GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27
28 bool hugetlb_disabled = false;
29
30 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
31
32 #define PTE_T_ORDER     (__builtin_ffs(sizeof(pte_basic_t)) - \
33                          __builtin_ffs(sizeof(void *)))
34
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37         /*
38          * Only called for hugetlbfs pages, hence can ignore THP and the
39          * irq disabled walk.
40          */
41         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45                            unsigned long address, unsigned int pdshift,
46                            unsigned int pshift, spinlock_t *ptl)
47 {
48         struct kmem_cache *cachep;
49         pte_t *new;
50         int i;
51         int num_hugepd;
52
53         if (pshift >= pdshift) {
54                 cachep = PGT_CACHE(PTE_T_ORDER);
55                 num_hugepd = 1 << (pshift - pdshift);
56         } else {
57                 cachep = PGT_CACHE(pdshift - pshift);
58                 num_hugepd = 1;
59         }
60
61         if (!cachep) {
62                 WARN_ONCE(1, "No page table cache created for hugetlb tables");
63                 return -ENOMEM;
64         }
65
66         new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67
68         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70
71         if (!new)
72                 return -ENOMEM;
73
74         /*
75          * Make sure other cpus find the hugepd set only after a
76          * properly initialized page table is visible to them.
77          * For more details look for comment in __pte_alloc().
78          */
79         smp_wmb();
80
81         spin_lock(ptl);
82         /*
83          * We have multiple higher-level entries that point to the same
84          * actual pte location.  Fill in each as we go and backtrack on error.
85          * We need all of these so the DTLB pgtable walk code can find the
86          * right higher-level entry without knowing if it's a hugepage or not.
87          */
88         for (i = 0; i < num_hugepd; i++, hpdp++) {
89                 if (unlikely(!hugepd_none(*hpdp)))
90                         break;
91                 hugepd_populate(hpdp, new, pshift);
92         }
93         /* If we bailed from the for loop early, an error occurred, clean up */
94         if (i < num_hugepd) {
95                 for (i = i - 1 ; i >= 0; i--, hpdp--)
96                         *hpdp = __hugepd(0);
97                 kmem_cache_free(cachep, new);
98         } else {
99                 kmemleak_ignore(new);
100         }
101         spin_unlock(ptl);
102         return 0;
103 }
104
105 /*
106  * At this point we do the placement change only for BOOK3S 64. This would
107  * possibly work on other subarchs.
108  */
109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
110 {
111         pgd_t *pg;
112         p4d_t *p4;
113         pud_t *pu;
114         pmd_t *pm;
115         hugepd_t *hpdp = NULL;
116         unsigned pshift = __ffs(sz);
117         unsigned pdshift = PGDIR_SHIFT;
118         spinlock_t *ptl;
119
120         addr &= ~(sz-1);
121         pg = pgd_offset(mm, addr);
122         p4 = p4d_offset(pg, addr);
123
124 #ifdef CONFIG_PPC_BOOK3S_64
125         if (pshift == PGDIR_SHIFT)
126                 /* 16GB huge page */
127                 return (pte_t *) p4;
128         else if (pshift > PUD_SHIFT) {
129                 /*
130                  * We need to use hugepd table
131                  */
132                 ptl = &mm->page_table_lock;
133                 hpdp = (hugepd_t *)p4;
134         } else {
135                 pdshift = PUD_SHIFT;
136                 pu = pud_alloc(mm, p4, addr);
137                 if (!pu)
138                         return NULL;
139                 if (pshift == PUD_SHIFT)
140                         return (pte_t *)pu;
141                 else if (pshift > PMD_SHIFT) {
142                         ptl = pud_lockptr(mm, pu);
143                         hpdp = (hugepd_t *)pu;
144                 } else {
145                         pdshift = PMD_SHIFT;
146                         pm = pmd_alloc(mm, pu, addr);
147                         if (!pm)
148                                 return NULL;
149                         if (pshift == PMD_SHIFT)
150                                 /* 16MB hugepage */
151                                 return (pte_t *)pm;
152                         else {
153                                 ptl = pmd_lockptr(mm, pm);
154                                 hpdp = (hugepd_t *)pm;
155                         }
156                 }
157         }
158 #else
159         if (pshift >= PGDIR_SHIFT) {
160                 ptl = &mm->page_table_lock;
161                 hpdp = (hugepd_t *)p4;
162         } else {
163                 pdshift = PUD_SHIFT;
164                 pu = pud_alloc(mm, p4, addr);
