GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / powerpc / lib / sstep.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16
17 extern char system_call_common[];
18
19 #ifdef CONFIG_PPC64
20 /* Bits in SRR1 that are copied from MSR */
21 #define MSR_MASK        0xffffffff87c0ffffUL
22 #else
23 #define MSR_MASK        0x87c0ffff
24 #endif
25
26 /* Bits in XER */
27 #define XER_SO          0x80000000U
28 #define XER_OV          0x40000000U
29 #define XER_CA          0x20000000U
30 #define XER_OV32        0x00080000U
31 #define XER_CA32        0x00040000U
32
33 #ifdef CONFIG_PPC_FPU
34 /*
35  * Functions in ldstfp.S
36  */
37 extern void get_fpr(int rn, double *p);
38 extern void put_fpr(int rn, const double *p);
39 extern void get_vr(int rn, __vector128 *p);
40 extern void put_vr(int rn, __vector128 *p);
41 extern void load_vsrn(int vsr, const void *p);
42 extern void store_vsrn(int vsr, void *p);
43 extern void conv_sp_to_dp(const float *sp, double *dp);
44 extern void conv_dp_to_sp(const double *dp, float *sp);
45 #endif
46
47 #ifdef __powerpc64__
48 /*
49  * Functions in quad.S
50  */
51 extern int do_lq(unsigned long ea, unsigned long *regs);
52 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
53 extern int do_lqarx(unsigned long ea, unsigned long *regs);
54 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
55                     unsigned int *crp);
56 #endif
57
58 #ifdef __LITTLE_ENDIAN__
59 #define IS_LE   1
60 #define IS_BE   0
61 #else
62 #define IS_LE   0
63 #define IS_BE   1
64 #endif
65
66 /*
67  * Emulate the truncation of 64 bit values in 32-bit mode.
68  */
69 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
70                                                         unsigned long val)
71 {
72 #ifdef __powerpc64__
73         if ((msr & MSR_64BIT) == 0)
74                 val &= 0xffffffffUL;
75 #endif
76         return val;
77 }
78
79 /*
80  * Determine whether a conditional branch instruction would branch.
81  */
82 static nokprobe_inline int branch_taken(unsigned int instr,
83                                         const struct pt_regs *regs,
84                                         struct instruction_op *op)
85 {
86         unsigned int bo = (instr >> 21) & 0x1f;
87         unsigned int bi;
88
89         if ((bo & 4) == 0) {
90                 /* decrement counter */
91                 op->type |= DECCTR;
92                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
93                         return 0;
94         }
95         if ((bo & 0x10) == 0) {
96                 /* check bit from CR */
97                 bi = (instr >> 16) & 0x1f;
98                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
99                         return 0;
100         }
101         return 1;
102 }
103
104 static nokprobe_inline long address_ok(struct pt_regs *regs,
105                                        unsigned long ea, int nb)
106 {
107         if (!user_mode(regs))
108                 return 1;
109         if (__access_ok(ea, nb, USER_DS))
110                 return 1;
111         if (__access_ok(ea, 1, USER_DS))
112                 /* Access overlaps the end of the user region */
113                 regs->dar = USER_DS.seg;
114         else
115                 regs->dar = ea;
116         return 0;
117 }
118
119 /*
120  * Calculate effective address for a D-form instruction
121  */
122 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
123                                               const struct pt_regs *regs)
124 {
125         int ra;
126         unsigned long ea;
127
128         ra = (instr >> 16) & 0x1f;
129         ea = (signed short) instr;              /* sign-extend */
130         if (ra)
131                 ea += regs->gpr[ra];
132
133         return ea;
134 }
135
136 #ifdef __powerpc64__
137 /*
138  * Calculate effective address for a DS-form instruction
139  */
140 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
141                                                const struct pt_regs *regs)
142 {
143         int ra;
144         unsigned long ea;
145
146         ra = (instr >> 16) & 0x1f;
147         ea = (signed short) (instr & ~3);       /* sign-extend */
148         if (ra)
149                 ea += regs->gpr[ra];
150
151         return ea;
152 }
153
154 /*
155  * Calculate effective address for a DQ-form instruction
156  */
157 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
158                                                const struct pt_regs *regs)
159 {
160         int ra;
161         unsigned long ea;
162
163         ra = (instr >> 16) & 0x1f;
164         ea = (signed short) (instr & ~0xf);     /* sign-extend */
165         if (ra)
166                 ea += regs->gpr[ra];
167
168         return ea;
169 }
170 #endif /* __powerpc64 */
171
172 /*
173  * Calculate effective address for an X-form instruction
174  */
175 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
176                                               const struct pt_regs *regs)
177 {
178         int ra, rb;
179         unsigned long ea;
180
181         ra = (instr >> 16) & 0x1f;
182         rb = (instr >> 11) & 0x1f;
183         ea = regs->gpr[rb];
184         if (ra)
185                 ea += regs->gpr[ra];
186
187         return ea;
188 }
189
190 /*
191  * Return the largest power of 2, not greater than sizeof(unsigned long),
192  * such that x is a multiple of it.
193  */
194 static nokprobe_inline unsigned long max_align(unsigned long x)
195 {
196         x |= sizeof(unsigned long);
197         return x & -x;          /* isolates rightmost bit */
198 }
199
200 static nokprobe_inline unsigned long byterev_2(unsigned long x)
201 {
202         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
203 }
204
205 static nokprobe_inline unsigned long byterev_4(unsigned long x)
206 {
207         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
208                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
209 }
210
211 #ifdef __powerpc64__
212 static nokprobe_inline unsigned long byterev_8(unsigned long x)
213 {
214         return (byterev_4(x) << 32) | byterev_4(x >> 32);
215 }
216 #endif
217
218 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
219 {
220         switch (nb) {
221         case 2:
222                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
223                 break;
224         case 4:
225                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
226                 break;
227 #ifdef __powerpc64__
228         case 8:
229                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
230                 break;
231         case 16: {
232                 unsigned long *up = (unsigned long *)ptr;
233                 unsigned long tmp;
234                 tmp = byterev_8(up[0]);
235                 up[0] = byterev_8(up[1]);
236                 up[1] = tmp;
237                 break;
238         }
239 #endif
240         default:
241                 WARN_ON_ONCE(1);
242         }
243 }
244
245 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
246                                             unsigned long ea, int nb,
247                                             struct pt_regs *regs)
248 {
249         int err = 0;
250         unsigned long x = 0;
251
252         switch (nb) {
253         case 1:
254                 err = __get_user(x, (unsigned char __user *) ea);
255                 break;
256         case 2:
257                 err = __get_user(x, (unsigned short __user *) ea);
258                 break;
259         case 4:
260                 err = __get_user(x, (unsigned int __user *) ea);
261                 break;
262 #ifdef __powerpc64__
263         case 8:
264                 err = __get_user(x, (unsigned long __user *) ea);
265                 break;
266 #endif
267         }
268         if (!err)
269                 *dest = x;
270         else
271                 regs->dar = ea;
272         return err;
273 }
274
275 /*
276  * Copy from userspace to a buffer, using the largest possible
277  * aligned accesses, up to sizeof(long).
278  */
279 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
280                                        struct pt_regs *regs)
281 {
282         int err = 0;
283         int c;
284
285         for (; nb > 0; nb -= c) {
286                 c = max_align(ea);
287                 if (c > nb)
288                         c = max_align(nb);
289                 switch (c) {
290                 case 1:
291                         err = __get_user(*dest, (unsigned char __user *) ea);
292                         break;
293                 case 2:
294                         err = __get_user(*(u16 *)dest,
295                                          (unsigned short __user *) ea);
296                         break;
297                 case 4:
298                         err = __get_user(*(u32 *)dest,
299                                          (unsigned int __user *) ea);
300                         break;
301 #ifdef __powerpc64__
302                 case 8:
303                         err = __get_user(*(unsigned long *)dest,
304                                          (unsigned long __user *) ea);
305                         break;
306 #endif
307                 }
308                 if (err) {
309                         regs->dar = ea;
310                         return err;
311                 }
312                 dest += c;
313                 ea += c;
314         }
315         return 0;
316 }
317
318 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
319                                               unsigned long ea, int nb,
320                                               struct pt_regs *regs)
321 {
322         union {
323                 unsigned long ul;
324                 u8 b[sizeof(unsigned long)];
325         } u;
326         int i;
327         int err;
328
329         u.ul = 0;
330         i = IS_BE ? sizeof(unsigned long) - nb : 0;
331         err = copy_mem_in(&u.b[i], ea, nb, regs);
332         if (!err)
333                 *dest = u.ul;
334         return err;
335 }
336
337 /*
338  * Read memory at address ea for nb bytes, return 0 for success
339  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
340  * If nb < sizeof(long), the result is right-justified on BE systems.
341  */
342 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
343                               struct pt_regs *regs)
344 {
345         if (!address_ok(regs, ea, nb))
346                 return -EFAULT;
347         if ((ea & (nb - 1)) == 0)
348                 return read_mem_aligned(dest, ea, nb, regs);
349         return read_mem_unaligned(dest, ea, nb, regs);
350 }
351 NOKPROBE_SYMBOL(read_mem);
352
353 static nokprobe_inline int write_mem_aligned(unsigned long val,
354                                              unsigned long ea, int nb,
355                                              struct pt_regs *regs)
356 {
357         int err = 0;
358
359         switch (nb) {
360         case 1:
361                 err = __put_user(val, (unsigned char __user *) ea);
362                 break;
363         case 2:
364                 err = __put_user(val, (unsigned short __user *) ea);
365                 break;
366         case 4:
367                 err = __put_user(val, (unsigned int __user *) ea);
368                 break;
369 #ifdef __powerpc64__
370         case 8:
371                 err = __put_user(val, (unsigned long __user *) ea);
372                 break;
373 #endif
374         }
375         if (err)
376                 regs->dar = ea;
377         return err;
378 }
379
380 /*
381  * Copy from a buffer to userspace, using the largest possible
382  * aligned accesses, up to sizeof(long).
