GNU Linux-libre 5.19-rc6-gnu
[releases.git] / arch / powerpc / mm / book3s64 / radix_pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Page table handling routines for radix page table.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20
21 #include <asm/pgalloc.h>
22 #include <asm/mmu_context.h>
23 #include <asm/dma.h>
24 #include <asm/machdep.h>
25 #include <asm/mmu.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/smp.h>
30 #include <asm/trace.h>
31 #include <asm/uaccess.h>
32 #include <asm/ultravisor.h>
33
34 #include <trace/events/thp.h>
35
36 unsigned int mmu_base_pid;
37 unsigned long radix_mem_block_size __ro_after_init;
38
39 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
40                         unsigned long region_start, unsigned long region_end)
41 {
42         phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
43         phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
44         void *ptr;
45
46         if (region_start)
47                 min_addr = region_start;
48         if (region_end)
49                 max_addr = region_end;
50
51         ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
52
53         if (!ptr)
54                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
55                       __func__, size, size, nid, &min_addr, &max_addr);
56
57         return ptr;
58 }
59
60 /*
61  * When allocating pud or pmd pointers, we allocate a complete page
62  * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
63  * is to ensure that the page obtained from the memblock allocator
64  * can be completely used as page table page and can be freed
65  * correctly when the page table entries are removed.
66  */
67 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
68                           pgprot_t flags,
69                           unsigned int map_page_size,
70                           int nid,
71                           unsigned long region_start, unsigned long region_end)
72 {
73         unsigned long pfn = pa >> PAGE_SHIFT;
74         pgd_t *pgdp;
75         p4d_t *p4dp;
76         pud_t *pudp;
77         pmd_t *pmdp;
78         pte_t *ptep;
79
80         pgdp = pgd_offset_k(ea);
81         p4dp = p4d_offset(pgdp, ea);
82         if (p4d_none(*p4dp)) {
83                 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
84                                            region_start, region_end);
85                 p4d_populate(&init_mm, p4dp, pudp);
86         }
87         pudp = pud_offset(p4dp, ea);
88         if (map_page_size == PUD_SIZE) {
89                 ptep = (pte_t *)pudp;
90                 goto set_the_pte;
91         }
92         if (pud_none(*pudp)) {
93                 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
94                                            region_end);
95                 pud_populate(&init_mm, pudp, pmdp);
96         }
97         pmdp = pmd_offset(pudp, ea);
98         if (map_page_size == PMD_SIZE) {
99                 ptep = pmdp_ptep(pmdp);
100                 goto set_the_pte;
101         }
102         if (!pmd_present(*pmdp)) {
103                 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
104                                                 region_start, region_end);
105                 pmd_populate_kernel(&init_mm, pmdp, ptep);
106         }
107         ptep = pte_offset_kernel(pmdp, ea);
108
109 set_the_pte:
110         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
111         asm volatile("ptesync": : :"memory");
112         return 0;
113 }
114
115 /*
116  * nid, region_start, and region_end are hints to try to place the page
117  * table memory in the same node or region.
118  */
119 static int __map_kernel_page(unsigned long ea, unsigned long pa,
120                           pgprot_t flags,
121                           unsigned int map_page_size,
122                           int nid,
123                           unsigned long region_start, unsigned long region_end)
124 {
125         unsigned long pfn = pa >> PAGE_SHIFT;
126         pgd_t *pgdp;
127         p4d_t *p4dp;
128         pud_t *pudp;
129         pmd_t *pmdp;
130         pte_t *ptep;
131         /*
132          * Make sure task size is correct as per the max adddr
133          */
134         BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
135
136 #ifdef CONFIG_PPC_64K_PAGES
137         BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
138 #endif
139
140         if (unlikely(!slab_is_available()))
141                 return early_map_kernel_page(ea, pa, flags, map_page_size,
142                                                 nid, region_start, region_end);
143
144         /*
145          * Should make page table allocation functions be able to take a
146          * node, so we can place kernel page tables on the right nodes after
147          * boot.
