work, gather alternatives... */
906 if (!ppmu->get_alternatives)
908 for (i = 0; i < n_ev; ++i) {
910 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
911 cpuhw->alternatives[i]);
912 for (j = 1; j < n_alt[i]; ++j)
913 ppmu->get_constraint(cpuhw->alternatives[i][j],
914 &cpuhw->amasks[i][j],
915 &cpuhw->avalues[i][j]);
918 /* enumerate all possibilities and see if any will work */
921 value = mask = nv = 0;
924 /* we're backtracking, restore context */
930 * See if any alternative k for event_id i,
931 * where k > j, will satisfy the constraints.
933 while (++j < n_alt[i]) {
934 nv = (value | cpuhw->avalues[i][j]) +
935 (value & cpuhw->avalues[i][j] & addf);
936 if ((((nv + tadd) ^ value) & mask) == 0 &&
937 (((nv + tadd) ^ cpuhw->avalues[i][j])
938 & cpuhw->amasks[i][j]) == 0)
943 * No feasible alternative, backtrack
944 * to event_id i-1 and continue enumerating its
945 * alternatives from where we got up to.
951 * Found a feasible alternative for event_id i,
952 * remember where we got up to with this event_id,
953 * go on to the next event_id, and start with
954 * the first alternative for it.
960 mask |= cpuhw->amasks[i][j];
966 /* OK, we have a feasible combination, tell the caller the solution */
967 for (i = 0; i < n_ev; ++i)
968 event_id[i] = cpuhw->alternatives[i][choice[i]];
973 * Check if newly-added events have consistent settings for
974 * exclude_{user,kernel,hv} with each other and any previously
977 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
978 int n_prev, int n_new)
980 int eu = 0, ek = 0, eh = 0;
982 struct perf_event *event;
985 * If the PMU we're on supports per event exclude settings then we
986 * don't need to do any of this logic. NB. This assumes no PMU has both
987 * per event exclude and limited PMCs.
989 if (ppmu->flags & PPMU_ARCH_207S)
997 for (i = 0; i < n; ++i) {
998 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
999 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1004 eu = event->attr.exclude_user;
1005 ek = event->attr.exclude_kernel;
1006 eh = event->attr.exclude_hv;
1008 } else if (event->attr.exclude_user != eu ||
1009 event->attr.exclude_kernel != ek ||
1010 event->attr.exclude_hv != eh) {
1016 for (i = 0; i < n; ++i)
1017 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1018 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1023 static u64 check_and_compute_delta(u64 prev, u64 val)
1025 u64 delta = (val - prev) & 0xfffffffful;
1028 * POWER7 can roll back counter values, if the new value is smaller
1029 * than the previous value it will cause the delta and the counter to
1030 * have bogus values unless we rolled a counter over. If a coutner is
1031 * rolled back, it will be smaller, but within 256, which is the maximum
1032 * number of events to rollback at once. If we detect a rollback
1033 * return 0. This can lead to a small lack of precision in the
1036 if (prev > val && (prev - val) < 256)
1042 static void power_pmu_read(struct perf_event *event)
1044 s64 val, delta, prev;
1045 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1047 if (event->hw.state & PERF_HES_STOPPED)
1053 if (is_ebb_event(event)) {
1054 val = read_pmc(event->hw.idx);
1055 if (use_ic(event->attr.config)) {
1056 val = mfspr(SPRN_IC);
1057 if (val > cpuhw->ic_init)
1058 val = val - cpuhw->ic_init;
1060 val = val + (0 - cpuhw->ic_init);
1062 local64_set(&event->hw.prev_count, val);
1067 * Performance monitor interrupts come even when interrupts
1068 * are soft-disabled, as long as interrupts are hard-enabled.
1069 * Therefore we treat them like NMIs.
1072 prev = local64_read(&event->hw.prev_count);
1074 val = read_pmc(event->hw.idx);
1075 if (use_ic(event->attr.config)) {
1076 val = mfspr(SPRN_IC);
1077 if (val > cpuhw->ic_init)
1078 val = val - cpuhw->ic_init;
1080 val = val + (0 - cpuhw->ic_init);
1082 delta = check_and_compute_delta(prev, val);
1085 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1087 local64_add(delta, &event->count);
1090 * A number of places program the PMC with (0x80000000 - period_left).
