GNU Linux-libre 4.19.281-gnu1
[releases.git] / arch / powerpc / oprofile / op_model_cell.c
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *         Carl Love <carll@us.ibm.com>
9  *         Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/jiffies.h>
20 #include <linux/kthread.h>
21 #include <linux/oprofile.h>
22 #include <linux/percpu.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/timer.h>
26 #include <asm/cell-pmu.h>
27 #include <asm/cputable.h>
28 #include <asm/firmware.h>
29 #include <asm/io.h>
30 #include <asm/oprofile_impl.h>
31 #include <asm/processor.h>
32 #include <asm/prom.h>
33 #include <asm/ptrace.h>
34 #include <asm/reg.h>
35 #include <asm/rtas.h>
36 #include <asm/cell-regs.h>
37
38 #include "../platforms/cell/interrupt.h"
39 #include "cell/pr_util.h"
40
41 #define PPU_PROFILING            0
42 #define SPU_PROFILING_CYCLES     1
43 #define SPU_PROFILING_EVENTS     2
44
45 #define SPU_EVENT_NUM_START      4100
46 #define SPU_EVENT_NUM_STOP       4399
47 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
48 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
50
51 #define NUM_SPUS_PER_NODE    8
52 #define SPU_CYCLES_EVENT_NUM 2  /*  event number for SPU_CYCLES */
53
54 #define PPU_CYCLES_EVENT_NUM 1  /*  event number for CYCLES */
55 #define PPU_CYCLES_GRP_NUM   1  /* special group number for identifying
56                                  * PPU_CYCLES event
57                                  */
58 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
59
60 #define NUM_THREADS 2         /* number of physical threads in
61                                * physical processor
62                                */
63 #define NUM_DEBUG_BUS_WORDS 4
64 #define NUM_INPUT_BUS_WORDS 2
65
66 #define MAX_SPU_COUNT 0xFFFFFF  /* maximum 24 bit LFSR value */
67
68 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
69  * To configure counter to send value every N cycles set counter to
70  * 2^32 - 1 - N.
71  */
72 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
73
74 /*
75  * spu_cycle_reset is the number of cycles between samples.
76  * This variable is used for SPU profiling and should ONLY be set
77  * at the beginning of cell_reg_setup; otherwise, it's read-only.
78  */
79 static unsigned int spu_cycle_reset;
80 static unsigned int profiling_mode;
81 static int spu_evnt_phys_spu_indx;
82
83 struct pmc_cntrl_data {
84         unsigned long vcntr;
85         unsigned long evnts;
86         unsigned long masks;
87         unsigned long enabled;
88 };
89
90 /*
91  * ibm,cbe-perftools rtas parameters
92  */
93 struct pm_signal {
94         u16 cpu;                /* Processor to modify */
95         u16 sub_unit;           /* hw subunit this applies to (if applicable)*/
96         short int signal_group; /* Signal Group to Enable/Disable */
97         u8 bus_word;            /* Enable/Disable on this Trace/Trigger/Event
98                                  * Bus Word(s) (bitmask)
99                                  */
100         u8 bit;                 /* Trigger/Event bit (if applicable) */
101 };
102
103 /*
104  * rtas call arguments
105  */
106 enum {
107         SUBFUNC_RESET = 1,
108         SUBFUNC_ACTIVATE = 2,
109         SUBFUNC_DEACTIVATE = 3,
110
111         PASSTHRU_IGNORE = 0,
112         PASSTHRU_ENABLE = 1,
113         PASSTHRU_DISABLE = 2,
114 };
115
116 struct pm_cntrl {
117         u16 enable;
118         u16 stop_at_max;
119         u16 trace_mode;
120         u16 freeze;
121         u16 count_mode;
122         u16 spu_addr_trace;
123         u8  trace_buf_ovflw;
124 };
125
126 static struct {
127         u32 group_control;
128         u32 debug_bus_control;
129         struct pm_cntrl pm_cntrl;
130         u32 pm07_cntrl[NR_PHYS_CTRS];
131 } pm_regs;
132
133 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
134 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
135 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
136 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
137 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
138 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
139
140 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
141 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
142 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
143
144 /*
145  * The CELL profiling code makes rtas calls to setup the debug bus to
146  * route the performance signals.  Additionally, SPU profiling requires
147  * a second rtas call to setup the hardware to capture the SPU PCs.
148  * The EIO error value is returned if the token lookups or the rtas
149  * call fail.  The EIO error number is the best choice of the existing
150  * error numbers.  The probability of rtas related error is very low.  But
151  * by returning EIO and printing additional information to dmsg the user
152  * will know that OProfile did not start and dmesg will tell them why.
153  * OProfile does not support returning errors on Stop.  Not a huge issue
154  * since failure to reset the debug bus or stop the SPU PC collection is
155  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
156  * either.
157  */
158
159 /*
160  * Interpetation of hdw_thread:
161  * 0 - even virtual cpus 0, 2, 4,...
162  * 1 - odd virtual cpus 1, 3, 5, ...
163  *
164  * FIXME: this is strictly wrong, we need to clean this up in a number
165  * of places. It works for now. -arnd
166  */
167 static u32 hdw_thread;
168
169 static u32 virt_cntr_inter_mask;
170 static struct timer_list timer_virt_cntr;
171 static struct timer_list timer_spu_event_swap;
172
173 /*
174  * pm_signal needs to be global since it is initialized in
175  * cell_reg_setup at the time when the necessary information
176  * is available.
177  */
178 static struct pm_signal pm_signal[NR_PHYS_CTRS];
179 static int pm_rtas_token;    /* token for debug bus setup call */
180 static int spu_rtas_token;   /* token for SPU cycle profiling */
181
182 static u32 reset_value[NR_PHYS_CTRS];
183 static int num_counters;
184 static int oprofile_running;
185 static DEFINE_SPINLOCK(cntr_lock);
186
187 static u32 ctr_enabled;
188
189 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
190
191 /*
192  * Firmware interface functions
193  */
194 static int
195 rtas_ibm_cbe_perftools(int subfunc, int passthru,
196                        void *address, unsigned long length)
197 {
198         u64 paddr = __pa(address);
199
200         return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
201                          passthru, paddr >> 32, paddr & 0xffffffff, length);
202 }
203
204 static void pm_rtas_reset_signals(u32 node)
205 {
206         int ret;
207         struct pm_signal pm_signal_local;
208
209         /*
210          * The debug bus is being set to the passthru disable state.
211          * However, the FW still expects at least one legal signal routing
212          * entry or it will return an error on the arguments.   If we don't
213          * supply a valid entry, we must ignore all return values.  Ignoring
214          * all return values means we might miss an error we should be
215          * concerned about.