383  */
384 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
385                                         struct pt_regs *regs)
386 {
387         int err = 0;
388         int c;
389
390         for (; nb > 0; nb -= c) {
391                 c = max_align(ea);
392                 if (c > nb)
393                         c = max_align(nb);
394                 switch (c) {
395                 case 1:
396                         err = __put_user(*dest, (unsigned char __user *) ea);
397                         break;
398                 case 2:
399                         err = __put_user(*(u16 *)dest,
400                                          (unsigned short __user *) ea);
401                         break;
402                 case 4:
403                         err = __put_user(*(u32 *)dest,
404                                          (unsigned int __user *) ea);
405                         break;
406 #ifdef __powerpc64__
407                 case 8:
408                         err = __put_user(*(unsigned long *)dest,
409                                          (unsigned long __user *) ea);
410                         break;
411 #endif
412                 }
413                 if (err) {
414                         regs->dar = ea;
415                         return err;
416                 }
417                 dest += c;
418                 ea += c;
419         }
420         return 0;
421 }
422
423 static nokprobe_inline int write_mem_unaligned(unsigned long val,
424                                                unsigned long ea, int nb,
425                                                struct pt_regs *regs)
426 {
427         union {
428                 unsigned long ul;
429                 u8 b[sizeof(unsigned long)];
430         } u;
431         int i;
432
433         u.ul = val;
434         i = IS_BE ? sizeof(unsigned long) - nb : 0;
435         return copy_mem_out(&u.b[i], ea, nb, regs);
436 }
437
438 /*
439  * Write memory at address ea for nb bytes, return 0 for success
440  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
441  */
442 static int write_mem(unsigned long val, unsigned long ea, int nb,
443                                struct pt_regs *regs)
444 {
445         if (!address_ok(regs, ea, nb))
446                 return -EFAULT;
447         if ((ea & (nb - 1)) == 0)
448                 return write_mem_aligned(val, ea, nb, regs);
449         return write_mem_unaligned(val, ea, nb, regs);
450 }
451 NOKPROBE_SYMBOL(write_mem);
452
453 #ifdef CONFIG_PPC_FPU
454 /*
455  * These access either the real FP register or the image in the
456  * thread_struct, depending on regs->msr & MSR_FP.
457  */
458 static int do_fp_load(struct instruction_op *op, unsigned long ea,
459                       struct pt_regs *regs, bool cross_endian)
460 {
461         int err, rn, nb;
462         union {
463                 int i;
464                 unsigned int u;
465                 float f;
466                 double d[2];
467                 unsigned long l[2];
468                 u8 b[2 * sizeof(double)];
469         } u;
470
471         nb = GETSIZE(op->type);
472         if (nb > sizeof(u))
473                 return -EINVAL;
474         if (!address_ok(regs, ea, nb))
475                 return -EFAULT;
476         rn = op->reg;
477         err = copy_mem_in(u.b, ea, nb, regs);
478         if (err)
479                 return err;
480         if (unlikely(cross_endian)) {
481                 do_byte_reverse(u.b, min(nb, 8));
482                 if (nb == 16)
483                         do_byte_reverse(&u.b[8], 8);
484         }
485         preempt_disable();
486         if (nb == 4) {
487                 if (op->type & FPCONV)
488                         conv_sp_to_dp(&u.f, &u.d[0]);
489                 else if (op->type & SIGNEXT)
490                         u.l[0] = u.i;
491                 else
492                         u.l[0] = u.u;
493         }
494         if (regs->msr & MSR_FP)
495                 put_fpr(rn, &u.d[0]);
496         else
497                 current->thread.TS_FPR(rn) = u.l[0];
498         if (nb == 16) {
499                 /* lfdp */
500                 rn |= 1;
501                 if (regs->msr & MSR_FP)
502                         put_fpr(rn, &u.d[1]);
503                 else
504                         current->thread.TS_FPR(rn) = u.l[1];
505         }
506         preempt_enable();
507         return 0;
508 }
509 NOKPROBE_SYMBOL(do_fp_load);
510
511 static int do_fp_store(struct instruction_op *op, unsigned long ea,
512                        struct pt_regs *regs, bool cross_endian)
513 {
514         int rn, nb;
515         union {
516                 unsigned int u;
517                 float f;
518                 double d[2];
519                 unsigned long l[2];
520                 u8 b[2 * sizeof(double)];
521         } u;
522
523         nb = GETSIZE(op->type);
524         if (nb > sizeof(u))
525                 return -EINVAL;
526         if (!address_ok(regs, ea, nb))
527                 return -EFAULT;
528         rn = op->reg;
529         preempt_disable();
530         if (regs->msr & MSR_FP)
531                 get_fpr(rn, &u.d[0]);
532         else
533                 u.l[0] = current->thread.TS_FPR(rn);
534         if (nb == 4) {
535                 if (op->type & FPCONV)
536                         conv_dp_to_sp(&u.d[0], &u.f);
537                 else
538                         u.u = u.l[0];
539         }
540         if (nb == 16) {
541                 rn |= 1;
542                 if (regs->msr & MSR_FP)
543                         get_fpr(rn, &u.d[1]);
544                 else
545                         u.l[1] = current->thread.TS_FPR(rn);
546         }
547         preempt_enable();
548         if (unlikely(cross_endian)) {
549                 do_byte_reverse(u.b, min(nb, 8));
550                 if (nb == 16)
551                         do_byte_reverse(&u.b[8], 8);
552         }
553         return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561                                        int size, struct pt_regs *regs,
562                                        bool cross_endian)
563 {
564         int err;
565         union {
566                 __vector128 v;
567                 u8 b[sizeof(__vector128)];
568         } u = {};
569
570         if (size > sizeof(u))
571                 return -EINVAL;
572
573         if (!address_ok(regs, ea & ~0xfUL, 16))
574                 return -EFAULT;
575         /* align to multiple of size */
576         ea &= ~(size - 1);
577         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
578         if (err)
579                 return err;
580         if (unlikely(cross_endian))
581                 do_byte_reverse(&u.b[ea & 0xf], size);
582         preempt_disable();
583         if (regs->msr & MSR_VEC)
584                 put_vr(rn, &u.v);
585         else
586                 current->thread.vr_state.vr[rn] = u.v;
587         preempt_enable();
588         return 0;
589 }
590
591 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
592                                         int size, struct pt_regs *regs,
593                                         bool cross_endian)
594 {
595         union {
596                 __vector128 v;
597                 u8 b[sizeof(__vector128)];
598         } u;
599
600         if (size > sizeof(u))
601                 return -EINVAL;
602
603         if (!address_ok(regs, ea & ~0xfUL, 16))
604                 return -EFAULT;
605         /* align to multiple of size */
606         ea &= ~(size - 1);
607
608         preempt_disable();
609         if (regs->msr & MSR_VEC)
610                 get_vr(rn, &u.v);
611         else
612                 u.v = current->thread.vr_state.vr[rn];
613         preempt_enable();
614         if (unlikely(cross_endian))
615                 do_byte_reverse(&u.b[ea & 0xf], size);
616         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
617 }
618 #endif /* CONFIG_ALTIVEC */
619
620 #ifdef __powerpc64__
621 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
622                                       int reg, bool cross_endian)
623 {
624         int err;
625
626         if (!address_ok(regs, ea, 16))
627                 return -EFAULT;
628         /* if aligned, should be atomic */
629         if ((ea & 0xf) == 0) {
630                 err = do_lq(ea, &regs->gpr[reg]);
631         } else {
632                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
633                 if (!err)
634                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
635         }
636         if (!err && unlikely(cross_endian))
637                 do_byte_reverse(&regs->gpr[reg], 16);
638         return err;
639 }
640
641 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
642                                        int reg, bool cross_endian)
643 {
644         int err;
645         unsigned long vals[2];
646
647         if (!address_ok(regs, ea, 16))
648                 return -EFAULT;
649         vals[0] = regs->gpr[reg];
650         vals[1] = regs->gpr[reg + 1];
651         if (unlikely(cross_endian))
652                 do_byte_reverse(vals, 16);
653
654         /* if aligned, should be atomic */
655         if ((ea & 0xf) == 0)
656                 return do_stq(ea, vals[0], vals[1]);
657
658         err = write_mem(vals[IS_LE], ea, 8, regs);
659         if (!err)
660                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
661         return err;
662 }
663 #endif /* __powerpc64 */
664
665 #ifdef CONFIG_VSX
666 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
667                       const void *mem, bool rev)
668 {
669         int size, read_size;
670         int i, j;
671         const unsigned int *wp;
672         const unsigned short *hp;
673         const unsigned char *bp;
674
675         size = GETSIZE(op->type);
676         reg->d[0] = reg->d[1] = 0;
677
678         switch (op->element_size) {
679         case 16:
680                 /* whole vector; lxv[x] or lxvl[l] */
681                 if (size == 0)
682                         break;
683                 memcpy(reg, mem, size);
684                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
685                         rev = !rev;
686                 if (rev)
687                         do_byte_reverse(reg, 16);
688                 break;
689         case 8:
690                 /* scalar loads, lxvd2x, lxvdsx */
691                 read_size = (size >= 8) ? 8 : size;
692                 i = IS_LE ? 8 : 8 - read_size;
693                 memcpy(&reg->b[i], mem, read_size);
694                 if (rev)
695                         do_byte_reverse(&reg->b[i], 8);
696                 if (size < 8) {
697                         if (op->type & SIGNEXT) {
698                                 /* size == 4 is the only case here */
699                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
700                         } else if (op->vsx_flags & VSX_FPCONV) {
701                                 preempt_disable();
702                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
703                                               &reg->dp[IS_LE]);
704                                 preempt_enable();
705                         }
706                 } else {
707                         if (size == 16) {
708                                 unsigned long v = *(unsigned long *)(mem + 8);
709                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
710                         } else if (op->vsx_flags & VSX_SPLAT)
711                                 reg->d[IS_BE] = reg->d[IS_LE];
712                 }
713                 break;
714         case 4:
715                 /* lxvw4x, lxvwsx */
716                 wp = mem;
717                 for (j = 0; j < size / 4; ++j) {
718                         i = IS_LE ? 3 - j : j;
719                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
720                 }
721                 if (op->vsx_flags & VSX_SPLAT) {
722                         u32 val = reg->w[IS_LE ? 3 : 0];
723                         for (; j < 4; ++j) {
724                                 i = IS_LE ? 3 - j : j;
725                                 reg->w[i] = val;
726                         }
727                 }
728                 break;
729         case 2:
730                 /* lxvh8x */
731                 hp = mem;
732                 for (j = 0; j < size / 2; ++j) {
733                         i = IS_LE ? 7 - j : j;
734                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
735                 }
736                 break;
737         case 1:
738                 /* lxvb16x */
739                 bp = mem;
740                 for (j = 0; j < size; ++j) {
741                         i = IS_LE ? 15 - j : j;