148          */
149         pgdp = pgd_offset_k(ea);
150         p4dp = p4d_offset(pgdp, ea);
151         pudp = pud_alloc(&init_mm, p4dp, ea);
152         if (!pudp)
153                 return -ENOMEM;
154         if (map_page_size == PUD_SIZE) {
155                 ptep = (pte_t *)pudp;
156                 goto set_the_pte;
157         }
158         pmdp = pmd_alloc(&init_mm, pudp, ea);
159         if (!pmdp)
160                 return -ENOMEM;
161         if (map_page_size == PMD_SIZE) {
162                 ptep = pmdp_ptep(pmdp);
163                 goto set_the_pte;
164         }
165         ptep = pte_alloc_kernel(pmdp, ea);
166         if (!ptep)
167                 return -ENOMEM;
168
169 set_the_pte:
170         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
171         asm volatile("ptesync": : :"memory");
172         return 0;
173 }
174
175 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
176                           pgprot_t flags,
177                           unsigned int map_page_size)
178 {
179         return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
180 }
181
182 #ifdef CONFIG_STRICT_KERNEL_RWX
183 static void radix__change_memory_range(unsigned long start, unsigned long end,
184                                        unsigned long clear)
185 {
186         unsigned long idx;
187         pgd_t *pgdp;
188         p4d_t *p4dp;
189         pud_t *pudp;
190         pmd_t *pmdp;
191         pte_t *ptep;
192
193         start = ALIGN_DOWN(start, PAGE_SIZE);
194         end = PAGE_ALIGN(end); // aligns up
195
196         pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
197                  start, end, clear);
198
199         for (idx = start; idx < end; idx += PAGE_SIZE) {
200                 pgdp = pgd_offset_k(idx);
201                 p4dp = p4d_offset(pgdp, idx);
202                 pudp = pud_alloc(&init_mm, p4dp, idx);
203                 if (!pudp)
204                         continue;
205                 if (pud_is_leaf(*pudp)) {
206                         ptep = (pte_t *)pudp;
207                         goto update_the_pte;
208                 }
209                 pmdp = pmd_alloc(&init_mm, pudp, idx);
210                 if (!pmdp)
211                         continue;
212                 if (pmd_is_leaf(*pmdp)) {
213                         ptep = pmdp_ptep(pmdp);
214                         goto update_the_pte;
215                 }
216                 ptep = pte_alloc_kernel(pmdp, idx);
217                 if (!ptep)
218                         continue;
219 update_the_pte:
220                 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
221         }
222
223         radix__flush_tlb_kernel_range(start, end);
224 }
225
226 void radix__mark_rodata_ro(void)
227 {
228         unsigned long start, end;
229
230         start = (unsigned long)_stext;
231         end = (unsigned long)__init_begin;
232
233         radix__change_memory_range(start, end, _PAGE_WRITE);
234 }
235
236 void radix__mark_initmem_nx(void)
237 {
238         unsigned long start = (unsigned long)__init_begin;
239         unsigned long end = (unsigned long)__init_end;
240
241         radix__change_memory_range(start, end, _PAGE_EXEC);
242 }
243 #endif /* CONFIG_STRICT_KERNEL_RWX */
244
245 static inline void __meminit
246 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
247 {
248         char buf[10];
249
250         if (end <= start)
251                 return;
252
253         string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
254
255         pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
256                 exec ? " (exec)" : "");
257 }
258
259 static unsigned long next_boundary(unsigned long addr, unsigned long end)
260 {
261 #ifdef CONFIG_STRICT_KERNEL_RWX
262         if (addr < __pa_symbol(__init_begin))
263                 return __pa_symbol(__init_begin);
264 #endif
265         return end;
266 }
267
268 static int __meminit create_physical_mapping(unsigned long start,
269                                              unsigned long end,
270                                              unsigned long max_mapping_size,
271                                              int nid, pgprot_t _prot)
272 {
273         unsigned long vaddr, addr, mapping_size = 0;
274         bool prev_exec, exec = false;
275         pgprot_t prot;
276         int psize;
277
278         start = ALIGN(start, PAGE_SIZE);
279         end   = ALIGN_DOWN(end, PAGE_SIZE);
280         for (addr = start; addr < end; addr += mapping_size) {