216          */
217
218         /*  fw expects physical cpu #. */
219         pm_signal_local.cpu = node;
220         pm_signal_local.signal_group = 21;
221         pm_signal_local.bus_word = 1;
222         pm_signal_local.sub_unit = 0;
223         pm_signal_local.bit = 0;
224
225         ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
226                                      &pm_signal_local,
227                                      sizeof(struct pm_signal));
228
229         if (unlikely(ret))
230                 /*
231                  * Not a fatal error. For Oprofile stop, the oprofile
232                  * functions do not support returning an error for
233                  * failure to stop OProfile.
234                  */
235                 printk(KERN_WARNING "%s: rtas returned: %d\n",
236                        __func__, ret);
237 }
238
239 static int pm_rtas_activate_signals(u32 node, u32 count)
240 {
241         int ret;
242         int i, j;
243         struct pm_signal pm_signal_local[NR_PHYS_CTRS];
244
245         /*
246          * There is no debug setup required for the cycles event.
247          * Note that only events in the same group can be used.
248          * Otherwise, there will be conflicts in correctly routing
249          * the signals on the debug bus.  It is the responsibility
250          * of the OProfile user tool to check the events are in
251          * the same group.
252          */
253         i = 0;
254         for (j = 0; j < count; j++) {
255                 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
256
257                         /* fw expects physical cpu # */
258                         pm_signal_local[i].cpu = node;
259                         pm_signal_local[i].signal_group
260                                 = pm_signal[j].signal_group;
261                         pm_signal_local[i].bus_word = pm_signal[j].bus_word;
262                         pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
263                         pm_signal_local[i].bit = pm_signal[j].bit;
264                         i++;
265                 }
266         }
267
268         if (i != 0) {
269                 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
270                                              pm_signal_local,
271                                              i * sizeof(struct pm_signal));
272
273                 if (unlikely(ret)) {
274                         printk(KERN_WARNING "%s: rtas returned: %d\n",
275                                __func__, ret);
276                         return -EIO;
277                 }
278         }
279
280         return 0;
281 }
282
283 /*
284  * PM Signal functions
285  */
286 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
287 {
288         struct pm_signal *p;
289         u32 signal_bit;
290         u32 bus_word, bus_type, count_cycles, polarity, input_control;
291         int j, i;
292
293         if (event == PPU_CYCLES_EVENT_NUM) {
294                 /* Special Event: Count all cpu cycles */
295                 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
296                 p = &(pm_signal[ctr]);
297                 p->signal_group = PPU_CYCLES_GRP_NUM;
298                 p->bus_word = 1;
299                 p->sub_unit = 0;
300                 p->bit = 0;
301                 goto out;
302         } else {
303                 pm_regs.pm07_cntrl[ctr] = 0;
304         }
305
306         bus_word = GET_BUS_WORD(unit_mask);
307         bus_type = GET_BUS_TYPE(unit_mask);
308         count_cycles = GET_COUNT_CYCLES(unit_mask);
309         polarity = GET_POLARITY(unit_mask);
310         input_control = GET_INPUT_CONTROL(unit_mask);
311         signal_bit = (event % 100);
312
313         p = &(pm_signal[ctr]);
314
315         p->signal_group = event / 100;
316         p->bus_word = bus_word;
317         p->sub_unit = GET_SUB_UNIT(unit_mask);
318
319         pm_regs.pm07_cntrl[ctr] = 0;
320         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
321         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
322         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
323
324         /*
325          * Some of the islands signal selection is based on 64 bit words.
326          * The debug bus words are 32 bits, the input words to the performance
327          * counters are defined as 32 bits.  Need to convert the 64 bit island
328          * specification to the appropriate 32 input bit and bus word for the
329          * performance counter event selection.  See the CELL Performance
330          * monitoring signals manual and the Perf cntr hardware descriptions
331          * for the details.
332          */
333         if (input_control == 0) {
334                 if (signal_bit > 31) {
335                         signal_bit -= 32;
336                         if (bus_word == 0x3)
337                                 bus_word = 0x2;
338                         else if (bus_word == 0xc)
339                                 bus_word = 0x8;
340                 }
341
342                 if ((bus_type == 0) && p->signal_group >= 60)
343                         bus_type = 2;
344                 if ((bus_type == 1) && p->signal_group >= 50)
345                         bus_type = 0;
346
347                 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
348         } else {
349                 pm_regs.pm07_cntrl[ctr] = 0;
350                 p->bit = signal_bit;
351         }
352
353         for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
354                 if (bus_word & (1 << i)) {
355                         pm_regs.debug_bus_control |=
356                                 (bus_type << (30 - (2 * i)));
357
358                         for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
359                                 if (input_bus[j] == 0xff) {
360                                         input_bus[j] = i;
361                                         pm_regs.group_control |=
362                                                 (i << (30 - (2 * j)));
363
364                                         break;
365                                 }
366                         }
367                 }
368         }
369 out:
370         ;
371 }
372
373 static void write_pm_cntrl(int cpu)
374 {
375         /*
376          * Oprofile will use 32 bit counters, set bits 7:10 to 0
377          * pmregs.pm_cntrl is a global
378          */
379
380         u32 val = 0;
381         if (pm_regs.pm_cntrl.enable == 1)
382                 val |= CBE_PM_ENABLE_PERF_MON;
383
384         if (pm_regs.pm_cntrl.stop_at_max == 1)
385                 val |= CBE_PM_STOP_AT_MAX;
386
387         if (pm_regs.pm_cntrl.trace_mode != 0)
388                 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
389
390         if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
391                 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
392         if (pm_regs.pm_cntrl.freeze == 1)
393                 val |= CBE_PM_FREEZE_ALL_CTRS;
394
395         val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
396
397         /*
398          * Routine set_count_mode must be called previously to set
399          * the count mode based on the user selection of user and kernel.
400          */
401         val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
402         cbe_write_pm(cpu, pm_control, val);
403 }
404
405 static inline void
406 set_count_mode(u32 kernel, u32 user)
407 {
408         /*
409          * The user must specify user and kernel if they want them. If
410          *  neither is specified, OProfile will count in hypervisor mode.
411          *  pm_regs.pm_cntrl is a global
412          */
413         if (kernel) {
414                 if (user)
415                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
416                 else
417                         pm_regs.pm_cntrl.count_mode =
418                                 CBE_COUNT_SUPERVISOR_MODE;
419         } else {
420                 if (user)
421                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
422                 else
423                         pm_regs.pm_cntrl.count_mode =
424                                 CBE_COUNT_HYPERVISOR_MODE;
425         }
426 }
427
428 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
429 {
430
431         pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
432         cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
433 }
434
435 /*
436  * Oprofile is expected to collect data on all CPUs simultaneously.
437  * However, there is one set of performance counters per node.  There are
438  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
439  * multiplex in time the performance counter collection on the two virtual
440  * CPUs.  The multiplexing of the performance counters is done by this
441  * virtual counter routine.