1091 * We never want period_left to be less than 1 because we will program
1092 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1093 * roll around to 0 before taking an exception. We have seen this
1096 * To fix this, clamp the minimum value of period_left to 1.
1099 prev = local64_read(&event->hw.period_left);
1103 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1107 * On some machines, PMC5 and PMC6 can't be written, don't respect
1108 * the freeze conditions, and don't generate interrupts. This tells
1109 * us if `event' is using such a PMC.
1111 static int is_limited_pmc(int pmcnum)
1113 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1114 && (pmcnum == 5 || pmcnum == 6);
1117 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1118 unsigned long pmc5, unsigned long pmc6)
1120 struct perf_event *event;
1121 u64 val, prev, delta;
1124 for (i = 0; i < cpuhw->n_limited; ++i) {
1125 event = cpuhw->limited_counter[i];
1128 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1129 prev = local64_read(&event->hw.prev_count);
1131 delta = check_and_compute_delta(prev, val);
1133 local64_add(delta, &event->count);
1137 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1138 unsigned long pmc5, unsigned long pmc6)
1140 struct perf_event *event;
1144 for (i = 0; i < cpuhw->n_limited; ++i) {
1145 event = cpuhw->limited_counter[i];
1146 event->hw.idx = cpuhw->limited_hwidx[i];
1147 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1148 prev = local64_read(&event->hw.prev_count);
1149 if (check_and_compute_delta(prev, val))
1150 local64_set(&event->hw.prev_count, val);
1151 perf_event_update_userpage(event);
1156 * Since limited events don't respect the freeze conditions, we
1157 * have to read them immediately after freezing or unfreezing the
1158 * other events. We try to keep the values from the limited
1159 * events as consistent as possible by keeping the delay (in
1160 * cycles and instructions) between freezing/unfreezing and reading
1161 * the limited events as small and consistent as possible.
1162 * Therefore, if any limited events are in use, we read them
1163 * both, and always in the same order, to minimize variability,
1164 * and do it inside the same asm that writes MMCR0.
1166 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1168 unsigned long pmc5, pmc6;
1170 if (!cpuhw->n_limited) {
1171 mtspr(SPRN_MMCR0, mmcr0);
1176 * Write MMCR0, then read PMC5 and PMC6 immediately.
1177 * To ensure we don't get a performance monitor interrupt
1178 * between writing MMCR0 and freezing/thawing the limited
1179 * events, we first write MMCR0 with the event overflow
1180 * interrupt enable bits turned off.
1182 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1183 : "=&r" (pmc5), "=&r" (pmc6)
1184 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1186 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1188 if (mmcr0 & MMCR0_FC)
1189 freeze_limited_counters(cpuhw, pmc5, pmc6);
1191 thaw_limited_counters(cpuhw, pmc5, pmc6);
1194 * Write the full MMCR0 including the event overflow interrupt
1195 * enable bits, if necessary.
1197 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1198 mtspr(SPRN_MMCR0, mmcr0);
1202 * Disable all events to prevent PMU interrupts and to allow
1203 * events to be added or removed.
1205 static void power_pmu_disable(struct pmu *pmu)
1207 struct cpu_hw_events *cpuhw;
1208 unsigned long flags, mmcr0, val;
1212 local_irq_save(flags);
1213 cpuhw = this_cpu_ptr(&cpu_hw_events);
1215 if (!cpuhw->disabled) {
1217 * Check if we ever enabled the PMU on this cpu.
1219 if (!cpuhw->pmcs_enabled) {
1221 cpuhw->pmcs_enabled = 1;
1225 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1227 val = mmcr0 = mfspr(SPRN_MMCR0);
1229 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1233 * The barrier is to make sure the mtspr has been
1234 * executed and the PMU has frozen the events etc.
1237 write_mmcr0(cpuhw, val);
1242 * Disable instruction sampling if it was enabled
1244 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1246 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1251 cpuhw->disabled = 1;
1254 ebb_switch_out(mmcr0);
1258 * These are readable by userspace, may contain kernel
1259 * addresses and are not switched by context switch, so clear
1260 * them now to avoid leaking anything to userspace in general
1261 * including to another process.