281                 unsigned long gap, previous_size;
282                 int rc;
283
284                 gap = next_boundary(addr, end) - addr;
285                 if (gap > max_mapping_size)
286                         gap = max_mapping_size;
287                 previous_size = mapping_size;
288                 prev_exec = exec;
289
290                 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
291                     mmu_psize_defs[MMU_PAGE_1G].shift) {
292                         mapping_size = PUD_SIZE;
293                         psize = MMU_PAGE_1G;
294                 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
295                            mmu_psize_defs[MMU_PAGE_2M].shift) {
296                         mapping_size = PMD_SIZE;
297                         psize = MMU_PAGE_2M;
298                 } else {
299                         mapping_size = PAGE_SIZE;
300                         psize = mmu_virtual_psize;
301                 }
302
303                 vaddr = (unsigned long)__va(addr);
304
305                 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
306                     overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
307                         prot = PAGE_KERNEL_X;
308                         exec = true;
309                 } else {
310                         prot = _prot;
311                         exec = false;
312                 }
313
314                 if (mapping_size != previous_size || exec != prev_exec) {
315                         print_mapping(start, addr, previous_size, prev_exec);
316                         start = addr;
317                 }
318
319                 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
320                 if (rc)
321                         return rc;
322
323                 update_page_count(psize, 1);
324         }
325
326         print_mapping(start, addr, mapping_size, exec);
327         return 0;
328 }
329
330 static void __init radix_init_pgtable(void)
331 {
332         unsigned long rts_field;
333         phys_addr_t start, end;
334         u64 i;
335
336         /* We don't support slb for radix */
337         slb_set_size(0);
338
339         /*
340          * Create the linear mapping
341          */
342         for_each_mem_range(i, &start, &end) {
343                 /*
344                  * The memblock allocator  is up at this point, so the
345                  * page tables will be allocated within the range. No
346                  * need or a node (which we don't have yet).
347                  */
348
349                 if (end >= RADIX_VMALLOC_START) {
350                         pr_warn("Outside the supported range\n");
351                         continue;
352                 }
353
354                 WARN_ON(create_physical_mapping(start, end,
355                                                 radix_mem_block_size,
356                                                 -1, PAGE_KERNEL));
357         }
358
359         if (!cpu_has_feature(CPU_FTR_HVMODE) &&
360                         cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
361                 /*
362                  * Older versions of KVM on these machines prefer if the
363                  * guest only uses the low 19 PID bits.
364                  */
365                 mmu_pid_bits = 19;
366         }
367         mmu_base_pid = 1;
368
369         /*
370          * Allocate Partition table and process table for the
371          * host.
372          */
373         BUG_ON(PRTB_SIZE_SHIFT > 36);
374         process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
375         /*
376          * Fill in the process table.
377          */
378         rts_field = radix__get_tree_size();
379         process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
380
381         /*
382          * The init_mm context is given the first available (non-zero) PID,
383          * which is the "guard PID" and contains no page table. PIDR should
384          * never be set to zero because that duplicates the kernel address
385          * space at the 0x0... offset (quadrant 0)!
386          *
387          * An arbitrary PID that may later be allocated by the PID allocator
388          * for userspace processes must not be used either, because that
389          * would cause stale user mappings for that PID on CPUs outside of
390          * the TLB invalidation scheme (because it won't be in mm_cpumask).
391          *
392          * So permanently carve out one PID for the purpose of a guard PID.
