arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / powerpc / mm / book3s64 / mmu_context.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  MMU context allocation for 64-bit kernels.
4  *
5  *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
6  */
7
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/pkeys.h>
15 #include <linux/spinlock.h>
16 #include <linux/idr.h>
17 #include <linux/export.h>
18 #include <linux/gfp.h>
19 #include <linux/slab.h>
20 #include <linux/cpu.h>
21
22 #include <asm/mmu_context.h>
23 #include <asm/pgalloc.h>
24
25 #include "internal.h"
26
27 static DEFINE_IDA(mmu_context_ida);
28
29 static int alloc_context_id(int min_id, int max_id)
30 {
31         return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
32 }
33
34 #ifdef CONFIG_PPC_64S_HASH_MMU
35 void __init hash__reserve_context_id(int id)
36 {
37         int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
38
39         WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
40 }
41
42 int hash__alloc_context_id(void)
43 {
44         unsigned long max;
45
46         if (mmu_has_feature(MMU_FTR_68_BIT_VA))
47                 max = MAX_USER_CONTEXT;
48         else
49                 max = MAX_USER_CONTEXT_65BIT_VA;
50
51         return alloc_context_id(MIN_USER_CONTEXT, max);
52 }
53 EXPORT_SYMBOL_GPL(hash__alloc_context_id);
54 #endif
55
56 #ifdef CONFIG_PPC_64S_HASH_MMU
57 static int realloc_context_ids(mm_context_t *ctx)
58 {
59         int i, id;
60
61         /*
62          * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
63          * there wasn't one allocated previously (which happens in the exec
64          * case where ctx is newly allocated).
65          *
66          * We have to be a bit careful here. We must keep the existing ids in
67          * the array, so that we can test if they're non-zero to decide if we
68          * need to allocate a new one. However in case of error we must free the
69          * ids we've allocated but *not* any of the existing ones (or risk a
70          * UAF). That's why we decrement i at the start of the error handling
71          * loop, to skip the id that we just tested but couldn't reallocate.
72          */
73         for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
74                 if (i == 0 || ctx->extended_id[i]) {
75                         id = hash__alloc_context_id();
76                         if (id < 0)
77                                 goto error;
78
79                         ctx->extended_id[i] = id;
80                 }
81         }
82
83         /* The caller expects us to return id */
84         return ctx->id;
85
86 error:
87         for (i--; i >= 0; i--) {
88                 if (ctx->extended_id[i])
89                         ida_free(&mmu_context_ida, ctx->extended_id[i]);
90         }
91
92         return id;
93 }
94
95 static int hash__init_new_context(struct mm_struct *mm)
96 {
97         int index;
98
99         mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
100                                            GFP_KERNEL);
101         if (!mm->context.hash_context)
102                 return -ENOMEM;
103
104         /*
105          * The old code would re-promote on fork, we don't do that when using
106          * slices as it could cause problem promoting slices that have been
107          * forced down to 4K.
108          *
109          * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
110          * explicitly against context.id == 0. This ensures that we properly
111          * initialize context slice details for newly allocated mm's (which will
112          * have id == 0) and don't alter context slice inherited via fork (which
113          * will have id != 0).
114          *
115          * We should not be calling init_new_context() on init_mm. Hence a
116          * check against 0 is OK.
117          */
118         if (mm->context.id == 0) {
119                 memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
120                 slice_init_new_context_exec(mm);
121         } else {
122                 /* This is fork. Copy hash_context details from current->mm */
123                 memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
124 #ifdef CONFIG_PPC_SUBPAGE_PROT
125                 /* inherit subpage prot details if we have one. */
126                 if (current->mm->context.hash_context->spt) {
127                         mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
128                                                                 GFP_KERNEL);
129                         if (!mm->context.hash_context->spt) {
130                                 kfree(mm->context.hash_context);
131                                 return -ENOMEM;
132                         }
133                 }
134 #endif
135         }
136
137         index = realloc_context_ids(&mm->context);
138         if (index < 0) {
139 #ifdef CONFIG_PPC_SUBPAGE_PROT
140                 kfree(mm->context.hash_context->spt);
141 #endif
142                 kfree(mm->context.hash_context);
143                 return index;
144         }
145
146         pkey_mm_init(mm);
147         return index;
148 }
149
150 void hash__setup_new_exec(void)
151 {
152         slice_setup_new_exec();
153
154         slb_setup_new_exec();
155 }
156 #else
157 static inline int hash__init_new_context(struct mm_struct *mm)
158 {
159         BUILD_BUG();
160         return 0;
161 }
162 #endif
163
164 static int radix__init_new_context(struct mm_struct *mm)
165 {
166         unsigned long rts_field;
167         int index, max_id;
168
169         max_id = (1 << mmu_pid_bits) - 1;
170         index = alloc_context_id(mmu_base_pid, max_id);
171         if (index < 0)
172                 return index;
173
174         /*
175          * set the process table entry,
176          */
177         rts_field = radix__get_tree_size();
178         process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
179
180         /*
181          * Order the above store with subsequent update of the PID
182          * register (at which point HW can start loading/caching
183          * the entry) and the corresponding load by the MMU from
184          * the L2 cache.
