GNU Linux-libre 4.9.304-gnu1
[releases.git] / arch / powerpc / mm / init_64.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21
22 #undef DEBUG
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47
48 #include <asm/pgalloc.h>
49 #include <asm/page.h>
50 #include <asm/prom.h>
51 #include <asm/rtas.h>
52 #include <asm/io.h>
53 #include <asm/mmu_context.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu.h>
56 #include <asm/uaccess.h>
57 #include <asm/smp.h>
58 #include <asm/machdep.h>
59 #include <asm/tlb.h>
60 #include <asm/eeh.h>
61 #include <asm/processor.h>
62 #include <asm/mmzone.h>
63 #include <asm/cputable.h>
64 #include <asm/sections.h>
65 #include <asm/iommu.h>
66 #include <asm/vdso.h>
67
68 #include "mmu_decl.h"
69
70 #ifdef CONFIG_PPC_STD_MMU_64
71 #if H_PGTABLE_RANGE > USER_VSID_RANGE
72 #warning Limited user VSID range means pagetable space is wasted
73 #endif
74
75 #if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
76 #warning TASK_SIZE is smaller than it needs to be.
77 #endif
78 #endif /* CONFIG_PPC_STD_MMU_64 */
79
80 phys_addr_t memstart_addr = ~0;
81 EXPORT_SYMBOL_GPL(memstart_addr);
82 phys_addr_t kernstart_addr;
83 EXPORT_SYMBOL_GPL(kernstart_addr);
84
85 static void pgd_ctor(void *addr)
86 {
87         memset(addr, 0, PGD_TABLE_SIZE);
88 }
89
90 static void pud_ctor(void *addr)
91 {
92         memset(addr, 0, PUD_TABLE_SIZE);
93 }
94
95 static void pmd_ctor(void *addr)
96 {
97         memset(addr, 0, PMD_TABLE_SIZE);
98 }
99
100 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
101
102 /*
103  * Create a kmem_cache() for pagetables.  This is not used for PTE
104  * pages - they're linked to struct page, come from the normal free
105  * pages pool and have a different entry size (see real_pte_t) to
106  * everything else.  Caches created by this function are used for all
107  * the higher level pagetables, and for hugepage pagetables.
108  */
109 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
110 {
111         char *name;
112         unsigned long table_size = sizeof(void *) << shift;
113         unsigned long align = table_size;
114
115         /* When batching pgtable pointers for RCU freeing, we store
116          * the index size in the low bits.  Table alignment must be
117          * big enough to fit it.
118          *
119          * Likewise, hugeapge pagetable pointers contain a (different)
120          * shift value in the low bits.  All tables must be aligned so
121          * as to leave enough 0 bits in the address to contain it. */
122         unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
123                                      HUGEPD_SHIFT_MASK + 1);
124         struct kmem_cache *new;
125
126         /* It would be nice if this was a BUILD_BUG_ON(), but at the
127          * moment, gcc doesn't seem to recognize is_power_of_2 as a
128          * constant expression, so so much for that. */
129         BUG_ON(!is_power_of_2(minalign));
130         BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
131
132         if (PGT_CACHE(shift))
133                 return; /* Already have a cache of this size */
134
135         align = max_t(unsigned long, align, minalign);
136         name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
137         new = kmem_cache_create(name, table_size, align, 0, ctor);
138         kfree(name);
139         pgtable_cache[shift - 1] = new;
140         pr_debug("Allocated pgtable cache for order %d\n", shift);
141 }
142
143
144 void pgtable_cache_init(void)
145 {
146         pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
147         pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
148         /*
149          * In all current configs, when the PUD index exists it's the
150          * same size as either the pgd or pmd index except with THP enabled
151          * on book3s 64
152          */
153         if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
154                 pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
155
156         if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
157                 panic("Couldn't allocate pgtable caches");
158         if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
159                 panic("Couldn't allocate pud pgtable caches");
160 }
161
162 #ifdef CONFIG_SPARSEMEM_VMEMMAP
163 /*
164  * Given an address within the vmemmap, determine the pfn of the page that
165  * represents the start of the section it is within.  Note that we have to
166  * do this by hand as the proffered address may not be correctly aligned.
167  * Subtraction of non-aligned pointers produces undefined results.