165                 if (!pu)
166                         return NULL;
167                 if (pshift >= PUD_SHIFT) {
168                         ptl = pud_lockptr(mm, pu);
169                         hpdp = (hugepd_t *)pu;
170                 } else {
171                         pdshift = PMD_SHIFT;
172                         pm = pmd_alloc(mm, pu, addr);
173                         if (!pm)
174                                 return NULL;
175                         ptl = pmd_lockptr(mm, pm);
176                         hpdp = (hugepd_t *)pm;
177                 }
178         }
179 #endif
180         if (!hpdp)
181                 return NULL;
182
183         if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
184                 return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
185
186         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
187
188         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
189                                                   pdshift, pshift, ptl))
190                 return NULL;
191
192         return hugepte_offset(*hpdp, addr, pdshift);
193 }
194
195 #ifdef CONFIG_PPC_BOOK3S_64
196 /*
197  * Tracks gpages after the device tree is scanned and before the
198  * huge_boot_pages list is ready on pseries.
199  */
200 #define MAX_NUMBER_GPAGES       1024
201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202 __initdata static unsigned nr_gpages;
203
204 /*
205  * Build list of addresses of gigantic pages.  This function is used in early
206  * boot before the buddy allocator is setup.
207  */
208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209 {
210         if (!addr)
211                 return;
212         while (number_of_pages > 0) {
213                 gpage_freearray[nr_gpages] = addr;
214                 nr_gpages++;
215                 number_of_pages--;
216                 addr += page_size;
217         }
218 }
219
220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221 {
222         struct huge_bootmem_page *m;
223         if (nr_gpages == 0)
224                 return 0;
225         m = phys_to_virt(gpage_freearray[--nr_gpages]);
226         gpage_freearray[nr_gpages] = 0;
227         list_add(&m->list, &huge_boot_pages);
228         m->hstate = hstate;
229         return 1;
230 }
231 #endif
232
233
234 int __init alloc_bootmem_huge_page(struct hstate *h)
235 {
236
237 #ifdef CONFIG_PPC_BOOK3S_64
238         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239                 return pseries_alloc_bootmem_huge_page(h);
240 #endif
241         return __alloc_bootmem_huge_page(h);
242 }
243
244 #ifndef CONFIG_PPC_BOOK3S_64
245 #define HUGEPD_FREELIST_SIZE \
246         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247
248 struct hugepd_freelist {
249         struct rcu_head rcu;
250         unsigned int index;
251         void *ptes[];
252 };
253
254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255
256 static void hugepd_free_rcu_callback(struct rcu_head *head)
257 {
258         struct hugepd_freelist *batch =
259                 container_of(head, struct hugepd_freelist, rcu);
260         unsigned int i;
261
262         for (i = 0; i < batch->index; i++)
263                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
264
265         free_page((unsigned long)batch);
266 }
267
268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269 {
270         struct hugepd_freelist **batchp;
271
272         batchp = &get_cpu_var(hugepd_freelist_cur);
273
274         if (atomic_read(&tlb->mm->mm_users) < 2 ||
275             mm_is_thread_local(tlb->mm)) {
276                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
277                 put_cpu_var(hugepd_freelist_cur);
278                 return;
279         }
280
281         if (*batchp == NULL) {
282                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283                 (*batchp)->index = 0;
284         }
285
286         (*batchp)->ptes[(*batchp)->index++] = hugepte;
287         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288                 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
289                 *batchp = NULL;
290         }
291         put_cpu_var(hugepd_freelist_cur);
292 }
293 #else
294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295 #endif
296
297 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
298                               unsigned long start, unsigned long end,
299                               unsigned long floor, unsigned long ceiling)
300 {
301         pte_t *hugepte = hugepd_page(*hpdp);
302         int i;
303
304         unsigned long pdmask = ~((1UL << pdshift) - 1);
305         unsigned int num_hugepd = 1;
306         unsigned int shift = hugepd_shift(*hpdp);
307
308         /* Note: On fsl the hpdp may be the first of several */
309         if (shift > pdshift)
