arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / powerpc / mm / init_64.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  Dave Engebretsen <engebret@us.ibm.com>
14  *      Rework for PPC64 port.
15  */
16
17 #undef DEBUG
18
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 #include <linux/memory.h>
44
45 #include <asm/pgalloc.h>
46 #include <asm/page.h>
47 #include <asm/prom.h>
48 #include <asm/rtas.h>
49 #include <asm/io.h>
50 #include <asm/mmu_context.h>
51 #include <asm/mmu.h>
52 #include <linux/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/sections.h>
61 #include <asm/iommu.h>
62 #include <asm/vdso.h>
63 #include <asm/hugetlb.h>
64
65 #include <mm/mmu_decl.h>
66
67 #ifdef CONFIG_SPARSEMEM_VMEMMAP
68 /*
69  * Given an address within the vmemmap, determine the page that
70  * represents the start of the subsection it is within.  Note that we have to
71  * do this by hand as the proffered address may not be correctly aligned.
72  * Subtraction of non-aligned pointers produces undefined results.
73  */
74 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
75 {
76         unsigned long start_pfn;
77         unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
78
79         /* Return the pfn of the start of the section. */
80         start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
81         return pfn_to_page(start_pfn);
82 }
83
84 /*
85  * Since memory is added in sub-section chunks, before creating a new vmemmap
86  * mapping, the kernel should check whether there is an existing memmap mapping
87  * covering the new subsection added. This is needed because kernel can map
88  * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
89  * a range covers multiple subsections (2M)
90  *
91  * If any subsection in the 16G range mapped by vmemmap is valid we consider the
92  * vmemmap populated (There is a page table entry already present). We can't do
93  * a page table lookup here because with the hash translation we don't keep
94  * vmemmap details in linux page table.
95  */
96 int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
97 {
98         struct page *start;
99         unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
100         start = vmemmap_subsection_start(vmemmap_addr);
101
102         for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
103                 /*
104                  * pfn valid check here is intended to really check
105                  * whether we have any subsection already initialized
106                  * in this range.
107                  */
108                 if (pfn_valid(page_to_pfn(start)))
109                         return 1;
110
111         return 0;
112 }
113
114 /*
115  * vmemmap virtual address space management does not have a traditional page
116  * table to track which virtual struct pages are backed by physical mapping.
117  * The virtual to physical mappings are tracked in a simple linked list
118  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
119  * all times where as the 'next' list maintains the available
120  * vmemmap_backing structures which have been deleted from the
121  * 'vmemmap_global' list during system runtime (memory hotplug remove
122  * operation). The freed 'vmemmap_backing' structures are reused later when
123  * new requests come in without allocating fresh memory. This pointer also
124  * tracks the allocated 'vmemmap_backing' structures as we allocate one
125  * full page memory at a time when we dont have any.
126  */
127 struct vmemmap_backing *vmemmap_list;
128 static struct vmemmap_backing *next;
129
130 /*
131  * The same pointer 'next' tracks individual chunks inside the allocated
132  * full page during the boot time and again tracks the freed nodes during
133  * runtime. It is racy but it does not happen as they are separated by the
134  * boot process. Will create problem if some how we have memory hotplug
135  * operation during boot !!
136  */
137 static int num_left;
138 static int num_freed;
139
140 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
141 {
142         struct vmemmap_backing *vmem_back;
143         /* get from freed entries first */
144         if (num_freed) {
145                 num_freed--;
146                 vmem_back = next;
147                 next = next->list;
148
149                 return vmem_back;
150         }
151
152         /* allocate a page when required and hand out chunks */
153         if (!num_left) {
154                 next = vmemmap_alloc_block(PAGE_SIZE, node);
155                 if (unlikely(!next)) {
156                         WARN_ON(1);
157                         return NULL;
158                 }
159                 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
160         }
161
162         num_left--;
163
164         return next++;
165 }
166
167 static __meminit int vmemmap_list_populate(unsigned long phys,
168                                            unsigned long start,
169                                            int node)
170 {
171         struct vmemmap_backing *vmem_back;
172
173         vmem_back = vmemmap_list_alloc(node);
174         if (unlikely(!vmem_back)) {
175                 pr_debug("vmemap list allocation failed\n");
176                 return -ENOMEM;
177         }
178
179         vmem_back->phys = phys;
180         vmem_back->virt_addr = start;
181         vmem_back->list = vmemmap_list;
182
183         vmemmap_list = vmem_back;
184         return 0;
185 }
186
187 bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
188                            unsigned long page_size)
189 {
190         unsigned long nr_pfn = page_size / sizeof(struct page);
191         unsigned long start_pfn = page_to_pfn((struct page *)start);
192
193         if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
194                 return true;
195
196         if (start_pfn < altmap->base_pfn)
197                 return true;
198
199         return false;
200 }
201
202 static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node,
203                                         struct vmem_altmap *altmap)
204 {
205         bool altmap_alloc;
206         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
207
208         /* Align to the page size of the linear mapping. */
209         start = ALIGN_DOWN(start, page_size);
210
211         pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
212
213         for (; start < end; start += page_size) {
214                 void *p = NULL;
215                 int rc;
216
217                 /*
218                  * This vmemmap range is backing different subsections. If any
219                  * of that subsection is marked valid, that means we already
220                  * have initialized a page table covering this range and hence
221                  * the vmemmap range is populated.
