GNU Linux-libre 4.14.332-gnu1
[releases.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <linux/kmemleak.h>
23 #include <asm/pgtable.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlb.h>
26 #include <asm/setup.h>
27 #include <asm/hugetlb.h>
28 #include <asm/pte-walk.h>
29
30
31 #ifdef CONFIG_HUGETLB_PAGE
32
33 #define PAGE_SHIFT_64K  16
34 #define PAGE_SHIFT_512K 19
35 #define PAGE_SHIFT_8M   23
36 #define PAGE_SHIFT_16M  24
37 #define PAGE_SHIFT_16G  34
38
39 unsigned int HPAGE_SHIFT;
40 EXPORT_SYMBOL(HPAGE_SHIFT);
41
42 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
43
44 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
45 {
46         /*
47          * Only called for hugetlbfs pages, hence can ignore THP and the
48          * irq disabled walk.
49          */
50         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
51 }
52
53 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
54                            unsigned long address, unsigned pdshift, unsigned pshift)
55 {
56         struct kmem_cache *cachep;
57         pte_t *new;
58         int i;
59         int num_hugepd;
60
61         if (pshift >= pdshift) {
62                 cachep = hugepte_cache;
63                 num_hugepd = 1 << (pshift - pdshift);
64         } else {
65                 cachep = PGT_CACHE(pdshift - pshift);
66                 num_hugepd = 1;
67         }
68
69         new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
70
71         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
72         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
73
74         if (! new)
75                 return -ENOMEM;
76
77         /*
78          * Make sure other cpus find the hugepd set only after a
79          * properly initialized page table is visible to them.
80          * For more details look for comment in __pte_alloc().
81          */
82         smp_wmb();
83
84         spin_lock(&mm->page_table_lock);
85
86         /*
87          * We have multiple higher-level entries that point to the same
88          * actual pte location.  Fill in each as we go and backtrack on error.
89          * We need all of these so the DTLB pgtable walk code can find the
90          * right higher-level entry without knowing if it's a hugepage or not.
91          */
92         for (i = 0; i < num_hugepd; i++, hpdp++) {
93                 if (unlikely(!hugepd_none(*hpdp)))
94                         break;
95                 else {
96 #ifdef CONFIG_PPC_BOOK3S_64
97                         *hpdp = __hugepd(__pa(new) |
98                                          (shift_to_mmu_psize(pshift) << 2));
99 #elif defined(CONFIG_PPC_8xx)
100                         *hpdp = __hugepd(__pa(new) |
101                                          (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
102                                           _PMD_PAGE_512K) | _PMD_PRESENT);
103 #else
104                         /* We use the old format for PPC_FSL_BOOK3E */
105                         *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
106 #endif
107                 }
108         }
109         /* If we bailed from the for loop early, an error occurred, clean up */
110         if (i < num_hugepd) {
111                 for (i = i - 1 ; i >= 0; i--, hpdp--)
112                         *hpdp = __hugepd(0);
113                 kmem_cache_free(cachep, new);
114         } else {
115                 kmemleak_ignore(new);
116         }
117         spin_unlock(&mm->page_table_lock);
118         return 0;
119 }
120
121 /*
122  * These macros define how to determine which level of the page table holds
123  * the hpdp.
124  */
125 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
126 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
127 #define HUGEPD_PUD_SHIFT PUD_SHIFT
128 #else
129 #define HUGEPD_PGD_SHIFT PUD_SHIFT
130 #define HUGEPD_PUD_SHIFT PMD_SHIFT
131 #endif
132
133 /*
134  * At this point we do the placement change only for BOOK3S 64. This would
135  * possibly work on other subarchs.