185          */
186         asm volatile("ptesync;isync" : : : "memory");
187
188 #ifdef CONFIG_PPC_64S_HASH_MMU
189         mm->context.hash_context = NULL;
190 #endif
191
192         return index;
193 }
194
195 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
196 {
197         int index;
198
199         if (radix_enabled())
200                 index = radix__init_new_context(mm);
201         else
202                 index = hash__init_new_context(mm);
203
204         if (index < 0)
205                 return index;
206
207         mm->context.id = index;
208
209         mm->context.pte_frag = NULL;
210         mm->context.pmd_frag = NULL;
211 #ifdef CONFIG_SPAPR_TCE_IOMMU
212         mm_iommu_init(mm);
213 #endif
214         atomic_set(&mm->context.active_cpus, 0);
215         atomic_set(&mm->context.copros, 0);
216
217         return 0;
218 }
219
220 void __destroy_context(int context_id)
221 {
222         ida_free(&mmu_context_ida, context_id);
223 }
224 EXPORT_SYMBOL_GPL(__destroy_context);
225
226 static void destroy_contexts(mm_context_t *ctx)
227 {
228         if (radix_enabled()) {
229                 ida_free(&mmu_context_ida, ctx->id);
230         } else {
231 #ifdef CONFIG_PPC_64S_HASH_MMU
232                 int index, context_id;
233
234                 for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
235                         context_id = ctx->extended_id[index];
236                         if (context_id)
237                                 ida_free(&mmu_context_ida, context_id);
238                 }
239                 kfree(ctx->hash_context);
240 #else
241                 BUILD_BUG(); // radix_enabled() should be constant true
242 #endif
243         }
244 }
245
246 static void pmd_frag_destroy(void *pmd_frag)
247 {
248         int count;
249         struct ptdesc *ptdesc;
250
251         ptdesc = virt_to_ptdesc(pmd_frag);
252         /* drop all the pending references */
253         count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
254         /* We allow PTE_FRAG_NR fragments from a PTE page */
255         if (atomic_sub_and_test(PMD_FRAG_NR - count, &ptdesc->pt_frag_refcount)) {
256                 pagetable_pmd_dtor(ptdesc);
257                 pagetable_free(ptdesc);
258         }
259 }
260
261 static void destroy_pagetable_cache(struct mm_struct *mm)
262 {
263         void *frag;
264
265         frag = mm->context.pte_frag;
266         if (frag)
267                 pte_frag_destroy(frag);
268
269         frag = mm->context.pmd_frag;
270         if (frag)
271                 pmd_frag_destroy(frag);
272         return;
273 }
274
275 void destroy_context(struct mm_struct *mm)
276 {
277 #ifdef CONFIG_SPAPR_TCE_IOMMU
278         WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
279 #endif
280         /*
281          * For tasks which were successfully initialized we end up calling
282          * arch_exit_mmap() which clears the process table entry. And
283          * arch_exit_mmap() is called before the required fullmm TLB flush
284          * which does a RIC=2 flush. Hence for an initialized task, we do clear
285          * any cached process table entries.
286          *
287          * The condition below handles the error case during task init. We have
288          * set the process table entry early and if we fail a task
289          * initialization, we need to ensure the process table entry is zeroed.
290          * We need not worry about process table entry caches because the task
291          * never ran with the PID value.
292          */
293         if (radix_enabled())
294                 process_tb[mm->context.id].prtb0 = 0;
295         else
296                 subpage_prot_free(mm);
297         destroy_contexts(&mm->context);
298         mm->context.id = MMU_NO_CONTEXT;
299 }
300
301 void arch_exit_mmap(struct mm_struct *mm)
302 {
303         destroy_pagetable_cache(mm);
304
305         if (radix_enabled()) {
306                 /*
307                  * Radix doesn't have a valid bit in the process table
308                  * entries. However we know that at least P9 implementation
309                  * will avoid caching an entry with an invalid RTS field,
310                  * and 0 is invalid. So this will do.
311                  *
312                  * This runs before the "fullmm" tlb flush in exit_mmap,
313                  * which does a RIC=2 tlbie to clear the process table
314                  * entry. See the "fullmm" comments in tlb-radix.c.
315                  *
316                  * No barrier required here after the store because
317                  * this process will do the invalidate, which starts with
318                  * ptesync.
319                  */
320                 process_tb[mm->context.id].prtb0 = 0;
321         }
322 }
323
324 #ifdef CONFIG_PPC_RADIX_MMU
325 void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
326 {
327         mtspr(SPRN_PID, next->context.id);
328         isync();
329 }
330 #endif
331
332 /**
333  * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
334  *
335  * This clears the CPU from mm_cpumask for all processes, and then flushes the
336  * local TLB to ensure TLB coherency in case the CPU is onlined again.
337  *
338  * KVM guest translations are not necessarily flushed here. If KVM started
339  * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
340  */
341 #ifdef CONFIG_HOTPLUG_CPU
342 void cleanup_cpu_mmu_context(void)
343 {
344         int cpu = smp_processor_id();
345
346         clear_tasks_mm_cpumask(cpu);
347         tlbiel_all();
348 }
349 #endif