742                         reg->b[i] = *bp++;
743                 }
744                 break;
745         }
746 }
747 EXPORT_SYMBOL_GPL(emulate_vsx_load);
748 NOKPROBE_SYMBOL(emulate_vsx_load);
749
750 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
751                        void *mem, bool rev)
752 {
753         int size, write_size;
754         int i, j;
755         union vsx_reg buf;
756         unsigned int *wp;
757         unsigned short *hp;
758         unsigned char *bp;
759
760         size = GETSIZE(op->type);
761
762         switch (op->element_size) {
763         case 16:
764                 /* stxv, stxvx, stxvl, stxvll */
765                 if (size == 0)
766                         break;
767                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
768                         rev = !rev;
769                 if (rev) {
770                         /* reverse 16 bytes */
771                         buf.d[0] = byterev_8(reg->d[1]);
772                         buf.d[1] = byterev_8(reg->d[0]);
773                         reg = &buf;
774                 }
775                 memcpy(mem, reg, size);
776                 break;
777         case 8:
778                 /* scalar stores, stxvd2x */
779                 write_size = (size >= 8) ? 8 : size;
780                 i = IS_LE ? 8 : 8 - write_size;
781                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
782                         buf.d[0] = buf.d[1] = 0;
783                         preempt_disable();
784                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
785                         preempt_enable();
786                         reg = &buf;
787                 }
788                 memcpy(mem, &reg->b[i], write_size);
789                 if (size == 16)
790                         memcpy(mem + 8, &reg->d[IS_BE], 8);
791                 if (unlikely(rev)) {
792                         do_byte_reverse(mem, write_size);
793                         if (size == 16)
794                                 do_byte_reverse(mem + 8, 8);
795                 }
796                 break;
797         case 4:
798                 /* stxvw4x */
799                 wp = mem;
800                 for (j = 0; j < size / 4; ++j) {
801                         i = IS_LE ? 3 - j : j;
802                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
803                 }
804                 break;
805         case 2:
806                 /* stxvh8x */
807                 hp = mem;
808                 for (j = 0; j < size / 2; ++j) {
809                         i = IS_LE ? 7 - j : j;
810                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
811                 }
812                 break;
813         case 1:
814                 /* stvxb16x */
815                 bp = mem;
816                 for (j = 0; j < size; ++j) {
817                         i = IS_LE ? 15 - j : j;
818                         *bp++ = reg->b[i];
819                 }
820                 break;
821         }
822 }
823 EXPORT_SYMBOL_GPL(emulate_vsx_store);
824 NOKPROBE_SYMBOL(emulate_vsx_store);
825
826 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
827                                        unsigned long ea, struct pt_regs *regs,
828                                        bool cross_endian)
829 {
830         int reg = op->reg;
831         u8 mem[16];
832         union vsx_reg buf;
833         int size = GETSIZE(op->type);
834
835         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
836                 return -EFAULT;
837
838         emulate_vsx_load(op, &buf, mem, cross_endian);
839         preempt_disable();
840         if (reg < 32) {
841                 /* FP regs + extensions */
842                 if (regs->msr & MSR_FP) {
843                         load_vsrn(reg, &buf);
844                 } else {
845                         current->thread.fp_state.fpr[reg][0] = buf.d[0];
846                         current->thread.fp_state.fpr[reg][1] = buf.d[1];
847                 }
848         } else {
849                 if (regs->msr & MSR_VEC)
850                         load_vsrn(reg, &buf);
851                 else
852                         current->thread.vr_state.vr[reg - 32] = buf.v;
853         }
854         preempt_enable();
855         return 0;
856 }
857
858 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
859                                         unsigned long ea, struct pt_regs *regs,
860                                         bool cross_endian)
861 {
862         int reg = op->reg;
863         u8 mem[16];
864         union vsx_reg buf;
865         int size = GETSIZE(op->type);
866
867         if (!address_ok(regs, ea, size))
868                 return -EFAULT;
869
870         preempt_disable();
871         if (reg < 32) {
872                 /* FP regs + extensions */
873                 if (regs->msr & MSR_FP) {
874                         store_vsrn(reg, &buf);
875                 } else {
876                         buf.d[0] = current->thread.fp_state.fpr[reg][0];
877                         buf.d[1] = current->thread.fp_state.fpr[reg][1];
878                 }
879         } else {
880                 if (regs->msr & MSR_VEC)
881                         store_vsrn(reg, &buf);
882                 else
883                         buf.v = current->thread.vr_state.vr[reg - 32];
884         }
885         preempt_enable();
886         emulate_vsx_store(op, &buf, mem, cross_endian);
887         return  copy_mem_out(mem, ea, size, regs);
888 }
889 #endif /* CONFIG_VSX */
890
891 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
892 {
893         int err;
894         unsigned long i, size;
895
896 #ifdef __powerpc64__
897         size = ppc64_caches.l1d.block_size;
898         if (!(regs->msr & MSR_64BIT))
899                 ea &= 0xffffffffUL;
900 #else
901         size = L1_CACHE_BYTES;
902 #endif
903         ea &= ~(size - 1);
904         if (!address_ok(regs, ea, size))
905                 return -EFAULT;
906         for (i = 0; i < size; i += sizeof(long)) {
907                 err = __put_user(0, (unsigned long __user *) (ea + i));
908                 if (err) {
909                         regs->dar = ea;
910                         return err;
911                 }
912         }
913         return 0;
914 }
915 NOKPROBE_SYMBOL(emulate_dcbz);
916
917 #define __put_user_asmx(x, addr, err, op, cr)           \
918         __asm__ __volatile__(                           \
919                 ".machine push\n"                       \
920                 ".machine power8\n"                     \
921                 "1:     " op " %2,0,%3\n"               \
922                 ".machine pop\n"                        \
923                 "       mfcr    %1\n"                   \
924                 "2:\n"                                  \
925                 ".section .fixup,\"ax\"\n"              \
926                 "3:     li      %0,%4\n"                \
927                 "       b       2b\n"                   \
928                 ".previous\n"                           \
929                 EX_TABLE(1b, 3b)                        \
930                 : "=r" (err), "=r" (cr)                 \
931                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
932
933 #define __get_user_asmx(x, addr, err, op)               \
934         __asm__ __volatile__(                           \
935                 ".machine push\n"                       \
936                 ".machine power8\n"                     \
937                 "1:     "op" %1,0,%2\n"                 \
938                 ".machine pop\n"                        \
939                 "2:\n"                                  \
940                 ".section .fixup,\"ax\"\n"              \
941                 "3:     li      %0,%3\n"                \
942                 "       b       2b\n"                   \
943                 ".previous\n"                           \
944                 EX_TABLE(1b, 3b)                        \
945                 : "=r" (err), "=r" (x)                  \
946                 : "r" (addr), "i" (-EFAULT), "0" (err))
947
948 #define __cacheop_user_asmx(addr, err, op)              \
949         __asm__ __volatile__(                           \
950                 "1:     "op" 0,%1\n"                    \
951                 "2:\n"                                  \
952                 ".section .fixup,\"ax\"\n"              \
953                 "3:     li      %0,%3\n"                \
954                 "       b       2b\n"                   \
955                 ".previous\n"                           \
956                 EX_TABLE(1b, 3b)                        \
957                 : "=r" (err)                            \
958                 : "r" (addr), "i" (-EFAULT), "0" (err))
959
960 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
961                                     struct instruction_op *op)
962 {
963         long val = op->val;
964
965         op->type |= SETCC;
966         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
967 #ifdef __powerpc64__
968         if (!(regs->msr & MSR_64BIT))
969                 val = (int) val;
970 #endif
971         if (val < 0)
972                 op->ccval |= 0x80000000;
973         else if (val > 0)
974                 op->ccval |= 0x40000000;
975         else
976                 op->ccval |= 0x20000000;
977 }
978
979 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
980 {
981         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
982                 if (val)
983                         op->xerval |= XER_CA32;
984                 else
985                         op->xerval &= ~XER_CA32;
986         }
987 }
988
989 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
990                                      struct instruction_op *op, int rd,
991                                      unsigned long val1, unsigned long val2,
992                                      unsigned long carry_in)
993 {
994         unsigned long val = val1 + val2;
995
996         if (carry_in)
997                 ++val;
998         op->type = COMPUTE + SETREG + SETXER;
999         op->reg = rd;
1000         op->val = val;
1001 #ifdef __powerpc64__
1002         if (!(regs->msr & MSR_64BIT)) {
1003                 val = (unsigned int) val;
1004                 val1 = (unsigned int) val1;
1005         }
1006 #endif
1007         op->xerval = regs->xer;
1008         if (val < val1 || (carry_in && val == val1))
1009                 op->xerval |= XER_CA;
1010         else
1011                 op->xerval &= ~XER_CA;
1012
1013         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1014                         (carry_in && (unsigned int)val == (unsigned int)val1));
1015 }
1016
1017 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1018                                           struct instruction_op *op,
1019                                           long v1, long v2, int crfld)
1020 {
1021         unsigned int crval, shift;
1022
1023         op->type = COMPUTE + SETCC;
1024         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1025         if (v1 < v2)
1026                 crval |= 8;
1027         else if (v1 > v2)
1028                 crval |= 4;
1029         else
1030                 crval |= 2;
1031         shift = (7 - crfld) * 4;
1032         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1033 }
1034
1035 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1036                                             struct instruction_op *op,
1037                                             unsigned long v1,
1038                                             unsigned long v2, int crfld)
1039 {
1040         unsigned int crval, shift;
1041
1042         op->type = COMPUTE + SETCC;
1043         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1044         if (v1 < v2)
1045                 crval |= 8;
1046         else if (v1 > v2)
1047                 crval |= 4;
1048         else
1049                 crval |= 2;
1050         shift = (7 - crfld) * 4;
1051         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1052 }
1053
1054 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1055                                     struct instruction_op *op,
1056                                     unsigned long v1, unsigned long v2)
1057 {
1058         unsigned long long out_val, mask;
1059         int i;
1060
1061         out_val = 0;
1062         for (i = 0; i < 8; i++) {
1063                 mask = 0xffUL << (i * 8);
1064                 if ((v1 & mask) == (v2 & mask))
1065                         out_val |= mask;
1066         }
1067         op->val = out_val;
1068 }
1069
1070 /*
1071  * The size parameter is used to adjust the equivalent popcnt instruction.