393          */
394         init_mm.context.id = mmu_base_pid;
395         mmu_base_pid++;
396 }
397
398 static void __init radix_init_partition_table(void)
399 {
400         unsigned long rts_field, dw0, dw1;
401
402         mmu_partition_table_init();
403         rts_field = radix__get_tree_size();
404         dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
405         dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
406         mmu_partition_table_set_entry(0, dw0, dw1, false);
407
408         pr_info("Initializing Radix MMU\n");
409 }
410
411 static int __init get_idx_from_shift(unsigned int shift)
412 {
413         int idx = -1;
414
415         switch (shift) {
416         case 0xc:
417                 idx = MMU_PAGE_4K;
418                 break;
419         case 0x10:
420                 idx = MMU_PAGE_64K;
421                 break;
422         case 0x15:
423                 idx = MMU_PAGE_2M;
424                 break;
425         case 0x1e:
426                 idx = MMU_PAGE_1G;
427                 break;
428         }
429         return idx;
430 }
431
432 static int __init radix_dt_scan_page_sizes(unsigned long node,
433                                            const char *uname, int depth,
434                                            void *data)
435 {
436         int size = 0;
437         int shift, idx;
438         unsigned int ap;
439         const __be32 *prop;
440         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
441
442         /* We are scanning "cpu" nodes only */
443         if (type == NULL || strcmp(type, "cpu") != 0)
444                 return 0;
445
446         /* Grab page size encodings */
447         prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
448         if (!prop)
449                 return 0;
450
451         pr_info("Page sizes from device-tree:\n");
452         for (; size >= 4; size -= 4, ++prop) {
453
454                 struct mmu_psize_def *def;
455
456                 /* top 3 bit is AP encoding */
457                 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
458                 ap = be32_to_cpu(prop[0]) >> 29;
459                 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
460
461                 idx = get_idx_from_shift(shift);
462                 if (idx < 0)
463                         continue;
464
465                 def = &mmu_psize_defs[idx];
466                 def->shift = shift;
467                 def->ap  = ap;
468                 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
469         }
470
471         /* needed ? */
472         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
473         return 1;
474 }
475
476 #ifdef CONFIG_MEMORY_HOTPLUG
477 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
478                                           depth, void *data)
479 {
480         unsigned long *mem_block_size = (unsigned long *)data;
481         const __be32 *prop;
482         int len;
483
484         if (depth != 1)
485                 return 0;
486
487         if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
488                 return 0;
489
490         prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
491
492         if (!prop || len < dt_root_size_cells * sizeof(__be32))
493                 /*
494                  * Nothing in the device tree
495                  */
496                 *mem_block_size = MIN_MEMORY_BLOCK_SIZE;
497         else
498                 *mem_block_size = of_read_number(prop, dt_root_size_cells);
499         return 1;
500 }
501
502 static unsigned long __init radix_memory_block_size(void)
503 {
504         unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
505
506         /*
507          * OPAL firmware feature is set by now. Hence we are ok
508          * to test OPAL feature.
509          */
510         if (firmware_has_feature(FW_FEATURE_OPAL))
511                 mem_block_size = 1UL * 1024 * 1024 * 1024;
512         else
513                 of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
514
515         return mem_block_size;
516 }
517
518 #else   /* CONFIG_MEMORY_HOTPLUG */
519
520 static unsigned long __init radix_memory_block_size(void)
521 {
522         return 1UL * 1024 * 1024 * 1024;
523 }
524
525 #endif /* CONFIG_MEMORY_HOTPLUG */
526
527
528 void __init radix__early_init_devtree(void)
529 {
530         int rc;
531
532         /*
533          * Try to find the available page sizes in the device-tree
534          */
535         rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
536         if (!rc) {
537                 /*
538                  * No page size details found in device tree.
539                  * Let's assume we have page 4k and 64k support
540                  */
541                 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
542                 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
543                 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
544                         psize_to_rpti_pgsize(MMU_PAGE_4K);
545
546                 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
547                 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
548                 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
549                         psize_to_rpti_pgsize(MMU_PAGE_64K);
550         }
551
552         /*
553          * Max mapping size used when mapping pages. We don't use
554          * ppc_md.memory_block_size() here because this get called
555          * early and we don't have machine probe called yet. Also
556          * the pseries implementation only check for ibm,lmb-size.
557          * All hypervisor supporting radix do expose that device
558          * tree node.