442  *
443  * The pmc_values used below is defined as 'per-cpu' but its use is
444  * more akin to 'per-node'.  We need to store two sets of counter
445  * values per node -- one for the previous run and one for the next.
446  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
447  * pair of per-cpu arrays is used for storing the previous and next
448  * pmc values for a given node.
449  * NOTE: We use the per-cpu variable to improve cache performance.
450  *
451  * This routine will alternate loading the virtual counters for
452  * virtual CPUs
453  */
454 static void cell_virtual_cntr(struct timer_list *unused)
455 {
456         int i, prev_hdw_thread, next_hdw_thread;
457         u32 cpu;
458         unsigned long flags;
459
460         /*
461          * Make sure that the interrupt_hander and the virt counter are
462          * not both playing with the counters on the same node.
463          */
464
465         spin_lock_irqsave(&cntr_lock, flags);
466
467         prev_hdw_thread = hdw_thread;
468
469         /* switch the cpu handling the interrupts */
470         hdw_thread = 1 ^ hdw_thread;
471         next_hdw_thread = hdw_thread;
472
473         pm_regs.group_control = 0;
474         pm_regs.debug_bus_control = 0;
475
476         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
477                 input_bus[i] = 0xff;
478
479         /*
480          * There are some per thread events.  Must do the
481          * set event, for the thread that is being started
482          */
483         for (i = 0; i < num_counters; i++)
484                 set_pm_event(i,
485                         pmc_cntrl[next_hdw_thread][i].evnts,
486                         pmc_cntrl[next_hdw_thread][i].masks);
487
488         /*
489          * The following is done only once per each node, but
490          * we need cpu #, not node #, to pass to the cbe_xxx functions.
491          */
492         for_each_online_cpu(cpu) {
493                 if (cbe_get_hw_thread_id(cpu))
494                         continue;
495
496                 /*
497                  * stop counters, save counter values, restore counts
498                  * for previous thread
499                  */
500                 cbe_disable_pm(cpu);
501                 cbe_disable_pm_interrupts(cpu);
502                 for (i = 0; i < num_counters; i++) {
503                         per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
504                                 = cbe_read_ctr(cpu, i);
505
506                         if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
507                             == 0xFFFFFFFF)
508                                 /* If the cntr value is 0xffffffff, we must
509                                  * reset that to 0xfffffff0 when the current
510                                  * thread is restarted.  This will generate a
511                                  * new interrupt and make sure that we never
512                                  * restore the counters to the max value.  If
513                                  * the counters were restored to the max value,
514                                  * they do not increment and no interrupts are
515                                  * generated.  Hence no more samples will be
516                                  * collected on that cpu.
517                                  */
518                                 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
519                         else
520                                 cbe_write_ctr(cpu, i,
521                                               per_cpu(pmc_values,
522                                                       cpu +
523                                                       next_hdw_thread)[i]);
524                 }
525
526                 /*
527                  * Switch to the other thread. Change the interrupt
528                  * and control regs to be scheduled on the CPU
529                  * corresponding to the thread to execute.
530                  */
531                 for (i = 0; i < num_counters; i++) {
532                         if (pmc_cntrl[next_hdw_thread][i].enabled) {
533                                 /*
534                                  * There are some per thread events.
535                                  * Must do the set event, enable_cntr
536                                  * for each cpu.
537                                  */
538                                 enable_ctr(cpu, i,
539                                            pm_regs.pm07_cntrl);
540                         } else {
541                                 cbe_write_pm07_control(cpu, i, 0);
542                         }
543                 }
544
545                 /* Enable interrupts on the CPU thread that is starting */
546                 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
547                                          virt_cntr_inter_mask);
548                 cbe_enable_pm(cpu);
549         }
550
551         spin_unlock_irqrestore(&cntr_lock, flags);
552
553         mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
554 }
555
556 static void start_virt_cntrs(void)
557 {
558         timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
559         timer_virt_cntr.expires = jiffies + HZ / 10;
560         add_timer(&timer_virt_cntr);
561 }
562
563 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
564                         struct op_system_config *sys, int num_ctrs)
565 {
566         spu_cycle_reset = ctr[0].count;
567
568         /*
569          * Each node will need to make the rtas call to start
570          * and stop SPU profiling.  Get the token once and store it.
571          */
572         spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
573
574         if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
575                 printk(KERN_ERR
576                        "%s: rtas token ibm,cbe-spu-perftools unknown\n",
577                        __func__);
578                 return -EIO;
579         }
580         return 0;
581 }
582
583 /* Unfortunately, the hardware will only support event profiling
584  * on one SPU per node at a time.  Therefore, we must time slice
585  * the profiling across all SPUs in the node.  Note, we do this
586  * in parallel for each node.  The following routine is called
587  * periodically based on kernel timer to switch which SPU is
588  * being monitored in a round robbin fashion.
589  */
590 static void spu_evnt_swap(struct timer_list *unused)
591 {
592         int node;
593         int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
594         unsigned long flags;
595         int cpu;
596         int ret;
597         u32 interrupt_mask;
598
599
600         /* enable interrupts on cntr 0 */
601         interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
602
603         hdw_thread = 0;
604
605         /* Make sure spu event interrupt handler and spu event swap
606          * don't access the counters simultaneously.
607          */
608         spin_lock_irqsave(&cntr_lock, flags);
609
610         cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
611
612         if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
613                 spu_evnt_phys_spu_indx = 0;
614
615         pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
616         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
617         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
618
619         /* switch the SPU being profiled on each node */
620         for_each_online_cpu(cpu) {
621                 if (cbe_get_hw_thread_id(cpu))
622                         continue;
623
624                 node = cbe_cpu_to_node(cpu);
625                 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
626                         + cur_spu_evnt_phys_spu_indx;
627                 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
628                         + spu_evnt_phys_spu_indx;
629
630                 /*
631                  * stop counters, save counter values, restore counts
632                  * for previous physical SPU
633                  */
634                 cbe_disable_pm(cpu);
635                 cbe_disable_pm_interrupts(cpu);
636
637                 spu_pm_cnt[cur_phys_spu]
638                         = cbe_read_ctr(cpu, 0);
639
640                 /* restore previous count for the next spu to sample */
641                 /* NOTE, hardware issue, counter will not start if the
642                  * counter value is at max (0xFFFFFFFF).