168  */
169 static unsigned long __meminit vmemmap_section_start(unsigned long page)
170 {
171         unsigned long offset = page - ((unsigned long)(vmemmap));
172
173         /* Return the pfn of the start of the section. */
174         return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
175 }
176
177 /*
178  * Check if this vmemmap page is already initialised.  If any section
179  * which overlaps this vmemmap page is initialised then this page is
180  * initialised already.
181  */
182 static int __meminit vmemmap_populated(unsigned long start, int page_size)
183 {
184         unsigned long end = start + page_size;
185         start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
186
187         for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
188                 if (pfn_valid(page_to_pfn((struct page *)start)))
189                         return 1;
190
191         return 0;
192 }
193
194 struct vmemmap_backing *vmemmap_list;
195 static struct vmemmap_backing *next;
196 static int num_left;
197 static int num_freed;
198
199 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
200 {
201         struct vmemmap_backing *vmem_back;
202         /* get from freed entries first */
203         if (num_freed) {
204                 num_freed--;
205                 vmem_back = next;
206                 next = next->list;
207
208                 return vmem_back;
209         }
210
211         /* allocate a page when required and hand out chunks */
212         if (!num_left) {
213                 next = vmemmap_alloc_block(PAGE_SIZE, node);
214                 if (unlikely(!next)) {
215                         WARN_ON(1);
216                         return NULL;
217                 }
218                 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
219         }
220
221         num_left--;
222
223         return next++;
224 }
225
226 static __meminit void vmemmap_list_populate(unsigned long phys,
227                                             unsigned long start,
228                                             int node)
229 {
230         struct vmemmap_backing *vmem_back;
231
232         vmem_back = vmemmap_list_alloc(node);
233         if (unlikely(!vmem_back)) {
234                 WARN_ON(1);
235                 return;
236         }
237
238         vmem_back->phys = phys;
239         vmem_back->virt_addr = start;
240         vmem_back->list = vmemmap_list;
241
242         vmemmap_list = vmem_back;
243 }
244
245 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
246 {
247         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
248
249         /* Align to the page size of the linear mapping. */
250         start = _ALIGN_DOWN(start, page_size);
251
252         pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
253
254         for (; start < end; start += page_size) {
255                 void *p;
256                 int rc;
257
258                 if (vmemmap_populated(start, page_size))
259                         continue;
260
261                 p = vmemmap_alloc_block(page_size, node);
262                 if (!p)
263                         return -ENOMEM;
264
265                 vmemmap_list_populate(__pa(p), start, node);
266
267                 pr_debug("      * %016lx..%016lx allocated at %p\n",
268                          start, start + page_size, p);
269
270                 rc = vmemmap_create_mapping(start, page_size, __pa(p));
271                 if (rc < 0) {
272                         pr_warning(
273                                 "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
274                                 rc);
275                         return -EFAULT;
276                 }
277         }
278
279         return 0;
280 }
281
282 #ifdef CONFIG_MEMORY_HOTPLUG
283 static unsigned long vmemmap_list_free(unsigned long start)
284 {
285         struct vmemmap_backing *vmem_back, *vmem_back_prev;
286
287         vmem_back_prev = vmem_back = vmemmap_list;
288
289         /* look for it with prev pointer recorded */
290         for (; vmem_back; vmem_back = vmem_back->list) {
291                 if (vmem_back->virt_addr == start)
292                         break;
293                 vmem_back_prev = vmem_back;
294         }
295
296         if (unlikely(!vmem_back)) {
297                 WARN_ON(1);
298                 return 0;
299         }
300
301         /* remove it from vmemmap_list */
302         if (vmem_back == vmemmap_list) /* remove head */
303                 vmemmap_list = vmem_back->list;
304         else
305                 vmem_back_prev->list = vmem_back->list;
306
307         /* next point to this freed entry */
308         vmem_back->list = next;
309         next = vmem_back;
310         num_freed++;
311
312         return vmem_back->phys;
313 }
314
315 void __ref vmemmap_free(unsigned long start, unsigned long end)
316 {
317         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
318
319         start = _ALIGN_DOWN(start, page_size);
320
321         pr_debug("vmemmap_free %lx...%lx\n", start, end);
322
323         for (; start < end; start += page_size) {
324                 unsigned long addr;
325
326                 /*
327                  * the section has already be marked as invalid, so
328                  * vmemmap_populated() true means some other sections still
329                  * in this page, so skip it.