1072  * popcntb = 8, popcntw = 32, popcntd = 64
1073  */
1074 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1075                                       struct instruction_op *op,
1076                                       unsigned long v1, int size)
1077 {
1078         unsigned long long out = v1;
1079
1080         out -= (out >> 1) & 0x5555555555555555ULL;
1081         out = (0x3333333333333333ULL & out) +
1082               (0x3333333333333333ULL & (out >> 2));
1083         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1084
1085         if (size == 8) {        /* popcntb */
1086                 op->val = out;
1087                 return;
1088         }
1089         out += out >> 8;
1090         out += out >> 16;
1091         if (size == 32) {       /* popcntw */
1092                 op->val = out & 0x0000003f0000003fULL;
1093                 return;
1094         }
1095
1096         out = (out + (out >> 32)) & 0x7f;
1097         op->val = out;  /* popcntd */
1098 }
1099
1100 #ifdef CONFIG_PPC64
1101 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1102                                       struct instruction_op *op,
1103                                       unsigned long v1, unsigned long v2)
1104 {
1105         unsigned char perm, idx;
1106         unsigned int i;
1107
1108         perm = 0;
1109         for (i = 0; i < 8; i++) {
1110                 idx = (v1 >> (i * 8)) & 0xff;
1111                 if (idx < 64)
1112                         if (v2 & PPC_BIT(idx))
1113                                 perm |= 1 << i;
1114         }
1115         op->val = perm;
1116 }
1117 #endif /* CONFIG_PPC64 */
1118 /*
1119  * The size parameter adjusts the equivalent prty instruction.
1120  * prtyw = 32, prtyd = 64
1121  */
1122 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1123                                     struct instruction_op *op,
1124                                     unsigned long v, int size)
1125 {
1126         unsigned long long res = v ^ (v >> 8);
1127
1128         res ^= res >> 16;
1129         if (size == 32) {               /* prtyw */
1130                 op->val = res & 0x0000000100000001ULL;
1131                 return;
1132         }
1133
1134         res ^= res >> 32;
1135         op->val = res & 1;      /*prtyd */
1136 }
1137
1138 static nokprobe_inline int trap_compare(long v1, long v2)
1139 {
1140         int ret = 0;
1141
1142         if (v1 < v2)
1143                 ret |= 0x10;
1144         else if (v1 > v2)
1145                 ret |= 0x08;
1146         else
1147                 ret |= 0x04;
1148         if ((unsigned long)v1 < (unsigned long)v2)
1149                 ret |= 0x02;
1150         else if ((unsigned long)v1 > (unsigned long)v2)
1151                 ret |= 0x01;
1152         return ret;
1153 }
1154
1155 /*
1156  * Elements of 32-bit rotate and mask instructions.
1157  */
1158 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1159                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1160 #ifdef __powerpc64__
1161 #define MASK64_L(mb)    (~0UL >> (mb))
1162 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1163 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1164 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1165 #else
1166 #define DATA32(x)       (x)
1167 #endif
1168 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1169
1170 /*
1171  * Decode an instruction, and return information about it in *op
1172  * without changing *regs.
1173  * Integer arithmetic and logical instructions, branches, and barrier
1174  * instructions can be emulated just using the information in *op.
1175  *
1176  * Return value is 1 if the instruction can be emulated just by
1177  * updating *regs with the information in *op, -1 if we need the
1178  * GPRs but *regs doesn't contain the full register set, or 0
1179  * otherwise.
1180  */
1181 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1182                   unsigned int instr)
1183 {
1184         unsigned int opcode, ra, rb, rc, rd, spr, u;
1185         unsigned long int imm;
1186         unsigned long int val, val2;
1187         unsigned int mb, me, sh;
1188         long ival;
1189
1190         op->type = COMPUTE;
1191
1192         opcode = instr >> 26;
1193         switch (opcode) {
1194         case 16:        /* bc */
1195                 op->type = BRANCH;
1196                 imm = (signed short)(instr & 0xfffc);
1197                 if ((instr & 2) == 0)
1198                         imm += regs->nip;
1199                 op->val = truncate_if_32bit(regs->msr, imm);
1200                 if (instr & 1)
1201                         op->type |= SETLK;
1202                 if (branch_taken(instr, regs, op))
1203                         op->type |= BRTAKEN;
1204                 return 1;
1205 #ifdef CONFIG_PPC64
1206         case 17:        /* sc */
1207                 if ((instr & 0xfe2) == 2)
1208                         op->type = SYSCALL;
1209                 else
1210                         op->type = UNKNOWN;
1211                 return 0;
1212 #endif
1213         case 18:        /* b */
1214                 op->type = BRANCH | BRTAKEN;
1215                 imm = instr & 0x03fffffc;
1216                 if (imm & 0x02000000)
1217                         imm -= 0x04000000;
1218                 if ((instr & 2) == 0)
1219                         imm += regs->nip;
1220                 op->val = truncate_if_32bit(regs->msr, imm);
1221                 if (instr & 1)
1222                         op->type |= SETLK;
1223                 return 1;
1224         case 19:
1225                 switch ((instr >> 1) & 0x3ff) {
1226                 case 0:         /* mcrf */
1227                         op->type = COMPUTE + SETCC;
1228                         rd = 7 - ((instr >> 23) & 0x7);
1229                         ra = 7 - ((instr >> 18) & 0x7);
1230                         rd *= 4;
1231                         ra *= 4;
1232                         val = (regs->ccr >> ra) & 0xf;
1233                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1234                         return 1;
1235
1236                 case 16:        /* bclr */
1237                 case 528:       /* bcctr */
1238                         op->type = BRANCH;
1239                         imm = (instr & 0x400)? regs->ctr: regs->link;
1240                         op->val = truncate_if_32bit(regs->msr, imm);
1241                         if (instr & 1)
1242                                 op->type |= SETLK;
1243                         if (branch_taken(instr, regs, op))
1244                                 op->type |= BRTAKEN;
1245                         return 1;
1246
1247                 case 18:        /* rfid, scary */
1248                         if (regs->msr & MSR_PR)
1249                                 goto priv;
1250                         op->type = RFI;
1251                         return 0;
1252
1253                 case 150:       /* isync */
1254                         op->type = BARRIER | BARRIER_ISYNC;
1255                         return 1;
1256
1257                 case 33:        /* crnor */
1258                 case 129:       /* crandc */
1259                 case 193:       /* crxor */
1260                 case 225:       /* crnand */
1261                 case 257:       /* crand */
1262                 case 289:       /* creqv */
1263                 case 417:       /* crorc */
1264                 case 449:       /* cror */
1265                         op->type = COMPUTE + SETCC;
1266                         ra = (instr >> 16) & 0x1f;
1267                         rb = (instr >> 11) & 0x1f;
1268                         rd = (instr >> 21) & 0x1f;
1269                         ra = (regs->ccr >> (31 - ra)) & 1;
1270                         rb = (regs->ccr >> (31 - rb)) & 1;
1271                         val = (instr >> (6 + ra * 2 + rb)) & 1;
1272                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1273                                 (val << (31 - rd));
1274                         return 1;
1275                 }
1276                 break;
1277         case 31:
1278                 switch ((instr >> 1) & 0x3ff) {
1279                 case 598:       /* sync */
1280                         op->type = BARRIER + BARRIER_SYNC;
1281 #ifdef __powerpc64__
1282                         switch ((instr >> 21) & 3) {
1283                         case 1:         /* lwsync */
1284                                 op->type = BARRIER + BARRIER_LWSYNC;
1285                                 break;
1286                         case 2:         /* ptesync */
1287                                 op->type = BARRIER + BARRIER_PTESYNC;
1288                                 break;
1289                         }
1290 #endif
1291                         return 1;
1292
1293                 case 854:       /* eieio */
1294                         op->type = BARRIER + BARRIER_EIEIO;
1295                         return 1;
1296                 }
1297                 break;
1298         }
1299
1300         /* Following cases refer to regs->gpr[], so we need all regs */
1301         if (!FULL_REGS(regs))
1302                 return -1;
1303
1304         rd = (instr >> 21) & 0x1f;
1305         ra = (instr >> 16) & 0x1f;
1306         rb = (instr >> 11) & 0x1f;
1307         rc = (instr >> 6) & 0x1f;
1308
1309         switch (opcode) {
1310 #ifdef __powerpc64__
1311         case 2:         /* tdi */
1312                 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1313                         goto trap;
1314                 return 1;
1315 #endif
1316         case 3:         /* twi */
1317                 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1318                         goto trap;
1319                 return 1;
1320
1321 #ifdef __powerpc64__
1322         case 4:
1323                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1324                         return -1;
1325
1326                 switch (instr & 0x3f) {
1327                 case 48:        /* maddhd */
1328                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1329                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1330                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1331                         goto compute_done;
1332
1333                 case 49:        /* maddhdu */
1334                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1335                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1336                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1337                         goto compute_done;
1338
1339                 case 51:        /* maddld */
1340                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1341                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1342                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1343                         goto compute_done;
1344                 }
1345
1346                 /*
1347                  * There are other instructions from ISA 3.0 with the same
1348                  * primary opcode which do not have emulation support yet.