222                  */
223                 if (vmemmap_populated(start, page_size))
224                         continue;
225
226                 /*
227                  * Allocate from the altmap first if we have one. This may
228                  * fail due to alignment issues when using 16MB hugepages, so
229                  * fall back to system memory if the altmap allocation fail.
230                  */
231                 if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
232                         p = vmemmap_alloc_block_buf(page_size, node, altmap);
233                         if (!p)
234                                 pr_debug("altmap block allocation failed, falling back to system memory");
235                         else
236                                 altmap_alloc = true;
237                 }
238                 if (!p) {
239                         p = vmemmap_alloc_block_buf(page_size, node, NULL);
240                         altmap_alloc = false;
241                 }
242                 if (!p)
243                         return -ENOMEM;
244
245                 if (vmemmap_list_populate(__pa(p), start, node)) {
246                         /*
247                          * If we don't populate vmemap list, we don't have
248                          * the ability to free the allocated vmemmap
249                          * pages in section_deactivate. Hence free them
250                          * here.
251                          */
252                         int nr_pfns = page_size >> PAGE_SHIFT;
253                         unsigned long page_order = get_order(page_size);
254
255                         if (altmap_alloc)
256                                 vmem_altmap_free(altmap, nr_pfns);
257                         else
258                                 free_pages((unsigned long)p, page_order);
259                         return -ENOMEM;
260                 }
261
262                 pr_debug("      * %016lx..%016lx allocated at %p\n",
263                          start, start + page_size, p);
264
265                 rc = vmemmap_create_mapping(start, page_size, __pa(p));
266                 if (rc < 0) {
267                         pr_warn("%s: Unable to create vmemmap mapping: %d\n",
268                                 __func__, rc);
269                         return -EFAULT;
270                 }
271         }
272
273         return 0;
274 }
275
276 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
277                                struct vmem_altmap *altmap)
278 {
279
280 #ifdef CONFIG_PPC_BOOK3S_64
281         if (radix_enabled())
282                 return radix__vmemmap_populate(start, end, node, altmap);
283 #endif
284
285         return __vmemmap_populate(start, end, node, altmap);
286 }
287
288 #ifdef CONFIG_MEMORY_HOTPLUG
289 static unsigned long vmemmap_list_free(unsigned long start)
290 {
291         struct vmemmap_backing *vmem_back, *vmem_back_prev;
292
293         vmem_back_prev = vmem_back = vmemmap_list;
294
295         /* look for it with prev pointer recorded */
296         for (; vmem_back; vmem_back = vmem_back->list) {
297                 if (vmem_back->virt_addr == start)
298                         break;
299                 vmem_back_prev = vmem_back;
300         }
301
302         if (unlikely(!vmem_back))
303                 return 0;
304
305         /* remove it from vmemmap_list */
306         if (vmem_back == vmemmap_list) /* remove head */
307                 vmemmap_list = vmem_back->list;
308         else
309                 vmem_back_prev->list = vmem_back->list;
310
311         /* next point to this freed entry */
312         vmem_back->list = next;
313         next = vmem_back;
314         num_freed++;
315
316         return vmem_back->phys;
317 }
318
319 static void __ref __vmemmap_free(unsigned long start, unsigned long end,
320                                  struct vmem_altmap *altmap)
321 {
322         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
323         unsigned long page_order = get_order(page_size);
324         unsigned long alt_start = ~0, alt_end = ~0;
325         unsigned long base_pfn;
326
327         start = ALIGN_DOWN(start, page_size);
328         if (altmap) {
329                 alt_start = altmap->base_pfn;
330                 alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
331         }
332
333         pr_debug("vmemmap_free %lx...%lx\n", start, end);
334
335         for (; start < end; start += page_size) {
336                 unsigned long nr_pages, addr;
337                 struct page *page;
338
339                 /*
340                  * We have already marked the subsection we are trying to remove
341                  * invalid. So if we want to remove the vmemmap range, we
342                  * need to make sure there is no subsection marked valid
343                  * in this range.