136  */
137 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
138 {
139         pgd_t *pg;
140         pud_t *pu;
141         pmd_t *pm;
142         hugepd_t *hpdp = NULL;
143         unsigned pshift = __ffs(sz);
144         unsigned pdshift = PGDIR_SHIFT;
145
146         addr &= ~(sz-1);
147         pg = pgd_offset(mm, addr);
148
149 #ifdef CONFIG_PPC_BOOK3S_64
150         if (pshift == PGDIR_SHIFT)
151                 /* 16GB huge page */
152                 return (pte_t *) pg;
153         else if (pshift > PUD_SHIFT)
154                 /*
155                  * We need to use hugepd table
156                  */
157                 hpdp = (hugepd_t *)pg;
158         else {
159                 pdshift = PUD_SHIFT;
160                 pu = pud_alloc(mm, pg, addr);
161                 if (pshift == PUD_SHIFT)
162                         return (pte_t *)pu;
163                 else if (pshift > PMD_SHIFT)
164                         hpdp = (hugepd_t *)pu;
165                 else {
166                         pdshift = PMD_SHIFT;
167                         pm = pmd_alloc(mm, pu, addr);
168                         if (pshift == PMD_SHIFT)
169                                 /* 16MB hugepage */
170                                 return (pte_t *)pm;
171                         else
172                                 hpdp = (hugepd_t *)pm;
173                 }
174         }
175 #else
176         if (pshift >= HUGEPD_PGD_SHIFT) {
177                 hpdp = (hugepd_t *)pg;
178         } else {
179                 pdshift = PUD_SHIFT;
180                 pu = pud_alloc(mm, pg, addr);
181                 if (pshift >= HUGEPD_PUD_SHIFT) {
182                         hpdp = (hugepd_t *)pu;
183                 } else {
184                         pdshift = PMD_SHIFT;
185                         pm = pmd_alloc(mm, pu, addr);
186                         hpdp = (hugepd_t *)pm;
187                 }
188         }
189 #endif
190         if (!hpdp)
191                 return NULL;
192
193         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
194
195         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
196                 return NULL;
197
198         return hugepte_offset(*hpdp, addr, pdshift);
199 }
200
201 #ifdef CONFIG_PPC_BOOK3S_64
202 /*
203  * Tracks gpages after the device tree is scanned and before the
204  * huge_boot_pages list is ready on pseries.
205  */
206 #define MAX_NUMBER_GPAGES       1024
207 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
208 __initdata static unsigned nr_gpages;
209
210 /*
211  * Build list of addresses of gigantic pages.  This function is used in early
212  * boot before the buddy allocator is setup.
213  */
214 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
215 {
216         if (!addr)
217                 return;
218         while (number_of_pages > 0) {
219                 gpage_freearray[nr_gpages] = addr;
220                 nr_gpages++;
221                 number_of_pages--;
222                 addr += page_size;
223         }
224 }
225
226 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
227 {
228         struct huge_bootmem_page *m;
229         if (nr_gpages == 0)
230                 return 0;
231         m = phys_to_virt(gpage_freearray[--nr_gpages]);
232         gpage_freearray[nr_gpages] = 0;
233         list_add(&m->list, &huge_boot_pages);
234         m->hstate = hstate;
235         return 1;
236 }
237 #endif
238
239
240 int __init alloc_bootmem_huge_page(struct hstate *h)
241 {
242
243 #ifdef CONFIG_PPC_BOOK3S_64
244         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
245                 return pseries_alloc_bootmem_huge_page(h);
246 #endif
247         return __alloc_bootmem_huge_page(h);
248 }
249
250 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
251 #define HUGEPD_FREELIST_SIZE \
252         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
253
254 struct hugepd_freelist {
255         struct rcu_head rcu;
256         unsigned int index;
257         void *ptes[0];
258 };
259
260 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
261
262 static void hugepd_free_rcu_callback(struct rcu_head *head)
263 {
264         struct hugepd_freelist *batch =
265                 container_of(head, struct hugepd_freelist, rcu);
266         unsigned int i;
267
268         for (i = 0; i < batch->index; i++)
269                 kmem_cache_free(hugepte_cache, batch->ptes[i]);
270
271         free_page((unsigned long)batch);
272 }
273
274 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
275 {
276         struct hugepd_freelist **batchp;
277
278         batchp = &get_cpu_var(hugepd_freelist_cur);
279
280         if (atomic_read(&tlb->mm->mm_users) < 2 ||
281             mm_is_thread_local(tlb->mm)) {
282                 kmem_cache_free(hugepte_cache, hugepte);
283                 put_cpu_var(hugepd_freelist_cur);
284                 return;
285         }
286
287         if (*batchp == NULL) {
288                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
289                 (*batchp)->index = 0;
290         }
291
292         (*batchp)->ptes[(*batchp)->index++] = hugepte;
293         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
294                 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
295                 *batchp = NULL;
296         }
297         put_cpu_var(hugepd_freelist_cur);
298 }
299 #else
300 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
301 #endif
302
303 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
304                               unsigned long start, unsigned long end,
305                               unsigned long floor, unsigned long ceiling)
306 {
307         pte_t *hugepte = hugepd_page(*hpdp);
308         int i;
309
310         unsigned long pdmask = ~((1UL << pdshift) - 1);
311         unsigned int num_hugepd = 1;
312         unsigned int shift = hugepd_shift(*hpdp);
313
314         /* Note: On fsl the hpdp may be the first of several */
315         if (shift > pdshift)
316                 num_hugepd = 1 << (shift - pdshift);
317
318         start &= pdmask;
319         if (start < floor)
320                 return;
321         if (ceiling) {
322                 ceiling &= pdmask;
323                 if (! ceiling)
324                         return;
325         }
326         if (end - 1 > ceiling - 1)
327                 return;
328
329         for (i = 0; i < num_hugepd; i++, hpdp++)
330                 *hpdp = __hugepd(0);
331
332         if (shift >= pdshift)
333                 hugepd_free(tlb, hugepte);
334         else
335                 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
336 }
337
338 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
339                                    unsigned long addr, unsigned long end,
340                                    unsigned long floor, unsigned long ceiling)
341 {
342         pmd_t *pmd;
343         unsigned long next;
344         unsigned long start;
345
346         start = addr;
347         do {
348                 unsigned long more;
349
350                 pmd = pmd_offset(pud, addr);
351                 next = pmd_addr_end(addr, end);
352                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
353                         /*
354                          * if it is not hugepd pointer, we should already find
355                          * it cleared.