643                  */
644                 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
645                         cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
646                  else
647                          cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
648
649                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
650
651                 /* setup the debug bus measure the one event and
652                  * the two events to route the next SPU's PC on
653                  * the debug bus
654                  */
655                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
656                 if (ret)
657                         printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
658                                "SPU event swap\n", __func__);
659
660                 /* clear the trace buffer, don't want to take PC for
661                  * previous SPU*/
662                 cbe_write_pm(cpu, trace_address, 0);
663
664                 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
665
666                 /* Enable interrupts on the CPU thread that is starting */
667                 cbe_enable_pm_interrupts(cpu, hdw_thread,
668                                          interrupt_mask);
669                 cbe_enable_pm(cpu);
670         }
671
672         spin_unlock_irqrestore(&cntr_lock, flags);
673
674         /* swap approximately every 0.1 seconds */
675         mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
676 }
677
678 static void start_spu_event_swap(void)
679 {
680         timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
681         timer_spu_event_swap.expires = jiffies + HZ / 25;
682         add_timer(&timer_spu_event_swap);
683 }
684
685 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
686                         struct op_system_config *sys, int num_ctrs)
687 {
688         int i;
689
690         /* routine is called once for all nodes */
691
692         spu_evnt_phys_spu_indx = 0;
693         /*
694          * For all events except PPU CYCLEs, each node will need to make
695          * the rtas cbe-perftools call to setup and reset the debug bus.
696          * Make the token lookup call once and store it in the global
697          * variable pm_rtas_token.
698          */
699         pm_rtas_token = rtas_token("ibm,cbe-perftools");
700
701         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
702                 printk(KERN_ERR
703                        "%s: rtas token ibm,cbe-perftools unknown\n",
704                        __func__);
705                 return -EIO;
706         }
707
708         /* setup the pm_control register settings,
709          * settings will be written per node by the
710          * cell_cpu_setup() function.
711          */
712         pm_regs.pm_cntrl.trace_buf_ovflw = 1;
713
714         /* Use the occurrence trace mode to have SPU PC saved
715          * to the trace buffer.  Occurrence data in trace buffer
716          * is not used.  Bit 2 must be set to store SPU addresses.
717          */
718         pm_regs.pm_cntrl.trace_mode = 2;
719
720         pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
721                                                    event 2 & 3 */
722
723         /* setup the debug bus event array with the SPU PC routing events.
724         *  Note, pm_signal[0] will be filled in by set_pm_event() call below.
725         */
726         pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
727         pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
728         pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
729         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
730
731         pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
732         pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
733         pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
734         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
735
736         /* Set the user selected spu event to profile on,
737          * note, only one SPU profiling event is supported
738          */
739         num_counters = 1;  /* Only support one SPU event at a time */
740         set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
741
742         reset_value[0] = 0xFFFFFFFF - ctr[0].count;
743
744         /* global, used by cell_cpu_setup */
745         ctr_enabled |= 1;
746
747         /* Initialize the count for each SPU to the reset value */
748         for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
749                 spu_pm_cnt[i] = reset_value[0];
750
751         return 0;
752 }
753
754 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
755                         struct op_system_config *sys, int num_ctrs)
756 {
757         /* routine is called once for all nodes */
758         int i, j, cpu;
759
760         num_counters = num_ctrs;
761
762         if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
763                 printk(KERN_ERR
764                        "%s: Oprofile, number of specified events " \
765                        "exceeds number of physical counters\n",
766                        __func__);
767                 return -EIO;
768         }
769
770         set_count_mode(sys->enable_kernel, sys->enable_user);
771
772         /* Setup the thread 0 events */
773         for (i = 0; i < num_ctrs; ++i) {
774
775                 pmc_cntrl[0][i].evnts = ctr[i].event;
776                 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
777                 pmc_cntrl[0][i].enabled = ctr[i].enabled;
778                 pmc_cntrl[0][i].vcntr = i;
779
780                 for_each_possible_cpu(j)
781                         per_cpu(pmc_values, j)[i] = 0;
782         }
783
784         /*
785          * Setup the thread 1 events, map the thread 0 event to the
786          * equivalent thread 1 event.
787          */
788         for (i = 0; i < num_ctrs; ++i) {
789                 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
790                         pmc_cntrl[1][i].evnts = ctr[i].event + 19;
791                 else if (ctr[i].event == 2203)
792                         pmc_cntrl[1][i].evnts = ctr[i].event;
793                 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
794                         pmc_cntrl[1][i].evnts = ctr[i].event + 16;
795                 else
796                         pmc_cntrl[1][i].evnts = ctr[i].event;
797
798                 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
799                 pmc_cntrl[1][i].enabled = ctr[i].enabled;
800                 pmc_cntrl[1][i].vcntr = i;
801         }
802
803         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
804                 input_bus[i] = 0xff;
805
806         /*
807          * Our counters count up, and "count" refers to
808          * how much before the next interrupt, and we interrupt
809          * on overflow.  So we calculate the starting value
810          * which will give us "count" until overflow.
811          * Then we set the events on the enabled counters.
812          */
813         for (i = 0; i < num_counters; ++i) {
814                 /* start with virtual counter set 0 */
815                 if (pmc_cntrl[0][i].enabled) {
816                         /* Using 32bit counters, reset max - count */
817                         reset_value[i] = 0xFFFFFFFF - ctr[i].count;
818                         set_pm_event(i,
819                                      pmc_cntrl[0][i].evnts,
820                                      pmc_cntrl[0][i].masks);
821
822                         /* global, used by cell_cpu_setup */
823                         ctr_enabled |= (1 << i);
824                 }
825         }
826
827         /* initialize the previous counts for the virtual cntrs */
828         for_each_online_cpu(cpu)
829                 for (i = 0; i < num_counters; ++i) {
830                         per_cpu(pmc_values, cpu)[i] = reset_value[i];
831                 }
832
833         return 0;
834 }
835
836
837 /* This function is called once for all cpus combined */
838 static int cell_reg_setup(struct op_counter_config *ctr,
839                         struct op_system_config *sys, int num_ctrs)
840 {
841         int ret=0;
842         spu_cycle_reset = 0;
843
844         /* initialize the spu_arr_trace value, will be reset if
845          * doing spu event profiling.
846          */
847         pm_regs.group_control = 0;
848         pm_regs.debug_bus_control = 0;
849         pm_regs.pm_cntrl.stop_at_max = 1;
850         pm_regs.pm_cntrl.trace_mode = 0;
851         pm_regs.pm_cntrl.freeze = 1;
852         pm_regs.pm_cntrl.trace_buf_ovflw = 0;
853         pm_regs.pm_cntrl.spu_addr_trace = 0;
854
855         /*
856          * For all events except PPU CYCLEs, each node will need to make
857          * the rtas cbe-perftools call to setup and reset the debug bus.
858          * Make the token lookup call once and store it in the global
859          * variable pm_rtas_token.