559          */
560         radix_mem_block_size = radix_memory_block_size();
561         return;
562 }
563
564 void __init radix__early_init_mmu(void)
565 {
566         unsigned long lpcr;
567
568 #ifdef CONFIG_PPC_64S_HASH_MMU
569 #ifdef CONFIG_PPC_64K_PAGES
570         /* PAGE_SIZE mappings */
571         mmu_virtual_psize = MMU_PAGE_64K;
572 #else
573         mmu_virtual_psize = MMU_PAGE_4K;
574 #endif
575
576 #ifdef CONFIG_SPARSEMEM_VMEMMAP
577         /* vmemmap mapping */
578         if (mmu_psize_defs[MMU_PAGE_2M].shift) {
579                 /*
580                  * map vmemmap using 2M if available
581                  */
582                 mmu_vmemmap_psize = MMU_PAGE_2M;
583         } else
584                 mmu_vmemmap_psize = mmu_virtual_psize;
585 #endif
586 #endif
587         /*
588          * initialize page table size
589          */
590         __pte_index_size = RADIX_PTE_INDEX_SIZE;
591         __pmd_index_size = RADIX_PMD_INDEX_SIZE;
592         __pud_index_size = RADIX_PUD_INDEX_SIZE;
593         __pgd_index_size = RADIX_PGD_INDEX_SIZE;
594         __pud_cache_index = RADIX_PUD_INDEX_SIZE;
595         __pte_table_size = RADIX_PTE_TABLE_SIZE;
596         __pmd_table_size = RADIX_PMD_TABLE_SIZE;
597         __pud_table_size = RADIX_PUD_TABLE_SIZE;
598         __pgd_table_size = RADIX_PGD_TABLE_SIZE;
599
600         __pmd_val_bits = RADIX_PMD_VAL_BITS;
601         __pud_val_bits = RADIX_PUD_VAL_BITS;
602         __pgd_val_bits = RADIX_PGD_VAL_BITS;
603
604         __kernel_virt_start = RADIX_KERN_VIRT_START;
605         __vmalloc_start = RADIX_VMALLOC_START;
606         __vmalloc_end = RADIX_VMALLOC_END;
607         __kernel_io_start = RADIX_KERN_IO_START;
608         __kernel_io_end = RADIX_KERN_IO_END;
609         vmemmap = (struct page *)RADIX_VMEMMAP_START;
610         ioremap_bot = IOREMAP_BASE;
611
612 #ifdef CONFIG_PCI
613         pci_io_base = ISA_IO_BASE;
614 #endif
615         __pte_frag_nr = RADIX_PTE_FRAG_NR;
616         __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
617         __pmd_frag_nr = RADIX_PMD_FRAG_NR;
618         __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
619
620         radix_init_pgtable();
621
622         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
623                 lpcr = mfspr(SPRN_LPCR);
624                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
625                 radix_init_partition_table();
626         } else {
627                 radix_init_pseries();
628         }
629
630         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
631
632         /* Switch to the guard PID before turning on MMU */
633         radix__switch_mmu_context(NULL, &init_mm);
634         tlbiel_all();
635 }
636
637 void radix__early_init_mmu_secondary(void)
638 {
639         unsigned long lpcr;
640         /*
641          * update partition table control register and UPRT
642          */
643         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
644                 lpcr = mfspr(SPRN_LPCR);
645                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
646
647                 set_ptcr_when_no_uv(__pa(partition_tb) |
648                                     (PATB_SIZE_SHIFT - 12));
649         }
650
651         radix__switch_mmu_context(NULL, &init_mm);
652         tlbiel_all();
653
654         /* Make sure userspace can't change the AMR */
655         mtspr(SPRN_UAMOR, 0);
656 }
657
658 /* Called during kexec sequence with MMU off */
659 notrace void radix__mmu_cleanup_all(void)
660 {
661         unsigned long lpcr;
662
663         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
664                 lpcr = mfspr(SPRN_LPCR);
665                 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
666                 set_ptcr_when_no_uv(0);
667                 powernv_set_nmmu_ptcr(0);
668                 radix__flush_tlb_all();
669         }
670 }
671
672 #ifdef CONFIG_MEMORY_HOTPLUG
673 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
674 {
675         pte_t *pte;
676         int i;
677
678         for (i = 0; i < PTRS_PER_PTE; i++) {
679                 pte = pte_start + i;
680                 if (!pte_none(*pte))
681                         return;
682         }
683
684         pte_free_kernel(&init_mm, pte_start);
685         pmd_clear(pmd);
686 }
687
688 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
689 {
690         pmd_t *pmd;
691         int i;
692
693         for (i = 0; i < PTRS_PER_PMD; i++) {
694                 pmd = pmd_start + i;
695                 if (!pmd_none(*pmd))
696                         return;
697         }
698
699         pmd_free(&init_mm, pmd_start);
700         pud_clear(pud);
701 }
702
703 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
704 {
705         pud_t *pud;
706         int i;
707
708         for (i = 0; i < PTRS_PER_PUD; i++) {
709                 pud = pud_start + i;
710                 if (!pud_none(*pud))
711                         return;
712         }
713
714         pud_free(&init_mm, pud_start);
715         p4d_clear(p4d);
716 }
717
718 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
719                              unsigned long end)
720 {
721         unsigned long next;
722         pte_t *pte;
723
724         pte = pte_start + pte_index(addr);
725         for (; addr < end; addr = next, pte++) {
726                 next = (addr + PAGE_SIZE) & PAGE_MASK;
727                 if (next > end)
728                         next = end;
729
730                 if (!pte_present(*pte))
731                         continue;
732
733                 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
734                         /*
735                          * The vmemmap_free() and remove_section_mapping()
736                          * codepaths call us with aligned addresses.