310                 num_hugepd = 1 << (shift - pdshift);
311
312         start &= pdmask;
313         if (start < floor)
314                 return;
315         if (ceiling) {
316                 ceiling &= pdmask;
317                 if (! ceiling)
318                         return;
319         }
320         if (end - 1 > ceiling - 1)
321                 return;
322
323         for (i = 0; i < num_hugepd; i++, hpdp++)
324                 *hpdp = __hugepd(0);
325
326         if (shift >= pdshift)
327                 hugepd_free(tlb, hugepte);
328         else
329                 pgtable_free_tlb(tlb, hugepte,
330                                  get_hugepd_cache_index(pdshift - shift));
331 }
332
333 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
334                                    unsigned long addr, unsigned long end,
335                                    unsigned long floor, unsigned long ceiling)
336 {
337         unsigned long start = addr;
338         pgtable_t token = pmd_pgtable(*pmd);
339
340         start &= PMD_MASK;
341         if (start < floor)
342                 return;
343         if (ceiling) {
344                 ceiling &= PMD_MASK;
345                 if (!ceiling)
346                         return;
347         }
348         if (end - 1 > ceiling - 1)
349                 return;
350
351         pmd_clear(pmd);
352         pte_free_tlb(tlb, token, addr);
353         mm_dec_nr_ptes(tlb->mm);
354 }
355
356 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
357                                    unsigned long addr, unsigned long end,
358                                    unsigned long floor, unsigned long ceiling)
359 {
360         pmd_t *pmd;
361         unsigned long next;
362         unsigned long start;
363
364         start = addr;
365         do {
366                 unsigned long more;
367
368                 pmd = pmd_offset(pud, addr);
369                 next = pmd_addr_end(addr, end);
370                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
371                         if (pmd_none_or_clear_bad(pmd))
372                                 continue;
373
374                         /*
375                          * if it is not hugepd pointer, we should already find
376                          * it cleared.
377                          */
378                         WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
379
380                         hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
381
382                         continue;
383                 }
384                 /*
385                  * Increment next by the size of the huge mapping since
386                  * there may be more than one entry at this level for a
387                  * single hugepage, but all of them point to
388                  * the same kmem cache that holds the hugepte.
389                  */
390                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
391                 if (more > next)
392                         next = more;
393
394                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
395                                   addr, next, floor, ceiling);
396         } while (addr = next, addr != end);
397
398         start &= PUD_MASK;
399         if (start < floor)
400                 return;
401         if (ceiling) {
402                 ceiling &= PUD_MASK;
403                 if (!ceiling)
404                         return;
405         }
406         if (end - 1 > ceiling - 1)
407                 return;
408
409         pmd = pmd_offset(pud, start);
410         pud_clear(pud);
411         pmd_free_tlb(tlb, pmd, start);
412         mm_dec_nr_pmds(tlb->mm);
413 }
414
415 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
416                                    unsigned long addr, unsigned long end,
417                                    unsigned long floor, unsigned long ceiling)
418 {
419         pud_t *pud;
420         unsigned long next;
421         unsigned long start;
422
423         start = addr;
424         do {
425                 pud = pud_offset(p4d, addr);
426                 next = pud_addr_end(addr, end);
427                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
428                         if (pud_none_or_clear_bad(pud))
429                                 continue;
430                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
431                                                ceiling);
432                 } else {
433                         unsigned long more;
434                         /*
435                          * Increment next by the size of the huge mapping since
436                          * there may be more than one entry at this level for a
437                          * single hugepage, but all of them point to
438                          * the same kmem cache that holds the hugepte.