356                          */
357                         WARN_ON(!pmd_none_or_clear_bad(pmd));
358                         continue;
359                 }
360                 /*
361                  * Increment next by the size of the huge mapping since
362                  * there may be more than one entry at this level for a
363                  * single hugepage, but all of them point to
364                  * the same kmem cache that holds the hugepte.
365                  */
366                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
367                 if (more > next)
368                         next = more;
369
370                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
371                                   addr, next, floor, ceiling);
372         } while (addr = next, addr != end);
373
374         start &= PUD_MASK;
375         if (start < floor)
376                 return;
377         if (ceiling) {
378                 ceiling &= PUD_MASK;
379                 if (!ceiling)
380                         return;
381         }
382         if (end - 1 > ceiling - 1)
383                 return;
384
385         pmd = pmd_offset(pud, start);
386         pud_clear(pud);
387         pmd_free_tlb(tlb, pmd, start);
388         mm_dec_nr_pmds(tlb->mm);
389 }
390
391 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
392                                    unsigned long addr, unsigned long end,
393                                    unsigned long floor, unsigned long ceiling)
394 {
395         pud_t *pud;
396         unsigned long next;
397         unsigned long start;
398
399         start = addr;
400         do {
401                 pud = pud_offset(pgd, addr);
402                 next = pud_addr_end(addr, end);
403                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
404                         if (pud_none_or_clear_bad(pud))
405                                 continue;
406                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
407                                                ceiling);
408                 } else {
409                         unsigned long more;
410                         /*
411                          * Increment next by the size of the huge mapping since
412                          * there may be more than one entry at this level for a
413                          * single hugepage, but all of them point to
414                          * the same kmem cache that holds the hugepte.
415                          */
416                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
417                         if (more > next)
418                                 next = more;
419
420                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
421                                           addr, next, floor, ceiling);
422                 }
423         } while (addr = next, addr != end);
424
425         start &= PGDIR_MASK;
426         if (start < floor)
427                 return;
428         if (ceiling) {
429                 ceiling &= PGDIR_MASK;
430                 if (!ceiling)
431                         return;
432         }
433         if (end - 1 > ceiling - 1)
434                 return;
435
436         pud = pud_offset(pgd, start);
437         pgd_clear(pgd);
438         pud_free_tlb(tlb, pud, start);
439 }
440
441 /*
442  * This function frees user-level page tables of a process.
443  */
444 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
445                             unsigned long addr, unsigned long end,
446                             unsigned long floor, unsigned long ceiling)
447 {
448         pgd_t *pgd;
449         unsigned long next;
450
451         /*
452          * Because there are a number of different possible pagetable
453          * layouts for hugepage ranges, we limit knowledge of how
454          * things should be laid out to the allocation path
455          * (huge_pte_alloc(), above).  Everything else works out the
456          * structure as it goes from information in the hugepd
457          * pointers.  That means that we can't here use the
458          * optimization used in the normal page free_pgd_range(), of
459          * checking whether we're actually covering a large enough
460          * range to have to do anything at the top level of the walk
461          * instead of at the bottom.