737                          */
738                         WARN_ONCE(1, "%s: unaligned range\n", __func__);
739                         continue;
740                 }
741
742                 pte_clear(&init_mm, addr, pte);
743         }
744 }
745
746 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
747                              unsigned long end)
748 {
749         unsigned long next;
750         pte_t *pte_base;
751         pmd_t *pmd;
752
753         pmd = pmd_start + pmd_index(addr);
754         for (; addr < end; addr = next, pmd++) {
755                 next = pmd_addr_end(addr, end);
756
757                 if (!pmd_present(*pmd))
758                         continue;
759
760                 if (pmd_is_leaf(*pmd)) {
761                         if (!IS_ALIGNED(addr, PMD_SIZE) ||
762                             !IS_ALIGNED(next, PMD_SIZE)) {
763                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
764                                 continue;
765                         }
766                         pte_clear(&init_mm, addr, (pte_t *)pmd);
767                         continue;
768                 }
769
770                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
771                 remove_pte_table(pte_base, addr, next);
772                 free_pte_table(pte_base, pmd);
773         }
774 }
775
776 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
777                              unsigned long end)
778 {
779         unsigned long next;
780         pmd_t *pmd_base;
781         pud_t *pud;
782
783         pud = pud_start + pud_index(addr);
784         for (; addr < end; addr = next, pud++) {
785                 next = pud_addr_end(addr, end);
786
787                 if (!pud_present(*pud))
788                         continue;
789
790                 if (pud_is_leaf(*pud)) {
791                         if (!IS_ALIGNED(addr, PUD_SIZE) ||
792                             !IS_ALIGNED(next, PUD_SIZE)) {
793                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
794                                 continue;
795                         }
796                         pte_clear(&init_mm, addr, (pte_t *)pud);
797                         continue;
798                 }
799
800                 pmd_base = pud_pgtable(*pud);
801                 remove_pmd_table(pmd_base, addr, next);
802                 free_pmd_table(pmd_base, pud);
803         }
804 }
805
806 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
807 {
808         unsigned long addr, next;
809         pud_t *pud_base;
810         pgd_t *pgd;
811         p4d_t *p4d;
812
813         spin_lock(&init_mm.page_table_lock);
814
815         for (addr = start; addr < end; addr = next) {
816                 next = pgd_addr_end(addr, end);
817
818                 pgd = pgd_offset_k(addr);
819                 p4d = p4d_offset(pgd, addr);
820                 if (!p4d_present(*p4d))
821                         continue;
822
823                 if (p4d_is_leaf(*p4d)) {
824                         if (!IS_ALIGNED(addr, P4D_SIZE) ||
825                             !IS_ALIGNED(next, P4D_SIZE)) {
826                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
827                                 continue;
828                         }
829
830                         pte_clear(&init_mm, addr, (pte_t *)pgd);
831                         continue;
832                 }
833
834                 pud_base = p4d_pgtable(*p4d);
835                 remove_pud_table(pud_base, addr, next);
836                 free_pud_table(pud_base, p4d);
837         }
838
839         spin_unlock(&init_mm.page_table_lock);
840         radix__flush_tlb_kernel_range(start, end);
841 }
842
843 int __meminit radix__create_section_mapping(unsigned long start,
844                                             unsigned long end, int nid,