1263 if (ppmu->flags & PPMU_ARCH_207S) {
1264 mtspr(SPRN_SDAR, 0);
1265 mtspr(SPRN_SIAR, 0);
1270 local_irq_restore(flags);
1274 * Re-enable all events if disable == 0.
1275 * If we were previously disabled and events were added, then
1276 * put the new config on the PMU.
1278 static void power_pmu_enable(struct pmu *pmu)
1280 struct perf_event *event;
1281 struct cpu_hw_events *cpuhw;
1282 unsigned long flags;
1284 unsigned long val, mmcr0;
1286 unsigned int hwc_index[MAX_HWEVENTS];
1293 local_irq_save(flags);
1295 cpuhw = this_cpu_ptr(&cpu_hw_events);
1296 if (!cpuhw->disabled)
1299 if (cpuhw->n_events == 0) {
1300 ppc_set_pmu_inuse(0);
1304 cpuhw->disabled = 0;
1307 * EBB requires an exclusive group and all events must have the EBB
1308 * flag set, or not set, so we can just check a single event. Also we
1309 * know we have at least one event.
1311 ebb = is_ebb_event(cpuhw->event[0]);
1314 * If we didn't change anything, or only removed events,
1315 * no need to recalculate MMCR* settings and reset the PMCs.
1316 * Just reenable the PMU with the current MMCR* settings
1317 * (possibly updated for removal of events).
1319 if (!cpuhw->n_added) {
1320 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1321 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1326 * Clear all MMCR settings and recompute them for the new set of events.
1328 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1330 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1331 cpuhw->mmcr, cpuhw->event)) {
1332 /* shouldn't ever get here */
1333 printk(KERN_ERR "oops compute_mmcr failed\n");
1337 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1339 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1340 * bits for the first event. We have already checked that all
1341 * events have the same value for these bits as the first event.
1343 event = cpuhw->event[0];
1344 if (event->attr.exclude_user)
1345 cpuhw->mmcr[0] |= MMCR0_FCP;
1346 if (event->attr.exclude_kernel)
1347 cpuhw->mmcr[0] |= freeze_events_kernel;
1348 if (event->attr.exclude_hv)
1349 cpuhw->mmcr[0] |= MMCR0_FCHV;
1353 * Write the new configuration to MMCR* with the freeze
1354 * bit set and set the hardware events to their initial values.
1355 * Then unfreeze the events.
1357 ppc_set_pmu_inuse(1);
1358 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1359 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1360 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1362 if (ppmu->flags & PPMU_ARCH_207S)
1363 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1366 * Read off any pre-existing events that need to move
1369 for (i = 0; i < cpuhw->n_events; ++i) {
1370 event = cpuhw->event[i];
1371 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1372 power_pmu_read(event);
1373 write_pmc(event->hw.idx, 0);
1379 * Initialize the PMCs for all the new and moved events.
1381 cpuhw->n_limited = n_lim = 0;
1382 for (i = 0; i < cpuhw->n_events; ++i) {
1383 event = cpuhw->event[i];
1386 idx = hwc_index[i] + 1;
1387 if (is_limited_pmc(idx)) {
1388 cpuhw->limited_counter[n_lim] = event;
1389 cpuhw->limited_hwidx[n_lim] = idx;
1395 val = local64_read(&event->hw.prev_count);
1398 if (event->hw.sample_period) {
1399 left = local64_read(&event->hw.period_left);
1400 if (left < 0x80000000L)
1401 val = 0x80000000L - left;
1403 local64_set(&event->hw.prev_count, val);
1406 event->hw.idx = idx;
1407 if (event->hw.state & PERF_HES_STOPPED)
1409 write_pmc(idx, val);
1411 perf_event_update_userpage(event);
1413 cpuhw->n_limited = n_lim;
1414 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1417 pmao_restore_workaround(ebb);
1419 mmcr0 = ebb_switch_in(ebb, cpuhw);
1422 if (cpuhw->bhrb_users)
1423 ppmu->config_bhrb(cpuhw->bhrb_filter);
1425 write_mmcr0(cpuhw, mmcr0);
1428 * Enable instruction sampling if necessary
1430 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1432 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1437 local_irq_restore(flags);
1440 static int collect_events(struct perf_event *group, int max_count,
1441 struct perf_event *ctrs[], u64 *events,
1442 unsigned int *flags)
1445 struct perf_event *event;
1447 if (group->pmu->task_ctx_nr == perf_hw_context) {
1451 flags[n] = group->hw.event_base;
1452 events[n++] = group->hw.config;
1454 list_for_each_entry(event, &group->sibling_list, group_entry) {
1455 if (event->pmu->task_ctx_nr == perf_hw_context &&
1456 event->state != PERF_EVENT_STATE_OFF) {
1460 flags[n] = event->hw.event_base;
1461 events[n++] = event->hw.config;
1468 * Add a event to the PMU.