439                          */
440                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
441                         if (more > next)
442                                 next = more;
443
444                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
445                                           addr, next, floor, ceiling);
446                 }
447         } while (addr = next, addr != end);
448
449         start &= PGDIR_MASK;
450         if (start < floor)
451                 return;
452         if (ceiling) {
453                 ceiling &= PGDIR_MASK;
454                 if (!ceiling)
455                         return;
456         }
457         if (end - 1 > ceiling - 1)
458                 return;
459
460         pud = pud_offset(p4d, start);
461         p4d_clear(p4d);
462         pud_free_tlb(tlb, pud, start);
463         mm_dec_nr_puds(tlb->mm);
464 }
465
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
470                             unsigned long addr, unsigned long end,
471                             unsigned long floor, unsigned long ceiling)
472 {
473         pgd_t *pgd;
474         p4d_t *p4d;
475         unsigned long next;
476
477         /*
478          * Because there are a number of different possible pagetable
479          * layouts for hugepage ranges, we limit knowledge of how
480          * things should be laid out to the allocation path
481          * (huge_pte_alloc(), above).  Everything else works out the
482          * structure as it goes from information in the hugepd
483          * pointers.  That means that we can't here use the
484          * optimization used in the normal page free_pgd_range(), of
485          * checking whether we're actually covering a large enough
486          * range to have to do anything at the top level of the walk
487          * instead of at the bottom.
488          *
489          * To make sense of this, you should probably go read the big
490          * block comment at the top of the normal free_pgd_range(),
491          * too.
492          */
493
494         do {
495                 next = pgd_addr_end(addr, end);
496                 pgd = pgd_offset(tlb->mm, addr);
497                 p4d = p4d_offset(pgd, addr);
498                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
499                         if (p4d_none_or_clear_bad(p4d))
500                                 continue;
501                         hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
502                 } else {
503                         unsigned long more;
504                         /*
505                          * Increment next by the size of the huge mapping since
506                          * there may be more than one entry at the pgd level
507                          * for a single hugepage, but all of them point to the
508                          * same kmem cache that holds the hugepte.
509                          */
510                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
511                         if (more > next)
512                                 next = more;
513
514                         free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
515                                           addr, next, floor, ceiling);
516                 }
517         } while (addr = next, addr != end);
518 }
519
520 struct page *follow_huge_pd(struct vm_area_struct *vma,
521                             unsigned long address, hugepd_t hpd,
522                             int flags, int pdshift)
523 {
524         pte_t *ptep;
525         spinlock_t *ptl;
526         struct page *page = NULL;
527         unsigned long mask;
528         int shift = hugepd_shift(hpd);
529         struct mm_struct *mm = vma->vm_mm;
530
531 retry:
532         /*
533          * hugepage directory entries are protected by mm->page_table_lock
534          * Use this instead of huge_pte_lockptr
535          */
536         ptl = &mm->page_table_lock;
537         spin_lock(ptl);
538
539         ptep = hugepte_offset(hpd, address, pdshift);
540         if (pte_present(*ptep)) {
541                 mask = (1UL << shift) - 1;
542                 page = pte_page(*ptep);
543                 page += ((address & mask) >> PAGE_SHIFT);
544                 if (flags & FOLL_GET)
545                         get_page(page);
546         } else {
547                 if (is_hugetlb_entry_migration(*ptep)) {
548                         spin_unlock(ptl);
549                         __migration_entry_wait(mm, ptep, ptl);
550                         goto retry;
551                 }
552         }
553         spin_unlock(ptl);
554         return page;
555 }
556
557 #ifdef CONFIG_PPC_MM_SLICES
558 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
559                                         unsigned long len, unsigned long pgoff,
560                                         unsigned long flags)
561 {
562         struct hstate *hstate = hstate_file(file);
563         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
564
565 #ifdef CONFIG_PPC_RADIX_MMU
566         if (radix_enabled())