860          */
861         pm_rtas_token = rtas_token("ibm,cbe-perftools");
862
863         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
864                 printk(KERN_ERR
865                        "%s: rtas token ibm,cbe-perftools unknown\n",
866                        __func__);
867                 return -EIO;
868         }
869
870         if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
871                 profiling_mode = SPU_PROFILING_CYCLES;
872                 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
873         } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
874                    (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
875                 profiling_mode = SPU_PROFILING_EVENTS;
876                 spu_cycle_reset = ctr[0].count;
877
878                 /* for SPU event profiling, need to setup the
879                  * pm_signal array with the events to route the
880                  * SPU PC before making the FW call.  Note, only
881                  * one SPU event for profiling can be specified
882                  * at a time.
883                  */
884                 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
885         } else {
886                 profiling_mode = PPU_PROFILING;
887                 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
888         }
889
890         return ret;
891 }
892
893
894
895 /* This function is called once for each cpu */
896 static int cell_cpu_setup(struct op_counter_config *cntr)
897 {
898         u32 cpu = smp_processor_id();
899         u32 num_enabled = 0;
900         int i;
901         int ret;
902
903         /* Cycle based SPU profiling does not use the performance
904          * counters.  The trace array is configured to collect
905          * the data.
906          */
907         if (profiling_mode == SPU_PROFILING_CYCLES)
908                 return 0;
909
910         /* There is one performance monitor per processor chip (i.e. node),
911          * so we only need to perform this function once per node.
912          */
913         if (cbe_get_hw_thread_id(cpu))
914                 return 0;
915
916         /* Stop all counters */
917         cbe_disable_pm(cpu);
918         cbe_disable_pm_interrupts(cpu);
919
920         cbe_write_pm(cpu, pm_start_stop, 0);
921         cbe_write_pm(cpu, group_control, pm_regs.group_control);
922         cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
923         write_pm_cntrl(cpu);
924
925         for (i = 0; i < num_counters; ++i) {
926                 if (ctr_enabled & (1 << i)) {
927                         pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
928                         num_enabled++;
929                 }
930         }
931
932         /*
933          * The pm_rtas_activate_signals will return -EIO if the FW
934          * call failed.
935          */
936         if (profiling_mode == SPU_PROFILING_EVENTS) {
937                 /* For SPU event profiling also need to setup the
938                  * pm interval timer
939                  */
940                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
941                                                num_enabled+2);
942                 /* store PC from debug bus to Trace buffer as often
943                  * as possible (every 10 cycles)
944                  */
945                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
946                 return ret;
947         } else
948                 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
949                                                 num_enabled);
950 }
951
952 #define ENTRIES  303
953 #define MAXLFSR  0xFFFFFF
954
955 /* precomputed table of 24 bit LFSR values */
956 static int initial_lfsr[] = {
957  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
958  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
959  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
960  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
961  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
962  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
963  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
964  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
965  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
966  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
967  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
968  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
969  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
970  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
971  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
972  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
973  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
974  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
975  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
976  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
977  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
978  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
979  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
980  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
981  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
982  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
983  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
984  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
985  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
986  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
987  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
988  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
989  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
990  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
991  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
992  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
993  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
994  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
995 };
996
997 /*
998  * The hardware uses an LFSR counting sequence to determine when to capture
999  * the SPU PCs.  An LFSR sequence is like a puesdo random number sequence
1000  * where each number occurs once in the sequence but the sequence is not in
1001  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1002  * the last value in the sequence.  Hence the user specified value N
1003  * corresponds to the LFSR number that is N from the end of the sequence.
1004  *
1005  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1006  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1007  * values is adjusted in each range so the error between the user specified
1008  * number (N) of events between samples and the actual number of events based
1009  * on the precomputed value will be les then about 6.2%.  Note, if the user
1010  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1011  * This is to prevent the loss of samples because the trace buffer is full.
1012  *
1013  *         User specified N                  Step between          Index in
1014  *                                       precomputed values      precomputed
1015  *                                                                  table
1016  * 0                to  2^16-1                  ----                  0
1017  * 2^16     to  2^16+2^19-1             2^12                1 to 128
1018  * 2^16+2^19        to  2^16+2^19+2^22-1        2^15              129 to 256
1019  * 2^16+2^19+2^22  to   2^24-1                  2^18              257 to 302
1020  *
1021  *
1022  * For example, the LFSR values in the second range are computed for 2^16,
1023  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1024  * 1, 2,..., 127, 128.
1025  *
1026  * The 24 bit LFSR value for the nth number in the sequence can be
1027  * calculated using the following code:
1028  *
1029  * #define size 24
1030  * int calculate_lfsr(int n)
1031  * {
1032  *      int i;
1033  *      unsigned int newlfsr0;
1034  *      unsigned int lfsr = 0xFFFFFF;
1035  *      unsigned int howmany = n;
1036  *
1037  *      for (i = 2; i < howmany + 2; i++) {
1038  *              newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1039  *              ((lfsr >> (size - 1 - 1)) & 1) ^
1040  *              (((lfsr >> (size - 1 - 6)) & 1) ^
1041  *              ((lfsr >> (size - 1 - 23)) & 1)));
1042  *
1043  *              lfsr >>= 1;
1044  *              lfsr = lfsr | (newlfsr0 << (size - 1));
1045  *      }
1046  *      return lfsr;
1047  * }
1048  */
1049
1050 #define V2_16  (0x1 << 16)
1051 #define V2_19  (0x1 << 19)
1052 #define V2_22  (0x1 << 22)
1053
1054 static int calculate_lfsr(int n)
1055 {
1056         /*
1057          * The ranges and steps are in powers of 2 so the calculations
1058          * can be done using shifts rather then divide.
1059          */
1060         int index;
1061
1062         if ((n >> 16) == 0)
1063                 index = 0;
1064         else if (((n - V2_16) >> 19) == 0)
1065                 index = ((n - V2_16) >> 12) + 1;
1066         else if (((n - V2_16 - V2_19) >> 22) == 0)
1067                 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1068         else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1069                 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1070         else
1071                 index = ENTRIES-1;
1072
1073         /* make sure index is valid */
1074         if ((index >= ENTRIES) || (index < 0))
1075                 index = ENTRIES-1;
1076
1077         return initial_lfsr[index];
1078 }
1079
1080 static int pm_rtas_activate_spu_profiling(u32 node)
1081 {
1082         int ret, i;
1083         struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1084
1085         /*
1086          * Set up the rtas call to configure the debug bus to
1087          * route the SPU PCs.  Setup the pm_signal for each SPU
1088          */
1089         for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1090                 pm_signal_local[i].cpu = node;
1091                 pm_signal_local[i].signal_group = 41;
1092                 /* spu i on word (i/2) */
1093                 pm_signal_local[i].bus_word = 1 << i / 2;
1094                 /* spu i */
1095                 pm_signal_local[i].sub_unit = i;
1096                 pm_signal_local[i].bit = 63;
1097         }
1098
1099         ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1100                                      PASSTHRU_ENABLE, pm_signal_local,
1101                                      (ARRAY_SIZE(pm_signal_local)
1102                                       * sizeof(struct pm_signal)));
1103
1104         if (unlikely(ret)) {
1105                 printk(KERN_WARNING "%s: rtas returned: %d\n",
1106                        __func__, ret);
1107                 return -EIO;
1108         }
1109
1110         return 0;
1111 }
1112
1113 #ifdef CONFIG_CPU_FREQ
1114 static int
1115 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1116 {
1117         int ret = 0;
1118         struct cpufreq_freqs *frq = data;
1119         if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1120             (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1121                 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1122         return ret;
1123 }
1124
1125 static struct notifier_block cpu_freq_notifier_block = {
1126         .notifier_call  = oprof_cpufreq_notify
1127 };
1128 #endif
1129
1130 /*
1131  * Note the generic OProfile stop calls do not support returning
1132  * an error on stop.  Hence, will not return an error if the FW
1133  * calls fail on stop.  Failure to reset the debug bus is not an issue.