1469 * If all events are not already frozen, then we disable and
1470 * re-enable the PMU in order to get hw_perf_enable to do the
1471 * actual work of reconfiguring the PMU.
1473 static int power_pmu_add(struct perf_event *event, int ef_flags)
1475 struct cpu_hw_events *cpuhw;
1476 unsigned long flags;
1480 local_irq_save(flags);
1481 perf_pmu_disable(event->pmu);
1484 * Add the event to the list (if there is room)
1485 * and check whether the total set is still feasible.
1487 cpuhw = this_cpu_ptr(&cpu_hw_events);
1488 n0 = cpuhw->n_events;
1489 if (n0 >= ppmu->n_counter)
1491 cpuhw->event[n0] = event;
1492 cpuhw->events[n0] = event->hw.config;
1493 cpuhw->flags[n0] = event->hw.event_base;
1496 * This event may have been disabled/stopped in record_and_restart()
1497 * because we exceeded the ->event_limit. If re-starting the event,
1498 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1499 * notification is re-enabled.
1501 if (!(ef_flags & PERF_EF_START))
1502 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1504 event->hw.state = 0;
1507 * If group events scheduling transaction was started,
1508 * skip the schedulability test here, it will be performed
1509 * at commit time(->commit_txn) as a whole
1511 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1514 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1516 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1518 event->hw.config = cpuhw->events[n0];
1521 ebb_event_add(event);
1528 if (has_branch_stack(event)) {
1529 power_pmu_bhrb_enable(event);
1530 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1531 event->attr.branch_sample_type);
1535 * Workaround for POWER9 DD1 to use the Instruction Counter
1536 * register value for instruction counting
1538 if (use_ic(event->attr.config))
1539 cpuhw->ic_init = mfspr(SPRN_IC);
1541 perf_pmu_enable(event->pmu);
1542 local_irq_restore(flags);
1547 * Remove a event from the PMU.
1549 static void power_pmu_del(struct perf_event *event, int ef_flags)
1551 struct cpu_hw_events *cpuhw;
1553 unsigned long flags;
1555 local_irq_save(flags);
1556 perf_pmu_disable(event->pmu);
1558 power_pmu_read(event);
1560 cpuhw = this_cpu_ptr(&cpu_hw_events);
1561 for (i = 0; i < cpuhw->n_events; ++i) {
1562 if (event == cpuhw->event[i]) {
1563 while (++i < cpuhw->n_events) {
1564 cpuhw->event[i-1] = cpuhw->event[i];
1565 cpuhw->events[i-1] = cpuhw->events[i];
1566 cpuhw->flags[i-1] = cpuhw->flags[i];
1569 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1570 if (event->hw.idx) {
1571 write_pmc(event->hw.idx, 0);
1574 perf_event_update_userpage(event);
1578 for (i = 0; i < cpuhw->n_limited; ++i)
1579 if (event == cpuhw->limited_counter[i])
1581 if (i < cpuhw->n_limited) {
1582 while (++i < cpuhw->n_limited) {
1583 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1584 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1588 if (cpuhw->n_events == 0) {
1589 /* disable exceptions if no events are running */
1590 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1593 if (has_branch_stack(event))
1594 power_pmu_bhrb_disable(event);
1596 perf_pmu_enable(event->pmu);
1597 local_irq_restore(flags);
1601 * POWER-PMU does not support disabling individual counters, hence
1602 * program their cycle counter to their max value and ignore the interrupts.