1349                  */
1350                 return -1;
1351 #endif
1352
1353         case 7:         /* mulli */
1354                 op->val = regs->gpr[ra] * (short) instr;
1355                 goto compute_done;
1356
1357         case 8:         /* subfic */
1358                 imm = (short) instr;
1359                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1360                 return 1;
1361
1362         case 10:        /* cmpli */
1363                 imm = (unsigned short) instr;
1364                 val = regs->gpr[ra];
1365 #ifdef __powerpc64__
1366                 if ((rd & 1) == 0)
1367                         val = (unsigned int) val;
1368 #endif
1369                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1370                 return 1;
1371
1372         case 11:        /* cmpi */
1373                 imm = (short) instr;
1374                 val = regs->gpr[ra];
1375 #ifdef __powerpc64__
1376                 if ((rd & 1) == 0)
1377                         val = (int) val;
1378 #endif
1379                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1380                 return 1;
1381
1382         case 12:        /* addic */
1383                 imm = (short) instr;
1384                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1385                 return 1;
1386
1387         case 13:        /* addic. */
1388                 imm = (short) instr;
1389                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1390                 set_cr0(regs, op);
1391                 return 1;
1392
1393         case 14:        /* addi */
1394                 imm = (short) instr;
1395                 if (ra)
1396                         imm += regs->gpr[ra];
1397                 op->val = imm;
1398                 goto compute_done;
1399
1400         case 15:        /* addis */
1401                 imm = ((short) instr) << 16;
1402                 if (ra)
1403                         imm += regs->gpr[ra];
1404                 op->val = imm;
1405                 goto compute_done;
1406
1407         case 19:
1408                 if (((instr >> 1) & 0x1f) == 2) {
1409                         /* addpcis */
1410                         imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1411                         imm |= (instr >> 15) & 0x3e;    /* d1 field */
1412                         op->val = regs->nip + (imm << 16) + 4;
1413                         goto compute_done;
1414                 }
1415                 op->type = UNKNOWN;
1416                 return 0;
1417
1418         case 20:        /* rlwimi */
1419                 mb = (instr >> 6) & 0x1f;
1420                 me = (instr >> 1) & 0x1f;
1421                 val = DATA32(regs->gpr[rd]);
1422                 imm = MASK32(mb, me);
1423                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1424                 goto logical_done;
1425
1426         case 21:        /* rlwinm */
1427                 mb = (instr >> 6) & 0x1f;
1428                 me = (instr >> 1) & 0x1f;
1429                 val = DATA32(regs->gpr[rd]);
1430                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1431                 goto logical_done;
1432
1433         case 23:        /* rlwnm */
1434                 mb = (instr >> 6) & 0x1f;
1435                 me = (instr >> 1) & 0x1f;
1436                 rb = regs->gpr[rb] & 0x1f;
1437                 val = DATA32(regs->gpr[rd]);
1438                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1439                 goto logical_done;
1440
1441         case 24:        /* ori */
1442                 op->val = regs->gpr[rd] | (unsigned short) instr;
1443                 goto logical_done_nocc;
1444
1445         case 25:        /* oris */
1446                 imm = (unsigned short) instr;
1447                 op->val = regs->gpr[rd] | (imm << 16);
1448                 goto logical_done_nocc;
1449
1450         case 26:        /* xori */
1451                 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1452                 goto logical_done_nocc;
1453
1454         case 27:        /* xoris */
1455                 imm = (unsigned short) instr;
1456                 op->val = regs->gpr[rd] ^ (imm << 16);
1457                 goto logical_done_nocc;
1458
1459         case 28:        /* andi. */
1460                 op->val = regs->gpr[rd] & (unsigned short) instr;
1461                 set_cr0(regs, op);
1462                 goto logical_done_nocc;
1463
1464         case 29:        /* andis. */
1465                 imm = (unsigned short) instr;
1466                 op->val = regs->gpr[rd] & (imm << 16);
1467                 set_cr0(regs, op);
1468                 goto logical_done_nocc;
1469
1470 #ifdef __powerpc64__
1471         case 30:        /* rld* */
1472                 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1473                 val = regs->gpr[rd];
1474                 if ((instr & 0x10) == 0) {
1475                         sh = rb | ((instr & 2) << 4);
1476                         val = ROTATE(val, sh);
1477                         switch ((instr >> 2) & 3) {
1478                         case 0:         /* rldicl */
1479                                 val &= MASK64_L(mb);
1480                                 break;
1481                         case 1:         /* rldicr */
1482                                 val &= MASK64_R(mb);
1483                                 break;
1484                         case 2:         /* rldic */
1485                                 val &= MASK64(mb, 63 - sh);
1486                                 break;
1487                         case 3:         /* rldimi */
1488                                 imm = MASK64(mb, 63 - sh);
1489                                 val = (regs->gpr[ra] & ~imm) |
1490                                         (val & imm);
1491                         }
1492                         op->val = val;
1493                         goto logical_done;
1494                 } else {
1495                         sh = regs->gpr[rb] & 0x3f;
1496                         val = ROTATE(val, sh);
1497                         switch ((instr >> 1) & 7) {
1498                         case 0:         /* rldcl */
1499                                 op->val = val & MASK64_L(mb);
1500                                 goto logical_done;
1501                         case 1:         /* rldcr */
1502                                 op->val = val & MASK64_R(mb);
1503                                 goto logical_done;
1504                         }
1505                 }
1506 #endif
1507                 op->type = UNKNOWN;     /* illegal instruction */
1508                 return 0;
1509
1510         case 31:
1511                 /* isel occupies 32 minor opcodes */
1512                 if (((instr >> 1) & 0x1f) == 15) {
1513                         mb = (instr >> 6) & 0x1f; /* bc field */
1514                         val = (regs->ccr >> (31 - mb)) & 1;
1515                         val2 = (ra) ? regs->gpr[ra] : 0;
1516
1517                         op->val = (val) ? val2 : regs->gpr[rb];
1518                         goto compute_done;
1519                 }
1520
1521                 switch ((instr >> 1) & 0x3ff) {
1522                 case 4:         /* tw */
1523                         if (rd == 0x1f ||
1524                             (rd & trap_compare((int)regs->gpr[ra],
1525                                                (int)regs->gpr[rb])))
1526                                 goto trap;
1527                         return 1;
1528 #ifdef __powerpc64__
1529                 case 68:        /* td */
1530                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1531                                 goto trap;
1532                         return 1;
1533 #endif
1534                 case 83:        /* mfmsr */
1535                         if (regs->msr & MSR_PR)
1536                                 goto priv;
1537                         op->type = MFMSR;
1538                         op->reg = rd;
1539                         return 0;
1540                 case 146:       /* mtmsr */
1541                         if (regs->msr & MSR_PR)
1542                                 goto priv;
1543                         op->type = MTMSR;
1544                         op->reg = rd;
1545                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1546                         return 0;
1547 #ifdef CONFIG_PPC64
1548                 case 178:       /* mtmsrd */
1549                         if (regs->msr & MSR_PR)
1550                                 goto priv;
1551                         op->type = MTMSR;
1552                         op->reg = rd;
1553                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1554                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1555                         imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1556                         op->val = imm;
1557                         return 0;
1558 #endif
1559
1560                 case 19:        /* mfcr */
1561                         imm = 0xffffffffUL;
1562                         if ((instr >> 20) & 1) {
1563                                 imm = 0xf0000000UL;
1564                                 for (sh = 0; sh < 8; ++sh) {
1565                                         if (instr & (0x80000 >> sh))
1566                                                 break;
1567                                         imm >>= 4;
1568                                 }
1569                         }
1570                         op->val = regs->ccr & imm;
1571                         goto compute_done;
1572
1573                 case 144:       /* mtcrf */
1574                         op->type = COMPUTE + SETCC;
1575                         imm = 0xf0000000UL;
1576                         val = regs->gpr[rd];
1577                         op->ccval = regs->ccr;
1578                         for (sh = 0; sh < 8; ++sh) {
1579                                 if (instr & (0x80000 >> sh))
1580                                         op->ccval = (op->ccval & ~imm) |
1581                                                 (val & imm);
1582                                 imm >>= 4;
1583                         }
1584                         return 1;
1585
1586                 case 339:       /* mfspr */
1587                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1588                         op->type = MFSPR;
1589                         op->reg = rd;
1590                         op->spr = spr;
1591                         if (spr == SPRN_XER || spr == SPRN_LR ||
1592                             spr == SPRN_CTR)
1593                                 return 1;
1594                         return 0;
1595
1596                 case 467:       /* mtspr */
1597                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1598                         op->type = MTSPR;
1599                         op->val = regs->gpr[rd];
1600                         op->spr = spr;
1601                         if (spr == SPRN_XER || spr == SPRN_LR ||