845                                             pgprot_t prot)
846 {
847         if (end >= RADIX_VMALLOC_START) {
848                 pr_warn("Outside the supported range\n");
849                 return -1;
850         }
851
852         return create_physical_mapping(__pa(start), __pa(end),
853                                        radix_mem_block_size, nid, prot);
854 }
855
856 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
857 {
858         remove_pagetable(start, end);
859         return 0;
860 }
861 #endif /* CONFIG_MEMORY_HOTPLUG */
862
863 #ifdef CONFIG_SPARSEMEM_VMEMMAP
864 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
865                                  pgprot_t flags, unsigned int map_page_size,
866                                  int nid)
867 {
868         return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
869 }
870
871 int __meminit radix__vmemmap_create_mapping(unsigned long start,
872                                       unsigned long page_size,
873                                       unsigned long phys)
874 {
875         /* Create a PTE encoding */
876         unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
877         int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
878         int ret;
879
880         if ((start + page_size) >= RADIX_VMEMMAP_END) {
881                 pr_warn("Outside the supported range\n");
882                 return -1;
883         }
884
885         ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
886         BUG_ON(ret);
887
888         return 0;
889 }
890
891 #ifdef CONFIG_MEMORY_HOTPLUG
892 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
893 {
894         remove_pagetable(start, start + page_size);
895 }
896 #endif
897 #endif
898
899 #ifdef CONFIG_DEBUG_PAGEALLOC
900 void radix__kernel_map_pages(struct page *page, int numpages, int enable)
901 {
902         pr_warn_once("DEBUG_PAGEALLOC not supported in radix mode\n");
903 }
904 #endif
905
906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
907
908 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
909                                   pmd_t *pmdp, unsigned long clr,
910                                   unsigned long set)
911 {
912         unsigned long old;
913
914 #ifdef CONFIG_DEBUG_VM
915         WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
916         assert_spin_locked(pmd_lockptr(mm, pmdp));
917 #endif
918
919         old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
920         trace_hugepage_update(addr, old, clr, set);
921
922         return old;
923 }
924
925 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
926                         pmd_t *pmdp)
927
928 {
929         pmd_t pmd;
930
931         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
932         VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
933         VM_BUG_ON(pmd_devmap(*pmdp));
934         /*
935          * khugepaged calls this for normal pmd
936          */
937         pmd = *pmdp;
938         pmd_clear(pmdp);
939
940         /*
941          * pmdp collapse_flush need to ensure that there are no parallel gup
942          * walk after this call. This is needed so that we can have stable
943          * page ref count when collapsing a page. We don't allow a collapse page
944          * if we have gup taken on the page. We can ensure that by sending IPI
945          * because gup walk happens with IRQ disabled.
946          */
947         serialize_against_pte_lookup(vma->vm_mm);
948
949         radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
950
951         return pmd;
952 }
953
954 /*
955  * For us pgtable_t is pte_t *. Inorder to save the deposisted
956  * page table, we consider the allocated page table as a list
957  * head. On withdraw we need to make sure we zero out the used
958  * list_head memory area.