1605 static void power_pmu_start(struct perf_event *event, int ef_flags)
1607 unsigned long flags;
1611 if (!event->hw.idx || !event->hw.sample_period)
1614 if (!(event->hw.state & PERF_HES_STOPPED))
1617 if (ef_flags & PERF_EF_RELOAD)
1618 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1620 local_irq_save(flags);
1621 perf_pmu_disable(event->pmu);
1623 event->hw.state = 0;
1624 left = local64_read(&event->hw.period_left);
1627 if (left < 0x80000000L)
1628 val = 0x80000000L - left;
1630 write_pmc(event->hw.idx, val);
1632 perf_event_update_userpage(event);
1633 perf_pmu_enable(event->pmu);
1634 local_irq_restore(flags);
1637 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1639 unsigned long flags;
1641 if (!event->hw.idx || !event->hw.sample_period)
1644 if (event->hw.state & PERF_HES_STOPPED)
1647 local_irq_save(flags);
1648 perf_pmu_disable(event->pmu);
1650 power_pmu_read(event);
1651 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1652 write_pmc(event->hw.idx, 0);
1654 perf_event_update_userpage(event);
1655 perf_pmu_enable(event->pmu);
1656 local_irq_restore(flags);
1660 * Start group events scheduling transaction
1661 * Set the flag to make pmu::enable() not perform the
1662 * schedulability test, it will be performed at commit time
1664 * We only support PERF_PMU_TXN_ADD transactions. Save the
1665 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1668 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1670 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1672 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1674 cpuhw->txn_flags = txn_flags;
1675 if (txn_flags & ~PERF_PMU_TXN_ADD)
1678 perf_pmu_disable(pmu);
1679 cpuhw->n_txn_start = cpuhw->n_events;
1683 * Stop group events scheduling transaction
1684 * Clear the flag and pmu::enable() will perform the
1685 * schedulability test.
1687 static void power_pmu_cancel_txn(struct pmu *pmu)
1689 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1690 unsigned int txn_flags;
1692 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1694 txn_flags = cpuhw->txn_flags;
1695 cpuhw->txn_flags = 0;
1696 if (txn_flags & ~PERF_PMU_TXN_ADD)
1699 perf_pmu_enable(pmu);
1703 * Commit group events scheduling transaction
1704 * Perform the group schedulability test as a whole
1705 * Return 0 if success
1707 static int power_pmu_commit_txn(struct pmu *pmu)
1709 struct cpu_hw_events *cpuhw;
1715 cpuhw = this_cpu_ptr(&cpu_hw_events);
1716 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1718 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1719 cpuhw->txn_flags = 0;
1723 n = cpuhw->n_events;
1724 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1726 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1730 for (i = cpuhw->n_txn_start; i < n; ++i)
1731 cpuhw->event[i]->hw.config = cpuhw->events[i];
1733 cpuhw->txn_flags = 0;
1734 perf_pmu_enable(pmu);
1739 * Return 1 if we might be able to put event on a limited PMC,
1741 * A event can only go on a limited PMC if it counts something
1742 * that a limited PMC can count, doesn't require interrupts, and
1743 * doesn't exclude any processor mode.
1745 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1749 u64 alt[MAX_EVENT_ALTERNATIVES];
1751 if (event->attr.exclude_user
1752 || event->attr.exclude_kernel
1753 || event->attr.exclude_hv
1754 || event->attr.sample_period)
1757 if (ppmu->limited_pmc_event(ev))
1761 * The requested event_id isn't on a limited PMC already;
1762 * see if any alternative code goes on a limited PMC.
1764 if (!ppmu->get_alternatives)
1767 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1768 n = ppmu->get_alternatives(ev, flags, alt);
1774 * Find an alternative event_id that goes on a normal PMC, if possible,
1775 * and return the event_id code, or 0 if there is no such alternative.
1776 * (Note: event_id code 0 is "don't count" on all machines.)