1602                             spr == SPRN_CTR)
1603                                 return 1;
1604                         return 0;
1605
1606 /*
1607  * Compare instructions
1608  */
1609                 case 0: /* cmp */
1610                         val = regs->gpr[ra];
1611                         val2 = regs->gpr[rb];
1612 #ifdef __powerpc64__
1613                         if ((rd & 1) == 0) {
1614                                 /* word (32-bit) compare */
1615                                 val = (int) val;
1616                                 val2 = (int) val2;
1617                         }
1618 #endif
1619                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1620                         return 1;
1621
1622                 case 32:        /* cmpl */
1623                         val = regs->gpr[ra];
1624                         val2 = regs->gpr[rb];
1625 #ifdef __powerpc64__
1626                         if ((rd & 1) == 0) {
1627                                 /* word (32-bit) compare */
1628                                 val = (unsigned int) val;
1629                                 val2 = (unsigned int) val2;
1630                         }
1631 #endif
1632                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1633                         return 1;
1634
1635                 case 508: /* cmpb */
1636                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1637                         goto logical_done_nocc;
1638
1639 /*
1640  * Arithmetic instructions
1641  */
1642                 case 8: /* subfc */
1643                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1644                                        regs->gpr[rb], 1);
1645                         goto arith_done;
1646 #ifdef __powerpc64__
1647                 case 9: /* mulhdu */
1648                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1649                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1650                         goto arith_done;
1651 #endif
1652                 case 10:        /* addc */
1653                         add_with_carry(regs, op, rd, regs->gpr[ra],
1654                                        regs->gpr[rb], 0);
1655                         goto arith_done;
1656
1657                 case 11:        /* mulhwu */
1658                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1659                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1660                         goto arith_done;
1661
1662                 case 40:        /* subf */
1663                         op->val = regs->gpr[rb] - regs->gpr[ra];
1664                         goto arith_done;
1665 #ifdef __powerpc64__
1666                 case 73:        /* mulhd */
1667                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1668                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1669                         goto arith_done;
1670 #endif
1671                 case 75:        /* mulhw */
1672                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1673                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1674                         goto arith_done;
1675
1676                 case 104:       /* neg */
1677                         op->val = -regs->gpr[ra];
1678                         goto arith_done;
1679
1680                 case 136:       /* subfe */
1681                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1682                                        regs->gpr[rb], regs->xer & XER_CA);
1683                         goto arith_done;
1684
1685                 case 138:       /* adde */
1686                         add_with_carry(regs, op, rd, regs->gpr[ra],
1687                                        regs->gpr[rb], regs->xer & XER_CA);
1688                         goto arith_done;
1689
1690                 case 200:       /* subfze */
1691                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1692                                        regs->xer & XER_CA);
1693                         goto arith_done;
1694
1695                 case 202:       /* addze */
1696                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1697                                        regs->xer & XER_CA);
1698                         goto arith_done;
1699
1700                 case 232:       /* subfme */
1701                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1702                                        regs->xer & XER_CA);
1703                         goto arith_done;
1704 #ifdef __powerpc64__
1705                 case 233:       /* mulld */
1706                         op->val = regs->gpr[ra] * regs->gpr[rb];
1707                         goto arith_done;
1708 #endif
1709                 case 234:       /* addme */
1710                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1711                                        regs->xer & XER_CA);
1712                         goto arith_done;
1713
1714                 case 235:       /* mullw */
1715                         op->val = (long)(int) regs->gpr[ra] *
1716                                 (int) regs->gpr[rb];
1717
1718                         goto arith_done;
1719 #ifdef __powerpc64__
1720                 case 265:       /* modud */
1721                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1722                                 return -1;
1723                         op->val = regs->gpr[ra] % regs->gpr[rb];
1724                         goto compute_done;
1725 #endif
1726                 case 266:       /* add */
1727                         op->val = regs->gpr[ra] + regs->gpr[rb];
1728                         goto arith_done;
1729
1730                 case 267:       /* moduw */
1731                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1732                                 return -1;
1733                         op->val = (unsigned int) regs->gpr[ra] %
1734                                 (unsigned int) regs->gpr[rb];
1735                         goto compute_done;
1736 #ifdef __powerpc64__
1737                 case 457:       /* divdu */
1738                         op->val = regs->gpr[ra] / regs->gpr[rb];
1739                         goto arith_done;
1740 #endif
1741                 case 459:       /* divwu */
1742                         op->val = (unsigned int) regs->gpr[ra] /
1743                                 (unsigned int) regs->gpr[rb];
1744                         goto arith_done;
1745 #ifdef __powerpc64__
1746                 case 489:       /* divd */
1747                         op->val = (long int) regs->gpr[ra] /
1748                                 (long int) regs->gpr[rb];
1749                         goto arith_done;
1750 #endif
1751                 case 491:       /* divw */
1752                         op->val = (int) regs->gpr[ra] /
1753                                 (int) regs->gpr[rb];
1754                         goto arith_done;
1755
1756                 case 755:       /* darn */
1757                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1758                                 return -1;
1759                         switch (ra & 0x3) {
1760                         case 0:
1761                                 /* 32-bit conditioned */
1762                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1763                                 goto compute_done;
1764
1765                         case 1:
1766                                 /* 64-bit conditioned */
1767                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1768                                 goto compute_done;
1769
1770                         case 2:
1771                                 /* 64-bit raw */
1772                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1773                                 goto compute_done;
1774                         }
1775
1776                         return -1;
1777 #ifdef __powerpc64__
1778                 case 777:       /* modsd */
1779                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1780                                 return -1;
1781                         op->val = (long int) regs->gpr[ra] %
1782                                 (long int) regs->gpr[rb];
1783                         goto compute_done;
1784 #endif
1785                 case 779:       /* modsw */
1786                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1787                                 return -1;
1788                         op->val = (int) regs->gpr[ra] %
1789                                 (int) regs->gpr[rb];
1790                         goto compute_done;
1791
1792
1793 /*
1794  * Logical instructions
1795  */
1796                 case 26:        /* cntlzw */
1797                         val = (unsigned int) regs->gpr[rd];
1798                         op->val = ( val ? __builtin_clz(val) : 32 );
1799                         goto logical_done;
1800 #ifdef __powerpc64__
1801                 case 58:        /* cntlzd */
1802                         val = regs->gpr[rd];
1803                         op->val = ( val ? __builtin_clzl(val) : 64 );
1804                         goto logical_done;
1805 #endif
1806                 case 28:        /* and */
1807                         op->val = regs->gpr[rd] & regs->gpr[rb];
1808                         goto logical_done;
1809
1810                 case 60:        /* andc */
1811                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
1812                         goto logical_done;
1813
1814                 case 122:       /* popcntb */
1815                         do_popcnt(regs, op, regs->gpr[rd], 8);
1816                         goto logical_done_nocc;
1817
1818                 case 124:       /* nor */
1819                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1820                         goto logical_done;
1821
1822                 case 154:       /* prtyw */
1823                         do_prty(regs, op, regs->gpr[rd], 32);
1824                         goto logical_done_nocc;
1825
1826                 case 186:       /* prtyd */
1827                         do_prty(regs, op, regs->gpr[rd], 64);
1828                         goto logical_done_nocc;
1829 #ifdef CONFIG_PPC64
1830                 case 252:       /* bpermd */
1831                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1832                         goto logical_done_nocc;
1833 #endif
1834                 case 284:       /* xor */
1835                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1836                         goto logical_done;
1837
1838                 case 316:       /* xor */
1839                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
1840                         goto logical_done;
1841
1842                 case 378:       /* popcntw */
1843                         do_popcnt(regs, op, regs->gpr[rd], 32);
1844                         goto logical_done_nocc;
1845
1846                 case 412:       /* orc */
1847                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