959  */
960 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
961                                  pgtable_t pgtable)
962 {
963         struct list_head *lh = (struct list_head *) pgtable;
964
965         assert_spin_locked(pmd_lockptr(mm, pmdp));
966
967         /* FIFO */
968         if (!pmd_huge_pte(mm, pmdp))
969                 INIT_LIST_HEAD(lh);
970         else
971                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
972         pmd_huge_pte(mm, pmdp) = pgtable;
973 }
974
975 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
976 {
977         pte_t *ptep;
978         pgtable_t pgtable;
979         struct list_head *lh;
980
981         assert_spin_locked(pmd_lockptr(mm, pmdp));
982
983         /* FIFO */
984         pgtable = pmd_huge_pte(mm, pmdp);
985         lh = (struct list_head *) pgtable;
986         if (list_empty(lh))
987                 pmd_huge_pte(mm, pmdp) = NULL;
988         else {
989                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
990                 list_del(lh);
991         }
992         ptep = (pte_t *) pgtable;
993         *ptep = __pte(0);
994         ptep++;
995         *ptep = __pte(0);
996         return pgtable;
997 }
998
999 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1000                                      unsigned long addr, pmd_t *pmdp)
1001 {
1002         pmd_t old_pmd;
1003         unsigned long old;
1004
1005         old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1006         old_pmd = __pmd(old);
1007         return old_pmd;
1008 }
1009
1010 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1011
1012 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1013                                   pte_t entry, unsigned long address, int psize)
1014 {
1015         struct mm_struct *mm = vma->vm_mm;
1016         unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1017                                               _PAGE_RW | _PAGE_EXEC);
1018
1019         unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1020         /*
1021          * To avoid NMMU hang while relaxing access, we need mark
1022          * the pte invalid in between.
1023          */
1024         if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1025                 unsigned long old_pte, new_pte;
1026
1027                 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1028                 /*
1029                  * new value of pte
1030                  */
1031                 new_pte = old_pte | set;
1032                 radix__flush_tlb_page_psize(mm, address, psize);
1033                 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1034         } else {
1035                 __radix_pte_update(ptep, 0, set);
1036                 /*
1037                  * Book3S does not require a TLB flush when relaxing access
1038                  * restrictions when the address space is not attached to a
1039                  * NMMU, because the core MMU will reload the pte after taking
1040                  * an access fault, which is defined by the architecture.
1041                  */
1042         }
1043         /* See ptesync comment in radix__set_pte_at */
1044 }
1045
1046 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1047                                     unsigned long addr, pte_t *ptep,
1048                                     pte_t old_pte, pte_t pte)
1049 {
1050         struct mm_struct *mm = vma->vm_mm;
1051
1052         /*
1053          * To avoid NMMU hang while relaxing access we need to flush the tlb before
1054          * we set the new value. We need to do this only for radix, because hash
1055          * translation does flush when updating the linux pte.
1056          */
1057         if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1058             (atomic_read(&mm->context.copros) > 0))
1059                 radix__flush_tlb_page(vma, addr);
1060
1061         set_pte_at(mm, addr, ptep, pte);
1062 }
1063
1064 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1065 {
1066         pte_t *ptep = (pte_t *)pud;
1067         pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1068
1069         if (!radix_enabled())
1070                 return 0;
1071
1072         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1073
1074         return 1;
1075 }
1076
1077 int pud_clear_huge(pud_t *pud)
1078 {
1079         if (pud_is_leaf(*pud)) {
1080                 pud_clear(pud);
1081                 return 1;
1082         }
1083
1084         return 0;
1085 }
1086
1087 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1088 {
1089         pmd_t *pmd;
1090         int i;
1091
1092         pmd = pud_pgtable(*pud);
1093         pud_clear(pud);
1094
1095         flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1096
1097         for (i = 0; i < PTRS_PER_PMD; i++) {
1098                 if (!pmd_none(pmd[i])) {
1099                         pte_t *pte;
1100                         pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1101
1102                         pte_free_kernel(&init_mm, pte);
1103                 }
1104         }
1105
1106         pmd_free(&init_mm, pmd);
1107
1108         return 1;
1109 }
1110
1111 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1112 {
1113         pte_t *ptep = (pte_t *)pmd;
1114         pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1115
1116         if (!radix_enabled())
1117                 return 0;
1118
1119         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1120
1121         return 1;
1122 }
1123
1124 int pmd_clear_huge(pmd_t *pmd)
1125 {
1126         if (pmd_is_leaf(*pmd)) {
1127                 pmd_clear(pmd);
1128                 return 1;
1129         }
1130
1131         return 0;
1132 }
1133
1134 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1135 {
1136         pte_t *pte;
1137
1138         pte = (pte_t *)pmd_page_vaddr(*pmd);
1139         pmd_clear(pmd);
1140
1141         flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1142
1143         pte_free_kernel(&init_mm, pte);
1144
1145         return 1;
1146 }