1778 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1780 u64 alt[MAX_EVENT_ALTERNATIVES];
1783 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1784 n = ppmu->get_alternatives(ev, flags, alt);
1790 /* Number of perf_events counting hardware events */
1791 static atomic_t num_events;
1792 /* Used to avoid races in calling reserve/release_pmc_hardware */
1793 static DEFINE_MUTEX(pmc_reserve_mutex);
1796 * Release the PMU if this is the last perf_event.
1798 static void hw_perf_event_destroy(struct perf_event *event)
1800 if (!atomic_add_unless(&num_events, -1, 1)) {
1801 mutex_lock(&pmc_reserve_mutex);
1802 if (atomic_dec_return(&num_events) == 0)
1803 release_pmc_hardware();
1804 mutex_unlock(&pmc_reserve_mutex);
1809 * Translate a generic cache event_id config to a raw event_id code.
1811 static int hw_perf_cache_event(u64 config, u64 *eventp)
1813 unsigned long type, op, result;
1816 if (!ppmu->cache_events)
1820 type = config & 0xff;
1821 op = (config >> 8) & 0xff;
1822 result = (config >> 16) & 0xff;
1824 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1825 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1826 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1829 ev = (*ppmu->cache_events)[type][op][result];
1838 static int power_pmu_event_init(struct perf_event *event)
1841 unsigned long flags;
1842 struct perf_event *ctrs[MAX_HWEVENTS];
1843 u64 events[MAX_HWEVENTS];
1844 unsigned int cflags[MAX_HWEVENTS];
1847 struct cpu_hw_events *cpuhw;
1853 if (has_branch_stack(event)) {
1854 /* PMU has BHRB enabled */
1855 if (!(ppmu->flags & PPMU_ARCH_207S))
1859 switch (event->attr.type) {
1860 case PERF_TYPE_HARDWARE:
1861 ev = event->attr.config;
1862 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1864 ev = ppmu->generic_events[ev];
1866 case PERF_TYPE_HW_CACHE:
1867 err = hw_perf_cache_event(event->attr.config, &ev);
1872 ev = event->attr.config;
1878 event->hw.config_base = ev;
1882 * If we are not running on a hypervisor, force the
1883 * exclude_hv bit to 0 so that we don't care what
1884 * the user set it to.
1886 if (!firmware_has_feature(FW_FEATURE_LPAR))
1887 event->attr.exclude_hv = 0;
1890 * If this is a per-task event, then we can use
1891 * PM_RUN_* events interchangeably with their non RUN_*
1892 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1893 * XXX we should check if the task is an idle task.
1896 if (event->attach_state & PERF_ATTACH_TASK)
1897 flags |= PPMU_ONLY_COUNT_RUN;
1900 * If this machine has limited events, check whether this
1901 * event_id could go on a limited event.
1903 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1904 if (can_go_on_limited_pmc(event, ev, flags)) {
1905 flags |= PPMU_LIMITED_PMC_OK;
1906 } else if (ppmu->limited_pmc_event(ev)) {
1908 * The requested event_id is on a limited PMC,
1909 * but we can't use a limited PMC; see if any
1910 * alternative goes on a normal PMC.
1912 ev = normal_pmc_alternative(ev, flags);
1918 /* Extra checks for EBB */
1919 err = ebb_event_check(event);
1924 * If this is in a group, check if it can go on with all the
1925 * other hardware events in the group. We assume the event
1926 * hasn't been linked into its leader's sibling list at this point.
1929 if (event->group_leader != event) {
1930 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1931 ctrs, events, cflags);
1938 if (check_excludes(ctrs, cflags, n, 1))
1941 cpuhw = &get_cpu_var(cpu_hw_events);
1942 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1944 if (has_branch_stack(event)) {
1945 bhrb_filter = ppmu->bhrb_filter_map(
1946 event->attr.branch_sample_type);
1948 if (bhrb_filter == -1) {
1949 put_cpu_var(cpu_hw_events);
1952 cpuhw->bhrb_filter = bhrb_filter;
1955 put_cpu_var(cpu_hw_events);
1959 event->hw.config = events[n];
1960 event->hw.event_base = cflags[n];
1961 event->hw.last_period = event->hw.sample_period;
1962 local64_set(&event->hw.period_left, event->hw.last_period);
1965 * For EBB events we just context switch the PMC value, we don't do any
1966 * of the sample_period logic. We use hw.prev_count for this.