330                  */
331                 if (vmemmap_populated(start, page_size))
332                         continue;
333
334                 addr = vmemmap_list_free(start);
335                 if (addr) {
336                         struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
337
338                         if (PageReserved(page)) {
339                                 /* allocated from bootmem */
340                                 if (page_size < PAGE_SIZE) {
341                                         /*
342                                          * this shouldn't happen, but if it is
343                                          * the case, leave the memory there
344                                          */
345                                         WARN_ON_ONCE(1);
346                                 } else {
347                                         unsigned int nr_pages =
348                                                 1 << get_order(page_size);
349                                         while (nr_pages--)
350                                                 free_reserved_page(page++);
351                                 }
352                         } else
353                                 free_pages((unsigned long)(__va(addr)),
354                                                         get_order(page_size));
355
356                         vmemmap_remove_mapping(start, page_size);
357                 }
358         }
359 }
360 #endif
361 void register_page_bootmem_memmap(unsigned long section_nr,
362                                   struct page *start_page, unsigned long size)
363 {
364 }
365
366 /*
367  * We do not have access to the sparsemem vmemmap, so we fallback to
368  * walking the list of sparsemem blocks which we already maintain for
369  * the sake of crashdump. In the long run, we might want to maintain
370  * a tree if performance of that linear walk becomes a problem.
371  *
372  * realmode_pfn_to_page functions can fail due to:
373  * 1) As real sparsemem blocks do not lay in RAM continously (they
374  * are in virtual address space which is not available in the real mode),
375  * the requested page struct can be split between blocks so get_page/put_page
376  * may fail.
377  * 2) When huge pages are used, the get_page/put_page API will fail
378  * in real mode as the linked addresses in the page struct are virtual
379  * too.
380  */
381 struct page *realmode_pfn_to_page(unsigned long pfn)
382 {
383         struct vmemmap_backing *vmem_back;
384         struct page *page;
385         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
386         unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
387
388         for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
389                 if (pg_va < vmem_back->virt_addr)
390                         continue;
391
392                 /* After vmemmap_list entry free is possible, need check all */
393                 if ((pg_va + sizeof(struct page)) <=
394                                 (vmem_back->virt_addr + page_size)) {
395                         page = (struct page *) (vmem_back->phys + pg_va -
396                                 vmem_back->virt_addr);
397                         return page;
398                 }
399         }
400
401         /* Probably that page struct is split between real pages */
402         return NULL;
403 }
404 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
405
406 #elif defined(CONFIG_FLATMEM)
407
408 struct page *realmode_pfn_to_page(unsigned long pfn)
409 {
410         struct page *page = pfn_to_page(pfn);
411         return page;
412 }
413 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
414
415 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
416
417 #ifdef CONFIG_PPC_STD_MMU_64
418 static bool disable_radix;
419 static int __init parse_disable_radix(char *p)
420 {
421         disable_radix = true;
422         return 0;
423 }
424 early_param("disable_radix", parse_disable_radix);
425
426 /*
427  * If we're running under a hypervisor, we currently can't do radix
428  * since we don't have the code to do the H_REGISTER_PROC_TBL hcall.
429  * We tell that we're running under a hypervisor by looking for the
430  * /chosen/ibm,architecture-vec-5 property.
431  */
432 static void early_check_vec5(void)
433 {
434         unsigned long root, chosen;
435         int size;
436         const u8 *vec5;
437
438         root = of_get_flat_dt_root();
439         chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
440         if (chosen == -FDT_ERR_NOTFOUND)
441                 return;
442         vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
443         if (!vec5)
444                 return;
445         cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
446 }
447
448 void __init mmu_early_init_devtree(void)
449 {
450         /* Disable radix mode based on kernel command line. */
451         /* We don't yet have the machinery to do radix as a guest. */
452         if (disable_radix || !(mfmsr() & MSR_HV))
453                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
454
455         /*
456          * Check /chosen/ibm,architecture-vec-5 if running as a guest.
457          * When running bare-metal, we can use radix if we like
458          * even though the ibm,architecture-vec-5 property created by
459          * skiboot doesn't have the necessary bits set.
460          */
461         if (early_radix_enabled() && !(mfmsr() & MSR_HV))
462                 early_check_vec5();
463
464         if (early_radix_enabled())
465                 radix__early_init_devtree();
466         else
467                 hash__early_init_devtree();
468 }
469 #endif /* CONFIG_PPC_STD_MMU_64 */