344                  */
345                 if (vmemmap_populated(start, page_size))
346                         continue;
347
348                 addr = vmemmap_list_free(start);
349                 if (!addr)
350                         continue;
351
352                 page = pfn_to_page(addr >> PAGE_SHIFT);
353                 nr_pages = 1 << page_order;
354                 base_pfn = PHYS_PFN(addr);
355
356                 if (base_pfn >= alt_start && base_pfn < alt_end) {
357                         vmem_altmap_free(altmap, nr_pages);
358                 } else if (PageReserved(page)) {
359                         /* allocated from bootmem */
360                         if (page_size < PAGE_SIZE) {
361                                 /*
362                                  * this shouldn't happen, but if it is
363                                  * the case, leave the memory there
364                                  */
365                                 WARN_ON_ONCE(1);
366                         } else {
367                                 while (nr_pages--)
368                                         free_reserved_page(page++);
369                         }
370                 } else {
371                         free_pages((unsigned long)(__va(addr)), page_order);
372                 }
373
374                 vmemmap_remove_mapping(start, page_size);
375         }
376 }
377
378 void __ref vmemmap_free(unsigned long start, unsigned long end,
379                         struct vmem_altmap *altmap)
380 {
381 #ifdef CONFIG_PPC_BOOK3S_64
382         if (radix_enabled())
383                 return radix__vmemmap_free(start, end, altmap);
384 #endif
385         return __vmemmap_free(start, end, altmap);
386 }
387
388 #endif
389 void register_page_bootmem_memmap(unsigned long section_nr,
390                                   struct page *start_page, unsigned long size)
391 {
392 }
393
394 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
395
396 #ifdef CONFIG_PPC_BOOK3S_64
397 unsigned int mmu_lpid_bits;
398 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
399 EXPORT_SYMBOL_GPL(mmu_lpid_bits);
400 #endif
401 unsigned int mmu_pid_bits;
402
403 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
404
405 static int __init parse_disable_radix(char *p)
406 {
407         bool val;
408
409         if (!p)
410                 val = true;
411         else if (kstrtobool(p, &val))
412                 return -EINVAL;
413
414         disable_radix = val;
415
416         return 0;
417 }
418 early_param("disable_radix", parse_disable_radix);
419
420 /*
421  * If we're running under a hypervisor, we need to check the contents of
422  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
423  * radix.  If not, we clear the radix feature bit so we fall back to hash.
424  */
425 static void __init early_check_vec5(void)
426 {
427         unsigned long root, chosen;
428         int size;
429         const u8 *vec5;
430         u8 mmu_supported;
431
432         root = of_get_flat_dt_root();
433         chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
434         if (chosen == -FDT_ERR_NOTFOUND) {
435                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
436                 return;
437         }
438         vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
439         if (!vec5) {
440                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
441                 return;
442         }
443         if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
444                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
445                 return;
446         }
447
448         /* Check for supported configuration */
449         mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
450                         OV5_FEAT(OV5_MMU_SUPPORT);
451         if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
452                 /* Hypervisor only supports radix - check enabled && GTSE */
453                 if (!early_radix_enabled()) {
454                         pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
455                 }
456                 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
457                                                 OV5_FEAT(OV5_RADIX_GTSE))) {
458                         cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
459                 } else
460                         cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
461                 /* Do radix anyway - the hypervisor said we had to */
462                 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
463         } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
464                 /* Hypervisor only supports hash - disable radix */
465                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
466                 cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
467         }
468 }
469
470 static int __init dt_scan_mmu_pid_width(unsigned long node,
471                                            const char *uname, int depth,
472                                            void *data)
473 {
474         int size = 0;
475         const __be32 *prop;
476         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
477
478         /* We are scanning "cpu" nodes only */
479         if (type == NULL || strcmp(type, "cpu") != 0)
480                 return 0;
481
482         /* Find MMU LPID, PID register size */
483         prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
484         if (prop && size == 4)
485                 mmu_lpid_bits = be32_to_cpup(prop);
486
487         prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
488         if (prop && size == 4)
489                 mmu_pid_bits = be32_to_cpup(prop);
490
491         if (!mmu_pid_bits && !mmu_lpid_bits)
492                 return 0;
493
494         return 1;
495 }
496
497 /*
498  * Outside hotplug the kernel uses this value to map the kernel direct map
499  * with radix. To be compatible with older kernels, let's keep this value
500  * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map
501  * things with 1GB size in the case where we don't support hotplug.
502  */
503 #ifndef CONFIG_MEMORY_HOTPLUG
504 #define DEFAULT_MEMORY_BLOCK_SIZE       SZ_16M
505 #else
506 #define DEFAULT_MEMORY_BLOCK_SIZE       MIN_MEMORY_BLOCK_SIZE
507 #endif
508
509 static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size)
510 {
511         unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE;
512
513         for (; *block_size > min_memory_block_size; *block_size >>= 2) {
514                 if ((mem_size & *block_size) == 0)
515                         break;
516         }
517 }
518
519 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
520                                           depth, void *data)
521 {
522         const char *type;
523         unsigned long *block_size = (unsigned long *)data;
524         const __be32 *reg, *endp;
525         int l;
526
527         if (depth != 1)
528                 return 0;
529         /*
530          * If we have dynamic-reconfiguration-memory node, use the
531          * lmb value.