1968 if (is_ebb_event(event))
1969 local64_set(&event->hw.prev_count, 0);
1972 * See if we need to reserve the PMU.
1973 * If no events are currently in use, then we have to take a
1974 * mutex to ensure that we don't race with another task doing
1975 * reserve_pmc_hardware or release_pmc_hardware.
1978 if (!atomic_inc_not_zero(&num_events)) {
1979 mutex_lock(&pmc_reserve_mutex);
1980 if (atomic_read(&num_events) == 0 &&
1981 reserve_pmc_hardware(perf_event_interrupt))
1984 atomic_inc(&num_events);
1985 mutex_unlock(&pmc_reserve_mutex);
1987 event->destroy = hw_perf_event_destroy;
1992 static int power_pmu_event_idx(struct perf_event *event)
1994 return event->hw.idx;
1997 ssize_t power_events_sysfs_show(struct device *dev,
1998 struct device_attribute *attr, char *page)
2000 struct perf_pmu_events_attr *pmu_attr;
2002 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2004 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2007 static struct pmu power_pmu = {
2008 .pmu_enable = power_pmu_enable,
2009 .pmu_disable = power_pmu_disable,
2010 .event_init = power_pmu_event_init,
2011 .add = power_pmu_add,
2012 .del = power_pmu_del,
2013 .start = power_pmu_start,
2014 .stop = power_pmu_stop,
2015 .read = power_pmu_read,
2016 .start_txn = power_pmu_start_txn,
2017 .cancel_txn = power_pmu_cancel_txn,
2018 .commit_txn = power_pmu_commit_txn,
2019 .event_idx = power_pmu_event_idx,
2020 .sched_task = power_pmu_sched_task,
2024 * A counter has overflowed; update its count and record
2025 * things if requested. Note that interrupts are hard-disabled
2026 * here so there is no possibility of being interrupted.
2028 static void record_and_restart(struct perf_event *event, unsigned long val,
2029 struct pt_regs *regs)
2031 u64 period = event->hw.sample_period;
2032 s64 prev, delta, left;
2035 if (event->hw.state & PERF_HES_STOPPED) {
2036 write_pmc(event->hw.idx, 0);
2040 /* we don't have to worry about interrupts here */
2041 prev = local64_read(&event->hw.prev_count);
2042 delta = check_and_compute_delta(prev, val);
2043 local64_add(delta, &event->count);
2046 * See if the total period for this event has expired,
2047 * and update for the next period.
2050 left = local64_read(&event->hw.period_left) - delta;
2060 * If address is not requested in the sample via
2061 * PERF_SAMPLE_IP, just record that sample irrespective
2062 * of SIAR valid check.
2064 if (event->attr.sample_type & PERF_SAMPLE_IP)
2065 record = siar_valid(regs);
2069 event->hw.last_period = event->hw.sample_period;
2071 if (left < 0x80000000LL)
2072 val = 0x80000000LL - left;
2075 write_pmc(event->hw.idx, val);
2076 local64_set(&event->hw.prev_count, val);
2077 local64_set(&event->hw.period_left, left);
2078 perf_event_update_userpage(event);
2081 * Due to hardware limitation, sometimes SIAR could sample a kernel
2082 * address even when freeze on supervisor state (kernel) is set in
2083 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2086 if (event->attr.exclude_kernel &&
2087 (event->attr.sample_type & PERF_SAMPLE_IP) &&
2088 is_kernel_addr(mfspr(SPRN_SIAR)))
2092 * Finally record data if requested.