1134  * Failure to disable the SPU profiling is not an issue.  The FW calls
1135  * to enable the performance counters and debug bus will work even if
1136  * the hardware was not cleanly reset.
1137  */
1138 static void cell_global_stop_spu_cycles(void)
1139 {
1140         int subfunc, rtn_value;
1141         unsigned int lfsr_value;
1142         int cpu;
1143
1144         oprofile_running = 0;
1145         smp_wmb();
1146
1147 #ifdef CONFIG_CPU_FREQ
1148         cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1149                                     CPUFREQ_TRANSITION_NOTIFIER);
1150 #endif
1151
1152         for_each_online_cpu(cpu) {
1153                 if (cbe_get_hw_thread_id(cpu))
1154                         continue;
1155
1156                 subfunc = 3;    /*
1157                                  * 2 - activate SPU tracing,
1158                                  * 3 - deactivate
1159                                  */
1160                 lfsr_value = 0x8f100000;
1161
1162                 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1163                                       subfunc, cbe_cpu_to_node(cpu),
1164                                       lfsr_value);
1165
1166                 if (unlikely(rtn_value != 0)) {
1167                         printk(KERN_ERR
1168                                "%s: rtas call ibm,cbe-spu-perftools " \
1169                                "failed, return = %d\n",
1170                                __func__, rtn_value);
1171                 }
1172
1173                 /* Deactivate the signals */
1174                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1175         }
1176
1177         stop_spu_profiling_cycles();
1178 }
1179
1180 static void cell_global_stop_spu_events(void)
1181 {
1182         int cpu;
1183         oprofile_running = 0;
1184
1185         stop_spu_profiling_events();
1186         smp_wmb();
1187
1188         for_each_online_cpu(cpu) {
1189                 if (cbe_get_hw_thread_id(cpu))
1190                         continue;
1191
1192                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1193                 /* Stop the counters */
1194                 cbe_disable_pm(cpu);
1195                 cbe_write_pm07_control(cpu, 0, 0);
1196
1197                 /* Deactivate the signals */
1198                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1199
1200                 /* Deactivate interrupts */
1201                 cbe_disable_pm_interrupts(cpu);
1202         }
1203         del_timer_sync(&timer_spu_event_swap);
1204 }
1205
1206 static void cell_global_stop_ppu(void)
1207 {
1208         int cpu;
1209
1210         /*
1211          * This routine will be called once for the system.
1212          * There is one performance monitor per node, so we
1213          * only need to perform this function once per node.
1214          */
1215         del_timer_sync(&timer_virt_cntr);
1216         oprofile_running = 0;
1217         smp_wmb();
1218
1219         for_each_online_cpu(cpu) {
1220                 if (cbe_get_hw_thread_id(cpu))
1221                         continue;
1222
1223                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1224                 /* Stop the counters */
1225                 cbe_disable_pm(cpu);
1226
1227                 /* Deactivate the signals */
1228                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1229
1230                 /* Deactivate interrupts */
1231                 cbe_disable_pm_interrupts(cpu);
1232         }
1233 }
1234
1235 static void cell_global_stop(void)
1236 {
1237         if (profiling_mode == PPU_PROFILING)
1238                 cell_global_stop_ppu();
1239         else if (profiling_mode == SPU_PROFILING_EVENTS)
1240                 cell_global_stop_spu_events();
1241         else
1242                 cell_global_stop_spu_cycles();
1243 }
1244
1245 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1246 {
1247         int subfunc;
1248         unsigned int lfsr_value;
1249         int cpu;
1250         int ret;
1251         int rtas_error;
1252         unsigned int cpu_khzfreq = 0;
1253
1254         /* The SPU profiling uses time-based profiling based on
1255          * cpu frequency, so if configured with the CPU_FREQ
1256          * option, we should detect frequency changes and react
1257          * accordingly.
1258          */
1259 #ifdef CONFIG_CPU_FREQ
1260         ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1261                                         CPUFREQ_TRANSITION_NOTIFIER);
1262         if (ret < 0)
1263                 /* this is not a fatal error */
1264                 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1265                        ret);
1266
1267         else
1268                 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1269 #endif
1270
1271         set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1272
1273         for_each_online_cpu(cpu) {
1274                 if (cbe_get_hw_thread_id(cpu))
1275                         continue;
1276
1277                 /*
1278                  * Setup SPU cycle-based profiling.
1279                  * Set perf_mon_control bit 0 to a zero before
1280                  * enabling spu collection hardware.
1281                  */
1282                 cbe_write_pm(cpu, pm_control, 0);
1283
1284                 if (spu_cycle_reset > MAX_SPU_COUNT)
1285                         /* use largest possible value */
1286                         lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1287                 else
1288                         lfsr_value = calculate_lfsr(spu_cycle_reset);
1289
1290                 /* must use a non zero value. Zero disables data collection. */
1291                 if (lfsr_value == 0)
1292                         lfsr_value = calculate_lfsr(1);
1293
1294                 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1295                                                 * register location
1296                                                 */
1297
1298                 /* debug bus setup */
1299                 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1300
1301                 if (unlikely(ret)) {
1302                         rtas_error = ret;
1303                         goto out;
1304                 }
1305
1306
1307                 subfunc = 2;    /* 2 - activate SPU tracing, 3 - deactivate */
1308
1309                 /* start profiling */
1310                 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1311                                 cbe_cpu_to_node(cpu), lfsr_value);
1312
1313                 if (unlikely(ret != 0)) {
1314                         printk(KERN_ERR
1315                                "%s: rtas call ibm,cbe-spu-perftools failed, " \
1316                                "return = %d\n", __func__, ret);
1317                         rtas_error = -EIO;
1318                         goto out;
1319                 }
1320         }
1321
1322         rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1323         if (rtas_error)
1324                 goto out_stop;
1325
1326         oprofile_running = 1;
1327         return 0;
1328
1329 out_stop:
1330         cell_global_stop_spu_cycles();  /* clean up the PMU/debug bus */
1331 out:
1332         return rtas_error;
1333 }
1334
1335 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1336 {
1337         int cpu;
1338         u32 interrupt_mask = 0;
1339         int rtn = 0;
1340
1341         hdw_thread = 0;
1342
1343         /* spu event profiling, uses the performance counters to generate
1344          * an interrupt.  The hardware is setup to store the SPU program
1345          * counter into the trace array.  The occurrence mode is used to
1346          * enable storing data to the trace buffer.  The bits are set
1347          * to send/store the SPU address in the trace buffer.  The debug
1348          * bus must be setup to route the SPU program counter onto the
1349          * debug bus.  The occurrence data in the trace buffer is not used.