532          */
533         if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
534
535                 const __be32 *prop;
536
537                 prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
538
539                 if (!prop || l < dt_root_size_cells * sizeof(__be32))
540                         /*
541                          * Nothing in the device tree
542                          */
543                         *block_size = DEFAULT_MEMORY_BLOCK_SIZE;
544                 else
545                         *block_size = of_read_number(prop, dt_root_size_cells);
546                 /*
547                  * We have found the final value. Don't probe further.
548                  */
549                 return 1;
550         }
551         /*
552          * Find all the device tree nodes of memory type and make sure
553          * the area can be mapped using the memory block size value
554          * we end up using. We start with 1G value and keep reducing
555          * it such that we can map the entire area using memory_block_size.
556          * This will be used on powernv and older pseries that don't
557          * have ibm,lmb-size node.
558          * For ex: with P5 we can end up with
559          * memory@0 -> 128MB
560          * memory@128M -> 64M
561          * This will end up using 64MB  memory block size value.
562          */
563         type = of_get_flat_dt_prop(node, "device_type", NULL);
564         if (type == NULL || strcmp(type, "memory") != 0)
565                 return 0;
566
567         reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
568         if (!reg)
569                 reg = of_get_flat_dt_prop(node, "reg", &l);
570         if (!reg)
571                 return 0;
572
573         endp = reg + (l / sizeof(__be32));
574         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
575                 const char *compatible;
576                 u64 size;
577
578                 dt_mem_next_cell(dt_root_addr_cells, &reg);
579                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
580
581                 if (size) {
582                         update_memory_block_size(block_size, size);
583                         continue;
584                 }
585                 /*
586                  * ibm,coherent-device-memory with linux,usable-memory = 0
587                  * Force 256MiB block size. Work around for GPUs on P9 PowerNV
588                  * linux,usable-memory == 0 implies driver managed memory and
589                  * we can't use large memory block size due to hotplug/unplug
590                  * limitations.
591                  */
592                 compatible = of_get_flat_dt_prop(node, "compatible", NULL);
593                 if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) {
594                         if (*block_size > SZ_256M)
595                                 *block_size = SZ_256M;
596                         /*
597                          * We keep 256M as the upper limit with GPU present.
598                          */
599                         return 0;
600                 }
601         }
602         /* continue looking for other memory device types */
603         return 0;
604 }
605
606 /*
607  * start with 1G memory block size. Early init will
608  * fix this with correct value.
609  */
610 unsigned long memory_block_size __ro_after_init = 1UL << 30;
611 static void __init early_init_memory_block_size(void)
612 {
613         /*
614          * We need to do memory_block_size probe early so that
615          * radix__early_init_mmu() can use this as limit for
616          * mapping page size.
617          */
618         of_scan_flat_dt(probe_memory_block_size, &memory_block_size);
619 }
620
621 void __init mmu_early_init_devtree(void)
622 {
623         bool hvmode = !!(mfmsr() & MSR_HV);
624
625         /* Disable radix mode based on kernel command line. */
626         if (disable_radix) {
627                 if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
628                         cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
629                 else
630                         pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
631         }
632
633         of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
634         if (hvmode && !mmu_lpid_bits) {
635                 if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
636                         mmu_lpid_bits = 12; /* POWER8-10 */
637                 else
638                         mmu_lpid_bits = 10; /* POWER7 */
639         }
640         if (!mmu_pid_bits) {
641                 if (early_cpu_has_feature(CPU_FTR_ARCH_300))
642                         mmu_pid_bits = 20; /* POWER9-10 */
643         }
644
645         /*
646          * Check /chosen/ibm,architecture-vec-5 if running as a guest.
647          * When running bare-metal, we can use radix if we like
648          * even though the ibm,architecture-vec-5 property created by
649          * skiboot doesn't have the necessary bits set.
650          */
651         if (!hvmode)
652                 early_check_vec5();
653
654         early_init_memory_block_size();
655
656         if (early_radix_enabled()) {
657                 radix__early_init_devtree();
658
659                 /*
660                  * We have finalized the translation we are going to use by now.
661                  * Radix mode is not limited by RMA / VRMA addressing.
662                  * Hence don't limit memblock allocations.
663                  */
664                 ppc64_rma_size = ULONG_MAX;
665                 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
666         } else
667                 hash__early_init_devtree();
668
669         if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
670                 hugetlbpage_init_defaultsize();
671
672         if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
673             !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
674                 panic("kernel does not support any MMU type offered by platform");
675 }
676 #endif /* CONFIG_PPC_BOOK3S_64 */