2095 struct perf_sample_data data;
2097 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2099 if (event->attr.sample_type &
2100 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2101 perf_get_data_addr(regs, &data.addr);
2103 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2104 struct cpu_hw_events *cpuhw;
2105 cpuhw = this_cpu_ptr(&cpu_hw_events);
2106 power_pmu_bhrb_read(cpuhw);
2107 data.br_stack = &cpuhw->bhrb_stack;
2110 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2111 ppmu->get_mem_data_src)
2112 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2114 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2115 ppmu->get_mem_weight)
2116 ppmu->get_mem_weight(&data.weight);
2118 if (perf_event_overflow(event, &data, regs))
2119 power_pmu_stop(event, 0);
2120 } else if (period) {
2121 /* Account for interrupt in case of invalid SIAR */
2122 if (perf_event_account_interrupt(event))
2123 power_pmu_stop(event, 0);
2128 * Called from generic code to get the misc flags (i.e. processor mode)
2131 unsigned long perf_misc_flags(struct pt_regs *regs)
2133 u32 flags = perf_get_misc_flags(regs);
2137 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2138 PERF_RECORD_MISC_KERNEL;
2142 * Called from generic code to get the instruction pointer
2145 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2147 bool use_siar = regs_use_siar(regs);
2149 if (use_siar && siar_valid(regs))
2150 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2152 return 0; // no valid instruction pointer
2157 static bool pmc_overflow_power7(unsigned long val)
2160 * Events on POWER7 can roll back if a speculative event doesn't
2161 * eventually complete. Unfortunately in some rare cases they will
2162 * raise a performance monitor exception. We need to catch this to
2163 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2164 * cycles from overflow.
2166 * We only do this if the first pass fails to find any overflowing
2167 * PMCs because a user might set a period of less than 256 and we
2168 * don't want to mistakenly reset them.
2170 if ((0x80000000 - val) <= 256)
2176 static bool pmc_overflow(unsigned long val)
2185 * Performance monitor interrupt stuff
2187 static void perf_event_interrupt(struct pt_regs *regs)
2190 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2191 struct perf_event *event;
2192 unsigned long val[8];
2196 if (cpuhw->n_limited)
2197 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2200 perf_read_regs(regs);
2202 nmi = perf_intr_is_nmi(regs);
2208 /* Read all the PMCs since we'll need them a bunch of times */
2209 for (i = 0; i < ppmu->n_counter; ++i)
2210 val[i] = read_pmc(i + 1);
2212 /* Try to find what caused the IRQ */
2214 for (i = 0; i < ppmu->n_counter; ++i) {
2215 if (!pmc_overflow(val[i]))
2217 if (is_limited_pmc(i + 1))
2218 continue; /* these won't generate IRQs */
2220 * We've found one that's overflowed. For active
2221 * counters we need to log this. For inactive
2222 * counters, we need to reset it anyway
2226 for (j = 0; j < cpuhw->n_events; ++j) {
2227 event = cpuhw->event[j];
2228 if (event->hw.idx == (i + 1)) {
2230 record_and_restart(event, val[i], regs);
2235 /* reset non active counters that have overflowed */
2236 write_pmc(i + 1, 0);
2238 if (!found && pvr_version_is(PVR_POWER7)) {
2239 /* check active counters for special buggy p7 overflow */
2240 for (i = 0; i < cpuhw->n_events; ++i) {
2241 event = cpuhw->event[i];
2242 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2244 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2245 /* event has overflowed in a buggy way*/
2247 record_and_restart(event,
2248 val[event->hw.idx - 1],
2253 if (!found && !nmi && printk_ratelimit())
2254 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2257 * Reset MMCR0 to its normal value. This will set PMXE and
2258 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2259 * and thus allow interrupts to occur again.
2260 * XXX might want to use MSR.PM to keep the events frozen until
2261 * we get back out of this interrupt.
2263 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2271 static int power_pmu_prepare_cpu(unsigned int cpu)
2273 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2276 memset(cpuhw, 0, sizeof(*cpuhw));
2277 cpuhw->mmcr[0] = MMCR0_FC;
2282 int register_power_pmu(struct power_pmu *pmu)
2285 return -EBUSY; /* something's already registered */
2288 pr_info("%s performance monitor hardware support registered\n",
2291 power_pmu.attr_groups = ppmu->attr_groups;
2295 * Use FCHV to ignore kernel events if MSR.HV is set.
2297 if (mfmsr() & MSR_HV)
2298 freeze_events_kernel = MMCR0_FCHV;
2299 #endif /* CONFIG_PPC64 */
2301 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2302 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2303 power_pmu_prepare_cpu, NULL);