1848                         goto logical_done;
1849
1850                 case 444:       /* or */
1851                         op->val = regs->gpr[rd] | regs->gpr[rb];
1852                         goto logical_done;
1853
1854                 case 476:       /* nand */
1855                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1856                         goto logical_done;
1857 #ifdef CONFIG_PPC64
1858                 case 506:       /* popcntd */
1859                         do_popcnt(regs, op, regs->gpr[rd], 64);
1860                         goto logical_done_nocc;
1861 #endif
1862                 case 538:       /* cnttzw */
1863                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1864                                 return -1;
1865                         val = (unsigned int) regs->gpr[rd];
1866                         op->val = (val ? __builtin_ctz(val) : 32);
1867                         goto logical_done;
1868 #ifdef __powerpc64__
1869                 case 570:       /* cnttzd */
1870                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1871                                 return -1;
1872                         val = regs->gpr[rd];
1873                         op->val = (val ? __builtin_ctzl(val) : 64);
1874                         goto logical_done;
1875 #endif
1876                 case 922:       /* extsh */
1877                         op->val = (signed short) regs->gpr[rd];
1878                         goto logical_done;
1879
1880                 case 954:       /* extsb */
1881                         op->val = (signed char) regs->gpr[rd];
1882                         goto logical_done;
1883 #ifdef __powerpc64__
1884                 case 986:       /* extsw */
1885                         op->val = (signed int) regs->gpr[rd];
1886                         goto logical_done;
1887 #endif
1888
1889 /*
1890  * Shift instructions
1891  */
1892                 case 24:        /* slw */
1893                         sh = regs->gpr[rb] & 0x3f;
1894                         if (sh < 32)
1895                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1896                         else
1897                                 op->val = 0;
1898                         goto logical_done;
1899
1900                 case 536:       /* srw */
1901                         sh = regs->gpr[rb] & 0x3f;
1902                         if (sh < 32)
1903                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1904                         else
1905                                 op->val = 0;
1906                         goto logical_done;
1907
1908                 case 792:       /* sraw */
1909                         op->type = COMPUTE + SETREG + SETXER;
1910                         sh = regs->gpr[rb] & 0x3f;
1911                         ival = (signed int) regs->gpr[rd];
1912                         op->val = ival >> (sh < 32 ? sh : 31);
1913                         op->xerval = regs->xer;
1914                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1915                                 op->xerval |= XER_CA;
1916                         else
1917                                 op->xerval &= ~XER_CA;
1918                         set_ca32(op, op->xerval & XER_CA);
1919                         goto logical_done;
1920
1921                 case 824:       /* srawi */
1922                         op->type = COMPUTE + SETREG + SETXER;
1923                         sh = rb;
1924                         ival = (signed int) regs->gpr[rd];
1925                         op->val = ival >> sh;
1926                         op->xerval = regs->xer;
1927                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1928                                 op->xerval |= XER_CA;
1929                         else
1930                                 op->xerval &= ~XER_CA;
1931                         set_ca32(op, op->xerval & XER_CA);
1932                         goto logical_done;
1933
1934 #ifdef __powerpc64__
1935                 case 27:        /* sld */
1936                         sh = regs->gpr[rb] & 0x7f;
1937                         if (sh < 64)
1938                                 op->val = regs->gpr[rd] << sh;
1939                         else
1940                                 op->val = 0;
1941                         goto logical_done;
1942
1943                 case 539:       /* srd */
1944                         sh = regs->gpr[rb] & 0x7f;
1945                         if (sh < 64)
1946                                 op->val = regs->gpr[rd] >> sh;
1947                         else
1948                                 op->val = 0;
1949                         goto logical_done;
1950
1951                 case 794:       /* srad */
1952                         op->type = COMPUTE + SETREG + SETXER;
1953                         sh = regs->gpr[rb] & 0x7f;
1954                         ival = (signed long int) regs->gpr[rd];
1955                         op->val = ival >> (sh < 64 ? sh : 63);
1956                         op->xerval = regs->xer;
1957                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1958                                 op->xerval |= XER_CA;
1959                         else
1960                                 op->xerval &= ~XER_CA;
1961                         set_ca32(op, op->xerval & XER_CA);
1962                         goto logical_done;
1963
1964                 case 826:       /* sradi with sh_5 = 0 */
1965                 case 827:       /* sradi with sh_5 = 1 */
1966                         op->type = COMPUTE + SETREG + SETXER;
1967                         sh = rb | ((instr & 2) << 4);
1968                         ival = (signed long int) regs->gpr[rd];
1969                         op->val = ival >> sh;
1970                         op->xerval = regs->xer;
1971                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1972                                 op->xerval |= XER_CA;
1973                         else
1974                                 op->xerval &= ~XER_CA;
1975                         set_ca32(op, op->xerval & XER_CA);
1976                         goto logical_done;
1977
1978                 case 890:       /* extswsli with sh_5 = 0 */
1979                 case 891:       /* extswsli with sh_5 = 1 */
1980                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1981                                 return -1;
1982                         op->type = COMPUTE + SETREG;
1983                         sh = rb | ((instr & 2) << 4);
1984                         val = (signed int) regs->gpr[rd];
1985                         if (sh)
1986                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
1987                         else
1988                                 op->val = val;
1989                         goto logical_done;
1990
1991 #endif /* __powerpc64__ */
1992
1993 /*
1994  * Cache instructions
1995  */
1996                 case 54:        /* dcbst */
1997                         op->type = MKOP(CACHEOP, DCBST, 0);
1998                         op->ea = xform_ea(instr, regs);
1999                         return 0;
2000
2001                 case 86:        /* dcbf */
2002                         op->type = MKOP(CACHEOP, DCBF, 0);
2003                         op->ea = xform_ea(instr, regs);
2004                         return 0;
2005
2006                 case 246:       /* dcbtst */
2007                         op->type = MKOP(CACHEOP, DCBTST, 0);
2008                         op->ea = xform_ea(instr, regs);
2009                         op->reg = rd;
2010                         return 0;
2011
2012                 case 278:       /* dcbt */
2013                         op->type = MKOP(CACHEOP, DCBTST, 0);
2014                         op->ea = xform_ea(instr, regs);
2015                         op->reg = rd;
2016                         return 0;
2017
2018                 case 982:       /* icbi */
2019                         op->type = MKOP(CACHEOP, ICBI, 0);
2020                         op->ea = xform_ea(instr, regs);
2021                         return 0;
2022
2023                 case 1014:      /* dcbz */
2024                         op->type = MKOP(CACHEOP, DCBZ, 0);
2025                         op->ea = xform_ea(instr, regs);
2026                         return 0;
2027                 }
2028                 break;
2029         }
2030
2031 /*
2032  * Loads and stores.
2033  */
2034         op->type = UNKNOWN;
2035         op->update_reg = ra;
2036         op->reg = rd;
2037         op->val = regs->gpr[rd];
2038         u = (instr >> 20) & UPDATE;
2039         op->vsx_flags = 0;
2040
2041         switch (opcode) {
2042         case 31:
2043                 u = instr & UPDATE;
2044                 op->ea = xform_ea(instr, regs);
2045                 switch ((instr >> 1) & 0x3ff) {
2046                 case 20:        /* lwarx */
2047                         op->type = MKOP(LARX, 0, 4);
2048                         break;
2049
2050                 case 150:       /* stwcx. */
2051                         op->type = MKOP(STCX, 0, 4);
2052                         break;
2053
2054 #ifdef __powerpc64__
2055                 case 84:        /* ldarx */
2056                         op->type = MKOP(LARX, 0, 8);
2057                         break;
2058
2059                 case 214:       /* stdcx. */
2060                         op->type = MKOP(STCX, 0, 8);
2061                         break;
2062
2063                 case 52:        /* lbarx */
2064                         op->type = MKOP(LARX, 0, 1);
2065                         break;
2066
2067                 case 694:       /* stbcx. */
2068                         op->type = MKOP(STCX, 0, 1);
2069                         break;
2070
2071                 case 116:       /* lharx */
2072                         op->type = MKOP(LARX, 0, 2);
2073                         break;
2074
2075                 case 726:       /* sthcx. */
2076                         op->type = MKOP(STCX, 0, 2);
2077                         break;
2078
2079                 case 276:       /* lqarx */
2080                         if (!((rd & 1) || rd == ra || rd == rb))
2081                                 op->type = MKOP(LARX, 0, 16);
2082                         break;
2083
2084                 case 182:       /* stqcx. */
2085                         if (!(rd & 1))
2086                                 op->type = MKOP(STCX, 0, 16);
2087                         break;
2088 #endif
2089
2090                 case 23:        /* lwzx */
2091                 case 55:        /* lwzux */
2092                         op->type = MKOP(LOAD, u, 4);
2093                         break;
2094
2095                 case 87:        /* lbzx */
2096                 case 119:       /* lbzux */
2097                         op->type = MKOP(LOAD, u, 1);
2098                         break;
2099
2100 #ifdef CONFIG_ALTIVEC
2101                 /*
2102                  * Note: for the load/store vector element instructions,
2103                  * bits of the EA say which field of the VMX register to use.