462          *
463          * To make sense of this, you should probably go read the big
464          * block comment at the top of the normal free_pgd_range(),
465          * too.
466          */
467
468         do {
469                 next = pgd_addr_end(addr, end);
470                 pgd = pgd_offset(tlb->mm, addr);
471                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
472                         if (pgd_none_or_clear_bad(pgd))
473                                 continue;
474                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
475                 } else {
476                         unsigned long more;
477                         /*
478                          * Increment next by the size of the huge mapping since
479                          * there may be more than one entry at the pgd level
480                          * for a single hugepage, but all of them point to the
481                          * same kmem cache that holds the hugepte.
482                          */
483                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
484                         if (more > next)
485                                 next = more;
486
487                         free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
488                                           addr, next, floor, ceiling);
489                 }
490         } while (addr = next, addr != end);
491 }
492
493 struct page *follow_huge_pd(struct vm_area_struct *vma,
494                             unsigned long address, hugepd_t hpd,
495                             int flags, int pdshift)
496 {
497         pte_t *ptep;
498         spinlock_t *ptl;
499         struct page *page = NULL;
500         unsigned long mask;
501         int shift = hugepd_shift(hpd);
502         struct mm_struct *mm = vma->vm_mm;
503
504 retry:
505         ptl = &mm->page_table_lock;
506         spin_lock(ptl);
507
508         ptep = hugepte_offset(hpd, address, pdshift);
509         if (pte_present(*ptep)) {
510                 mask = (1UL << shift) - 1;
511                 page = pte_page(*ptep);
512                 page += ((address & mask) >> PAGE_SHIFT);
513                 if (flags & FOLL_GET)
514                         get_page(page);
515         } else {
516                 if (is_hugetlb_entry_migration(*ptep)) {
517                         spin_unlock(ptl);
518                         __migration_entry_wait(mm, ptep, ptl);
519                         goto retry;
520                 }
521         }
522         spin_unlock(ptl);
523         return page;
524 }
525
526 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
527                                       unsigned long sz)
528 {
529         unsigned long __boundary = (addr + sz) & ~(sz-1);
530         return (__boundary - 1 < end - 1) ? __boundary : end;
531 }
532
533 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
534                 unsigned long end, int write, struct page **pages, int *nr)
535 {
536         pte_t *ptep;
537         unsigned long sz = 1UL << hugepd_shift(hugepd);
538         unsigned long next;
539
540         ptep = hugepte_offset(hugepd, addr, pdshift);
541         do {
542                 next = hugepte_addr_end(addr, end, sz);
543                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
544                         return 0;
545         } while (ptep++, addr = next, addr != end);
546
547         return 1;
548 }
549
550 #ifdef CONFIG_PPC_MM_SLICES
551 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
552                                         unsigned long len, unsigned long pgoff,
553                                         unsigned long flags)
554 {
555         struct hstate *hstate = hstate_file(file);
556         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
557
558 #ifdef CONFIG_PPC_RADIX_MMU
559         if (radix_enabled())
560                 return radix__hugetlb_get_unmapped_area(file, addr, len,
561                                                        pgoff, flags);
562 #endif
563         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
564 }
565 #endif
566
567 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
568 {
569 #ifdef CONFIG_PPC_MM_SLICES
570         unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
571         /* With radix we don't use slice, so derive it from vma*/
572         if (!radix_enabled())
573                 return 1UL << mmu_psize_to_shift(psize);
574 #endif
575         if (!is_vm_hugetlb_page(vma))
576                 return PAGE_SIZE;
577
578         return huge_page_size(hstate_vma(vma));
579 }
580
581 static inline bool is_power_of_4(unsigned long x)
582 {
583         if (is_power_of_2(x))
584                 return (__ilog2(x) % 2) ? false : true;
585         return false;
586 }
587
588 static int __init add_huge_page_size(unsigned long long size)
589 {
590         int shift = __ffs(size);
591         int mmu_psize;
592
593         /* Check that it is a page size supported by the hardware and
594          * that it fits within pagetable and slice limits. */
595         if (size <= PAGE_SIZE)
596                 return -EINVAL;
597 #if defined(CONFIG_PPC_FSL_BOOK3E)
598         if (!is_power_of_4(size))
599                 return -EINVAL;
600 #elif !defined(CONFIG_PPC_8xx)
601         if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
602                 return -EINVAL;
603 #endif
604
605         if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
606                 return -EINVAL;
607
608 #ifdef CONFIG_PPC_BOOK3S_64
609         /*
610          * We need to make sure that for different page sizes reported by
611          * firmware we only add hugetlb support for page sizes that can be
612          * supported by linux page table layout.