1350          */
1351
1352         /* This routine gets called once for the system.
1353          * There is one performance monitor per node, so we
1354          * only need to perform this function once per node.
1355          */
1356
1357         for_each_online_cpu(cpu) {
1358                 if (cbe_get_hw_thread_id(cpu))
1359                         continue;
1360
1361                 /*
1362                  * Setup SPU event-based profiling.
1363                  * Set perf_mon_control bit 0 to a zero before
1364                  * enabling spu collection hardware.
1365                  *
1366                  * Only support one SPU event on one SPU per node.
1367                  */
1368                 if (ctr_enabled & 1) {
1369                         cbe_write_ctr(cpu, 0, reset_value[0]);
1370                         enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1371                         interrupt_mask |=
1372                                 CBE_PM_CTR_OVERFLOW_INTR(0);
1373                 } else {
1374                         /* Disable counter */
1375                         cbe_write_pm07_control(cpu, 0, 0);
1376                 }
1377
1378                 cbe_get_and_clear_pm_interrupts(cpu);
1379                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1380                 cbe_enable_pm(cpu);
1381
1382                 /* clear the trace buffer */
1383                 cbe_write_pm(cpu, trace_address, 0);
1384         }
1385
1386         /* Start the timer to time slice collecting the event profile
1387          * on each of the SPUs.  Note, can collect profile on one SPU
1388          * per node at a time.
1389          */
1390         start_spu_event_swap();
1391         start_spu_profiling_events();
1392         oprofile_running = 1;
1393         smp_wmb();
1394
1395         return rtn;
1396 }
1397
1398 static int cell_global_start_ppu(struct op_counter_config *ctr)
1399 {
1400         u32 cpu, i;
1401         u32 interrupt_mask = 0;
1402
1403         /* This routine gets called once for the system.
1404          * There is one performance monitor per node, so we
1405          * only need to perform this function once per node.
1406          */
1407         for_each_online_cpu(cpu) {
1408                 if (cbe_get_hw_thread_id(cpu))
1409                         continue;
1410
1411                 interrupt_mask = 0;
1412
1413                 for (i = 0; i < num_counters; ++i) {
1414                         if (ctr_enabled & (1 << i)) {
1415                                 cbe_write_ctr(cpu, i, reset_value[i]);
1416                                 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1417                                 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1418                         } else {
1419                                 /* Disable counter */
1420                                 cbe_write_pm07_control(cpu, i, 0);
1421                         }
1422                 }
1423
1424                 cbe_get_and_clear_pm_interrupts(cpu);
1425                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1426                 cbe_enable_pm(cpu);
1427         }
1428
1429         virt_cntr_inter_mask = interrupt_mask;
1430         oprofile_running = 1;
1431         smp_wmb();
1432
1433         /*
1434          * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1435          * executed which manipulates the PMU.  We start the "virtual counter"
1436          * here so that we do not need to synchronize access to the PMU in
1437          * the above for-loop.
1438          */
1439         start_virt_cntrs();
1440
1441         return 0;
1442 }
1443
1444 static int cell_global_start(struct op_counter_config *ctr)
1445 {
1446         if (profiling_mode == SPU_PROFILING_CYCLES)
1447                 return cell_global_start_spu_cycles(ctr);
1448         else if (profiling_mode == SPU_PROFILING_EVENTS)
1449                 return cell_global_start_spu_events(ctr);
1450         else
1451                 return cell_global_start_ppu(ctr);
1452 }
1453
1454
1455 /* The SPU interrupt handler
1456  *
1457  * SPU event profiling works as follows:
1458  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1459  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1460  * pm_signal[2] contain the necessary events to route the SPU program
1461  * counter for the selected SPU onto the debug bus using words 2 and 3.
1462  * The pm_interval register is setup to write the SPU PC value into the
1463  * trace buffer at the maximum rate possible.  The trace buffer is configured
1464  * to store the PCs, wrapping when it is full.  The performance counter is
1465  * initialized to the max hardware count minus the number of events, N, between
1466  * samples.  Once the N events have occurred, a HW counter overflow occurs
1467  * causing the generation of a HW counter interrupt which also stops the
1468  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1469  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1470  * we have to read from the beginning of the trace buffer to get to the
1471  * last value written.  We just hope the PPU has nothing better to do then
1472  * service this interrupt. The PC for the specific SPU being profiled is
1473  * extracted from the trace buffer processed and stored.  The trace buffer
1474  * is cleared, interrupts are cleared, the counter is reset to max - N.
1475  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1476  * to switch to the next physical SPU in the node to profile in round robbin
1477  * order.  This way data is collected for all SPUs on the node. It does mean
1478  * that we need to use a relatively small value of N to ensure enough samples
1479  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1480  * It may also be necessary to use a longer sample collection period.
1481  */
1482 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1483                                       struct op_counter_config *ctr)
1484 {
1485         u32 cpu, cpu_tmp;
1486         u64 trace_entry;
1487         u32 interrupt_mask;
1488         u64 trace_buffer[2];
1489         u64 last_trace_buffer;
1490         u32 sample;
1491         u32 trace_addr;
1492         unsigned long sample_array_lock_flags;
1493         int spu_num;
1494         unsigned long flags;
1495
1496         /* Make sure spu event interrupt handler and spu event swap
1497          * don't access the counters simultaneously.
1498          */
1499         cpu = smp_processor_id();
1500         spin_lock_irqsave(&cntr_lock, flags);
1501
1502         cpu_tmp = cpu;
1503         cbe_disable_pm(cpu);
1504
1505         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1506
1507         sample = 0xABCDEF;
1508         trace_entry = 0xfedcba;
1509         last_trace_buffer = 0xdeadbeaf;
1510
1511         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1512                 /* disable writes to trace buff */
1513                 cbe_write_pm(cpu, pm_interval, 0);
1514
1515                 /* only have one perf cntr being used, cntr 0 */
1516                 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1517                     && ctr[0].enabled)
1518                         /* The SPU PC values will be read
1519                          * from the trace buffer, reset counter
1520                          */
1521
1522                         cbe_write_ctr(cpu, 0, reset_value[0]);
1523
1524                 trace_addr = cbe_read_pm(cpu, trace_address);
1525
1526                 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1527                         /* There is data in the trace buffer to process
1528                          * Read the buffer until you get to the last
1529                          * entry.  This is the value we want.