567                 return radix__hugetlb_get_unmapped_area(file, addr, len,
568                                                        pgoff, flags);
569 #endif
570         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
571 }
572 #endif
573
574 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
575 {
576         /* With radix we don't use slice, so derive it from vma*/
577         if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
578                 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
579
580                 return 1UL << mmu_psize_to_shift(psize);
581         }
582         return vma_kernel_pagesize(vma);
583 }
584
585 bool __init arch_hugetlb_valid_size(unsigned long size)
586 {
587         int shift = __ffs(size);
588         int mmu_psize;
589
590         /* Check that it is a page size supported by the hardware and
591          * that it fits within pagetable and slice limits. */
592         if (size <= PAGE_SIZE || !is_power_of_2(size))
593                 return false;
594
595         mmu_psize = check_and_get_huge_psize(shift);
596         if (mmu_psize < 0)
597                 return false;
598
599         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
600
601         return true;
602 }
603
604 static int __init add_huge_page_size(unsigned long long size)
605 {
606         int shift = __ffs(size);
607
608         if (!arch_hugetlb_valid_size((unsigned long)size))
609                 return -EINVAL;
610
611         hugetlb_add_hstate(shift - PAGE_SHIFT);
612         return 0;
613 }
614
615 static int __init hugetlbpage_init(void)
616 {
617         bool configured = false;
618         int psize;
619
620         if (hugetlb_disabled) {
621                 pr_info("HugeTLB support is disabled!\n");
622                 return 0;
623         }
624
625         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
626             !mmu_has_feature(MMU_FTR_16M_PAGE))
627                 return -ENODEV;
628
629         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
630                 unsigned shift;
631                 unsigned pdshift;
632
633                 if (!mmu_psize_defs[psize].shift)
634                         continue;
635
636                 shift = mmu_psize_to_shift(psize);
637
638 #ifdef CONFIG_PPC_BOOK3S_64
639                 if (shift > PGDIR_SHIFT)
640                         continue;
641                 else if (shift > PUD_SHIFT)
642                         pdshift = PGDIR_SHIFT;
643                 else if (shift > PMD_SHIFT)
644                         pdshift = PUD_SHIFT;
645                 else
646                         pdshift = PMD_SHIFT;
647 #else
648                 if (shift < PUD_SHIFT)
649                         pdshift = PMD_SHIFT;
650                 else if (shift < PGDIR_SHIFT)
651                         pdshift = PUD_SHIFT;
652                 else
653                         pdshift = PGDIR_SHIFT;
654 #endif
655
656                 if (add_huge_page_size(1ULL << shift) < 0)
657                         continue;
658                 /*
659                  * if we have pdshift and shift value same, we don't
660                  * use pgt cache for hugepd.
661                  */
662                 if (pdshift > shift) {
663                         if (!IS_ENABLED(CONFIG_PPC_8xx))
664                                 pgtable_cache_add(pdshift - shift);
665                 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
666                            IS_ENABLED(CONFIG_PPC_8xx)) {
667                         pgtable_cache_add(PTE_T_ORDER);
668                 }
669
670                 configured = true;
671         }
672
673         if (configured) {
674                 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
675                         hugetlbpage_init_default();
676         } else
677                 pr_info("Failed to initialize. Disabling HugeTLB");
678
679         return 0;
680 }
681
682 arch_initcall(hugetlbpage_init);
683
684 void flush_dcache_icache_hugepage(struct page *page)
685 {
686         int i;
687         void *start;
688
689         BUG_ON(!PageCompound(page));
690
691         for (i = 0; i < compound_nr(page); i++) {
692                 if (!PageHighMem(page)) {
693                         __flush_dcache_icache(page_address(page+i));
694                 } else {
695                         start = kmap_atomic(page+i);
696                         __flush_dcache_icache(start);
697                         kunmap_atomic(start);
698                 }
699         }
700 }
701
702 void __init gigantic_hugetlb_cma_reserve(void)
703 {
704         unsigned long order = 0;
705
706         if (radix_enabled())
707                 order = PUD_SHIFT - PAGE_SHIFT;
708         else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
709                 /*
710                  * For pseries we do use ibm,expected#pages for reserving 16G pages.
711                  */
712                 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
713
714         if (order) {
715                 VM_WARN_ON(order < MAX_ORDER);
716                 hugetlb_cma_reserve(order);
717         }
718 }