613          * For now we have
614          * Radix: 2M
615          * Hash: 16M and 16G
616          */
617         if (radix_enabled()) {
618                 if (mmu_psize != MMU_PAGE_2M) {
619                         if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
620                             (mmu_psize != MMU_PAGE_1G))
621                                 return -EINVAL;
622                 }
623         } else {
624                 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
625                         return -EINVAL;
626         }
627 #endif
628
629         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
630
631         /* Return if huge page size has already been setup */
632         if (size_to_hstate(size))
633                 return 0;
634
635         hugetlb_add_hstate(shift - PAGE_SHIFT);
636
637         return 0;
638 }
639
640 static int __init hugepage_setup_sz(char *str)
641 {
642         unsigned long long size;
643
644         size = memparse(str, &str);
645
646         if (add_huge_page_size(size) != 0) {
647                 hugetlb_bad_size();
648                 pr_err("Invalid huge page size specified(%llu)\n", size);
649         }
650
651         return 1;
652 }
653 __setup("hugepagesz=", hugepage_setup_sz);
654
655 struct kmem_cache *hugepte_cache;
656 static int __init hugetlbpage_init(void)
657 {
658         int psize;
659
660 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
661         if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
662                 return -ENODEV;
663 #endif
664         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
665                 unsigned shift;
666                 unsigned pdshift;
667
668                 if (!mmu_psize_defs[psize].shift)
669                         continue;
670
671                 shift = mmu_psize_to_shift(psize);
672
673                 if (add_huge_page_size(1ULL << shift) < 0)
674                         continue;
675
676                 if (shift < HUGEPD_PUD_SHIFT)
677                         pdshift = PMD_SHIFT;
678                 else if (shift < HUGEPD_PGD_SHIFT)
679                         pdshift = PUD_SHIFT;
680                 else
681                         pdshift = PGDIR_SHIFT;
682                 /*
683                  * if we have pdshift and shift value same, we don't
684                  * use pgt cache for hugepd.
685                  */
686                 if (pdshift > shift)
687                         pgtable_cache_add(pdshift - shift, NULL);
688 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
689                 else if (!hugepte_cache) {
690                         /*
691                          * Create a kmem cache for hugeptes.  The bottom bits in
692                          * the pte have size information encoded in them, so
693                          * align them to allow this
694                          */
695                         hugepte_cache = kmem_cache_create("hugepte-cache",
696                                                           sizeof(pte_t),
697                                                           HUGEPD_SHIFT_MASK + 1,
698                                                           0, NULL);
699                         if (hugepte_cache == NULL)
700                                 panic("%s: Unable to create kmem cache "
701                                       "for hugeptes\n", __func__);
702
703                 }
704 #endif
705         }
706
707 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
708         /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
709         if (mmu_psize_defs[MMU_PAGE_4M].shift)
710                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
711         else if (mmu_psize_defs[MMU_PAGE_512K].shift)
712                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
713 #else
714         /* Set default large page size. Currently, we pick 16M or 1M
715          * depending on what is available
716          */
717         if (mmu_psize_defs[MMU_PAGE_16M].shift)
718                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
719         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
720                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
721         else if (mmu_psize_defs[MMU_PAGE_2M].shift)
722                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
723 #endif
724         return 0;
725 }
726
727 arch_initcall(hugetlbpage_init);
728
729 void flush_dcache_icache_hugepage(struct page *page)
730 {
731         int i;
732         void *start;
733
734         BUG_ON(!PageCompound(page));
735
736         for (i = 0; i < (1UL << compound_order(page)); i++) {
737                 if (!PageHighMem(page)) {
738                         __flush_dcache_icache(page_address(page+i));
739                 } else {
740                         start = kmap_atomic(page+i);
741                         __flush_dcache_icache(start);
742                         kunmap_atomic(start);
743                 }
744         }
745 }
746
747 #endif /* CONFIG_HUGETLB_PAGE */
748
749 /*
750  * We have 4 cases for pgds and pmds:
751  * (1) invalid (all zeroes)
752  * (2) pointer to next table, as normal; bottom 6 bits == 0
753  * (3) leaf pte for huge page _PAGE_PTE set
754  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
755  *
756  * So long as we atomically load page table pointers we are safe against teardown,
757  * we can follow the address down to the the page and take a ref on it.