1530                          */
1531
1532                         cbe_read_trace_buffer(cpu, trace_buffer);
1533                         trace_addr = cbe_read_pm(cpu, trace_address);
1534                 }
1535
1536                 /* SPU Address 16 bit count format for 128 bit
1537                  * HW trace buffer is used for the SPU PC storage
1538                  *    HDR bits          0:15
1539                  *    SPU Addr 0 bits   16:31
1540                  *    SPU Addr 1 bits   32:47
1541                  *    unused bits       48:127
1542                  *
1543                  * HDR: bit4 = 1 SPU Address 0 valid
1544                  * HDR: bit5 = 1 SPU Address 1 valid
1545                  *  - unfortunately, the valid bits don't seem to work
1546                  *
1547                  * Note trace_buffer[0] holds bits 0:63 of the HW
1548                  * trace buffer, trace_buffer[1] holds bits 64:127
1549                  */
1550
1551                 trace_entry = trace_buffer[0]
1552                         & 0x00000000FFFF0000;
1553
1554                 /* only top 16 of the 18 bit SPU PC address
1555                  * is stored in trace buffer, hence shift right
1556                  * by 16 -2 bits */
1557                 sample = trace_entry >> 14;
1558                 last_trace_buffer = trace_buffer[0];
1559
1560                 spu_num = spu_evnt_phys_spu_indx
1561                         + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1562
1563                 /* make sure only one process at a time is calling
1564                  * spu_sync_buffer()
1565                  */
1566                 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1567                                   sample_array_lock_flags);
1568                 spu_sync_buffer(spu_num, &sample, 1);
1569                 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1570                                        sample_array_lock_flags);
1571
1572                 smp_wmb();    /* insure spu event buffer updates are written
1573                                * don't want events intermingled... */
1574
1575                 /* The counters were frozen by the interrupt.
1576                  * Reenable the interrupt and restart the counters.
1577                  */
1578                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1579                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1580                                          virt_cntr_inter_mask);
1581
1582                 /* clear the trace buffer, re-enable writes to trace buff */
1583                 cbe_write_pm(cpu, trace_address, 0);
1584                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1585
1586                 /* The writes to the various performance counters only writes
1587                  * to a latch.  The new values (interrupt setting bits, reset
1588                  * counter value etc.) are not copied to the actual registers
1589                  * until the performance monitor is enabled.  In order to get
1590                  * this to work as desired, the performance monitor needs to
1591                  * be disabled while writing to the latches.  This is a
1592                  * HW design issue.
1593                  */
1594                 write_pm_cntrl(cpu);
1595                 cbe_enable_pm(cpu);
1596         }
1597         spin_unlock_irqrestore(&cntr_lock, flags);
1598 }
1599
1600 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1601                                       struct op_counter_config *ctr)
1602 {
1603         u32 cpu;
1604         u64 pc;
1605         int is_kernel;
1606         unsigned long flags = 0;
1607         u32 interrupt_mask;
1608         int i;
1609
1610         cpu = smp_processor_id();
1611
1612         /*
1613          * Need to make sure the interrupt handler and the virt counter
1614          * routine are not running at the same time. See the
1615          * cell_virtual_cntr() routine for additional comments.
1616          */
1617         spin_lock_irqsave(&cntr_lock, flags);
1618
1619         /*
1620          * Need to disable and reenable the performance counters
1621          * to get the desired behavior from the hardware.  This
1622          * is hardware specific.
1623          */
1624
1625         cbe_disable_pm(cpu);
1626
1627         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1628
1629         /*
1630          * If the interrupt mask has been cleared, then the virt cntr
1631          * has cleared the interrupt.  When the thread that generated
1632          * the interrupt is restored, the data count will be restored to
1633          * 0xffffff0 to cause the interrupt to be regenerated.
1634          */
1635
1636         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1637                 pc = regs->nip;
1638                 is_kernel = is_kernel_addr(pc);
1639
1640                 for (i = 0; i < num_counters; ++i) {
1641                         if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1642                             && ctr[i].enabled) {
1643                                 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1644                                 cbe_write_ctr(cpu, i, reset_value[i]);
1645                         }
1646                 }
1647
1648                 /*
1649                  * The counters were frozen by the interrupt.
1650                  * Reenable the interrupt and restart the counters.
1651                  * If there was a race between the interrupt handler and
1652                  * the virtual counter routine.  The virtual counter
1653                  * routine may have cleared the interrupts.  Hence must
1654                  * use the virt_cntr_inter_mask to re-enable the interrupts.
1655                  */
1656                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1657                                          virt_cntr_inter_mask);
1658
1659                 /*
1660                  * The writes to the various performance counters only writes
1661                  * to a latch.  The new values (interrupt setting bits, reset
1662                  * counter value etc.) are not copied to the actual registers
1663                  * until the performance monitor is enabled.  In order to get
1664                  * this to work as desired, the performance monitor needs to
1665                  * be disabled while writing to the latches.  This is a
1666                  * HW design issue.
1667                  */
1668                 cbe_enable_pm(cpu);
1669         }
1670         spin_unlock_irqrestore(&cntr_lock, flags);
1671 }
1672
1673 static void cell_handle_interrupt(struct pt_regs *regs,
1674                                   struct op_counter_config *ctr)
1675 {
1676         if (profiling_mode == PPU_PROFILING)
1677                 cell_handle_interrupt_ppu(regs, ctr);
1678         else
1679                 cell_handle_interrupt_spu(regs, ctr);
1680 }
1681
1682 /*
1683  * This function is called from the generic OProfile
1684  * driver.  When profiling PPUs, we need to do the
1685  * generic sync start; otherwise, do spu_sync_start.
1686  */
1687 static int cell_sync_start(void)
1688 {
1689         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1690             (profiling_mode == SPU_PROFILING_EVENTS))
1691                 return spu_sync_start();
1692         else
1693                 return DO_GENERIC_SYNC;
1694 }
1695
1696 static int cell_sync_stop(void)
1697 {
1698         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1699             (profiling_mode == SPU_PROFILING_EVENTS))
1700                 return spu_sync_stop();
1701         else
1702                 return 1;
1703 }
1704
1705 struct op_powerpc_model op_model_cell = {
1706         .reg_setup = cell_reg_setup,
1707         .cpu_setup = cell_cpu_setup,
1708         .global_start = cell_global_start,
1709         .global_stop = cell_global_stop,
1710         .sync_start = cell_sync_start,
1711         .sync_stop = cell_sync_stop,
1712         .handle_interrupt = cell_handle_interrupt,
1713 };