758  * This function need to be called with interrupts disabled. We use this variant
759  * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
760  */
761 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
762                         bool *is_thp, unsigned *hpage_shift)
763 {
764         pgd_t pgd, *pgdp;
765         pud_t pud, *pudp;
766         pmd_t pmd, *pmdp;
767         pte_t *ret_pte;
768         hugepd_t *hpdp = NULL;
769         unsigned pdshift = PGDIR_SHIFT;
770
771         if (hpage_shift)
772                 *hpage_shift = 0;
773
774         if (is_thp)
775                 *is_thp = false;
776
777         pgdp = pgdir + pgd_index(ea);
778         pgd  = READ_ONCE(*pgdp);
779         /*
780          * Always operate on the local stack value. This make sure the
781          * value don't get updated by a parallel THP split/collapse,
782          * page fault or a page unmap. The return pte_t * is still not
783          * stable. So should be checked there for above conditions.
784          */
785         if (pgd_none(pgd))
786                 return NULL;
787         else if (pgd_huge(pgd)) {
788                 ret_pte = (pte_t *) pgdp;
789                 goto out;
790         } else if (is_hugepd(__hugepd(pgd_val(pgd))))
791                 hpdp = (hugepd_t *)&pgd;
792         else {
793                 /*
794                  * Even if we end up with an unmap, the pgtable will not
795                  * be freed, because we do an rcu free and here we are
796                  * irq disabled
797                  */
798                 pdshift = PUD_SHIFT;
799                 pudp = pud_offset(&pgd, ea);
800                 pud  = READ_ONCE(*pudp);
801
802                 if (pud_none(pud))
803                         return NULL;
804                 else if (pud_huge(pud)) {
805                         ret_pte = (pte_t *) pudp;
806                         goto out;
807                 } else if (is_hugepd(__hugepd(pud_val(pud))))
808                         hpdp = (hugepd_t *)&pud;
809                 else {
810                         pdshift = PMD_SHIFT;
811                         pmdp = pmd_offset(&pud, ea);
812                         pmd  = READ_ONCE(*pmdp);
813                         /*
814                          * A hugepage collapse is captured by pmd_none, because
815                          * it mark the pmd none and do a hpte invalidate.
816                          */
817                         if (pmd_none(pmd))
818                                 return NULL;
819
820                         if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
821                                 if (is_thp)
822                                         *is_thp = true;
823                                 ret_pte = (pte_t *) pmdp;
824                                 goto out;
825                         }
826
827                         if (pmd_huge(pmd)) {
828                                 ret_pte = (pte_t *) pmdp;
829                                 goto out;
830                         } else if (is_hugepd(__hugepd(pmd_val(pmd))))
831                                 hpdp = (hugepd_t *)&pmd;
832                         else
833                                 return pte_offset_kernel(&pmd, ea);
834                 }
835         }
836         if (!hpdp)
837                 return NULL;
838
839         ret_pte = hugepte_offset(*hpdp, ea, pdshift);
840         pdshift = hugepd_shift(*hpdp);
841 out:
842         if (hpage_shift)
843                 *hpage_shift = pdshift;
844         return ret_pte;
845 }
846 EXPORT_SYMBOL_GPL(__find_linux_pte);
847
848 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
849                 unsigned long end, int write, struct page **pages, int *nr)
850 {
851         unsigned long pte_end;
852         struct page *head, *page;
853         pte_t pte;
854         int refs;
855
856         pte_end = (addr + sz) & ~(sz-1);
857         if (pte_end < end)
858                 end = pte_end;
859
860         pte = READ_ONCE(*ptep);
861
862         if (!pte_present(pte) || !pte_read(pte))
863                 return 0;
864         if (write && !pte_write(pte))
865                 return 0;
866
867         /* hugepages are never "special" */
868         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
869
870         refs = 0;
871         head = pte_page(pte);
872
873         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
874         do {
875                 VM_BUG_ON(compound_head(page) != head);
876                 pages[*nr] = page;
877                 (*nr)++;
878                 page++;
879                 refs++;
880         } while (addr += PAGE_SIZE, addr != end);
881
882         if (!page_cache_add_speculative(head, refs)) {
883                 *nr -= refs;
884                 return 0;
885         }
886
887         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
888                 /* Could be optimized better */
889                 *nr -= refs;
890                 while (refs--)
891                         put_page(head);
892                 return 0;
893         }
894
895         return 1;
896 }