2104                  */
2105                 case 7:         /* lvebx */
2106                         op->type = MKOP(LOAD_VMX, 0, 1);
2107                         op->element_size = 1;
2108                         break;
2109
2110                 case 39:        /* lvehx */
2111                         op->type = MKOP(LOAD_VMX, 0, 2);
2112                         op->element_size = 2;
2113                         break;
2114
2115                 case 71:        /* lvewx */
2116                         op->type = MKOP(LOAD_VMX, 0, 4);
2117                         op->element_size = 4;
2118                         break;
2119
2120                 case 103:       /* lvx */
2121                 case 359:       /* lvxl */
2122                         op->type = MKOP(LOAD_VMX, 0, 16);
2123                         op->element_size = 16;
2124                         break;
2125
2126                 case 135:       /* stvebx */
2127                         op->type = MKOP(STORE_VMX, 0, 1);
2128                         op->element_size = 1;
2129                         break;
2130
2131                 case 167:       /* stvehx */
2132                         op->type = MKOP(STORE_VMX, 0, 2);
2133                         op->element_size = 2;
2134                         break;
2135
2136                 case 199:       /* stvewx */
2137                         op->type = MKOP(STORE_VMX, 0, 4);
2138                         op->element_size = 4;
2139                         break;
2140
2141                 case 231:       /* stvx */
2142                 case 487:       /* stvxl */
2143                         op->type = MKOP(STORE_VMX, 0, 16);
2144                         break;
2145 #endif /* CONFIG_ALTIVEC */
2146
2147 #ifdef __powerpc64__
2148                 case 21:        /* ldx */
2149                 case 53:        /* ldux */
2150                         op->type = MKOP(LOAD, u, 8);
2151                         break;
2152
2153                 case 149:       /* stdx */
2154                 case 181:       /* stdux */
2155                         op->type = MKOP(STORE, u, 8);
2156                         break;
2157 #endif
2158
2159                 case 151:       /* stwx */
2160                 case 183:       /* stwux */
2161                         op->type = MKOP(STORE, u, 4);
2162                         break;
2163
2164                 case 215:       /* stbx */
2165                 case 247:       /* stbux */
2166                         op->type = MKOP(STORE, u, 1);
2167                         break;
2168
2169                 case 279:       /* lhzx */
2170                 case 311:       /* lhzux */
2171                         op->type = MKOP(LOAD, u, 2);
2172                         break;
2173
2174 #ifdef __powerpc64__
2175                 case 341:       /* lwax */
2176                 case 373:       /* lwaux */
2177                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2178                         break;
2179 #endif
2180
2181                 case 343:       /* lhax */
2182                 case 375:       /* lhaux */
2183                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2184                         break;
2185
2186                 case 407:       /* sthx */
2187                 case 439:       /* sthux */
2188                         op->type = MKOP(STORE, u, 2);
2189                         break;
2190
2191 #ifdef __powerpc64__
2192                 case 532:       /* ldbrx */
2193                         op->type = MKOP(LOAD, BYTEREV, 8);
2194                         break;
2195
2196 #endif
2197                 case 533:       /* lswx */
2198                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2199                         break;
2200
2201                 case 534:       /* lwbrx */
2202                         op->type = MKOP(LOAD, BYTEREV, 4);
2203                         break;
2204
2205                 case 597:       /* lswi */
2206                         if (rb == 0)
2207                                 rb = 32;        /* # bytes to load */
2208                         op->type = MKOP(LOAD_MULTI, 0, rb);
2209                         op->ea = ra ? regs->gpr[ra] : 0;
2210                         break;
2211
2212 #ifdef CONFIG_PPC_FPU
2213                 case 535:       /* lfsx */
2214                 case 567:       /* lfsux */
2215                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2216                         break;
2217
2218                 case 599:       /* lfdx */
2219                 case 631:       /* lfdux */
2220                         op->type = MKOP(LOAD_FP, u, 8);
2221                         break;
2222
2223                 case 663:       /* stfsx */
2224                 case 695:       /* stfsux */
2225                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2226                         break;
2227
2228                 case 727:       /* stfdx */
2229                 case 759:       /* stfdux */
2230                         op->type = MKOP(STORE_FP, u, 8);
2231                         break;
2232
2233 #ifdef __powerpc64__
2234                 case 791:       /* lfdpx */
2235                         op->type = MKOP(LOAD_FP, 0, 16);
2236                         break;
2237
2238                 case 855:       /* lfiwax */
2239                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2240                         break;
2241
2242                 case 887:       /* lfiwzx */
2243                         op->type = MKOP(LOAD_FP, 0, 4);
2244                         break;
2245
2246                 case 919:       /* stfdpx */
2247                         op->type = MKOP(STORE_FP, 0, 16);
2248                         break;
2249
2250                 case 983:       /* stfiwx */
2251                         op->type = MKOP(STORE_FP, 0, 4);
2252                         break;
2253 #endif /* __powerpc64 */
2254 #endif /* CONFIG_PPC_FPU */
2255
2256 #ifdef __powerpc64__
2257                 case 660:       /* stdbrx */
2258                         op->type = MKOP(STORE, BYTEREV, 8);
2259                         op->val = byterev_8(regs->gpr[rd]);
2260                         break;
2261
2262 #endif
2263                 case 661:       /* stswx */
2264                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2265                         break;
2266
2267                 case 662:       /* stwbrx */
2268                         op->type = MKOP(STORE, BYTEREV, 4);
2269                         op->val = byterev_4(regs->gpr[rd]);
2270                         break;
2271
2272                 case 725:       /* stswi */
2273                         if (rb == 0)
2274                                 rb = 32;        /* # bytes to store */
2275                         op->type = MKOP(STORE_MULTI, 0, rb);
2276                         op->ea = ra ? regs->gpr[ra] : 0;
2277                         break;
2278
2279                 case 790:       /* lhbrx */
2280                         op->type = MKOP(LOAD, BYTEREV, 2);
2281                         break;
2282
2283                 case 918:       /* sthbrx */
2284                         op->type = MKOP(STORE, BYTEREV, 2);
2285                         op->val = byterev_2(regs->gpr[rd]);
2286                         break;
2287
2288 #ifdef CONFIG_VSX
2289                 case 12:        /* lxsiwzx */
2290                         op->reg = rd | ((instr & 1) << 5);
2291                         op->type = MKOP(LOAD_VSX, 0, 4);
2292                         op->element_size = 8;
2293                         break;
2294
2295                 case 76:        /* lxsiwax */
2296                         op->reg = rd | ((instr & 1) << 5);
2297                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2298                         op->element_size = 8;
2299                         break;
2300
2301                 case 140:       /* stxsiwx */
2302                         op->reg = rd | ((instr & 1) << 5);
2303                         op->type = MKOP(STORE_VSX, 0, 4);
2304                         op->element_size = 8;
2305                         break;
2306
2307                 case 268:       /* lxvx */
2308                         op->reg = rd | ((instr & 1) << 5);
2309                         op->type = MKOP(LOAD_VSX, 0, 16);
2310                         op->element_size = 16;
2311                         op->vsx_flags = VSX_CHECK_VEC;
2312                         break;
2313
2314                 case 269:       /* lxvl */
2315                 case 301: {     /* lxvll */
2316                         int nb;
2317                         op->reg = rd | ((instr & 1) << 5);
2318                         op->ea = ra ? regs->gpr[ra] : 0;
2319                         nb = regs->gpr[rb] & 0xff;
2320                         if (nb > 16)
2321                                 nb = 16;
2322                         op->type = MKOP(LOAD_VSX, 0, nb);
2323                         op->element_size = 16;
2324                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2325                                 VSX_CHECK_VEC;
2326                         break;
2327                 }
2328                 case 332:       /* lxvdsx */
2329                         op->reg = rd | ((instr & 1) << 5);
2330                         op->type = MKOP(LOAD_VSX, 0, 8);
2331                         op->element_size = 8;
2332                         op->vsx_flags = VSX_SPLAT;
2333                         break;
2334
2335                 case 364:       /* lxvwsx */
2336                         op->reg = rd | ((instr & 1) << 5);
2337                         op->type = MKOP(LOAD_VSX, 0, 4);
2338                         op->element_size = 4;
2339                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2340                         break;
2341
2342                 case 396:       /* stxvx */
2343                         op->reg = rd | ((instr & 1) << 5);
2344                         op->type = MKOP(STORE_VSX, 0, 16);
2345                         op->element_size = 16;
2346                         op->vsx_flags = VSX_CHECK_VEC;
2347                         break;
2348
2349                 case 397:       /* stxvl */
2350                 case 429: {     /* stxvll */
2351                         int nb;
2352                         op->reg = rd | ((instr & 1) << 5);
2353                         op->ea = ra ? regs->gpr[ra] : 0;
2354                         nb = regs->gpr[rb] & 0xff;
2355                         if (nb > 16)
2356                                 nb = 16;
2357                         op->type = MKOP(STORE_VSX, 0, nb);
2358                         op->element_size = 16;
2359                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2360                                 VSX_CHECK_VEC;
2361                         break;
2362                 }
2363                 case 524:       /* lxsspx */
2364                         op->reg = rd | ((instr & 1) << 5);
2365                         op->type = MKOP(LOAD_VSX, 0, 4);
2366                         op->element_size = 8;
2367                         op->vsx_flags = VSX_FPCONV;
2368                         break;
2369
2370                 case 588:       /* lxsdx */
2371                         op->reg = rd | ((instr & 1) << 5);
2372                         op->type = MKOP(LOAD_VSX, 0, 8);
2373                         op->element_size = 8;
2374                         break;
2375
2376                 case 652:       /* stxsspx */
2377                         op->reg = rd | ((instr & 1) << 5);
2378                         op->type = MKOP(STORE_VSX, 0, 4);
2379                         op->element_size = 8;
2380                         op->vsx_flags = VSX_FPCONV;
2381                         break;
2382
2383                 case 716:       /* stxsdx */
2384                         op->reg = rd | ((instr & 1) << 5);
2385                         op->type = MKOP(STORE_VSX, 0, 8);
2386                         op->element_size = 8;
2387                         break;
2388
2389                 case 780:       /* lxvw4x */
2390                         op->reg = rd | ((instr & 1) << 5);
2391                         op->type = MKOP(LOAD_VSX, 0, 16);
2392                         op->element_size = 4;
2393                         break;
2394
2395                 case 781:       /* lxsibzx */
2396                         op->reg = rd | ((instr & 1) << 5);
2397                         op->type = MKOP(LOAD_VSX, 0, 1);
2398                         op->element_size = 8;
2399                         op->vsx_flags = VSX_CHECK_VEC;
2400                         break;
2401
2402                 case 812:       /* lxvh8x */
2403                         op->reg = rd | ((instr & 1) << 5);
2404                         op->type = MKOP(LOAD_VSX, 0, 16);
2405                         op->element_size = 2;
2406                         op->vsx_flags = VSX_CHECK_VEC;
2407                         break;
2408
2409                 case 813:       /* lxsihzx */
2410                         op->reg = rd | ((instr & 1) << 5);
2411                         op->type = MKOP(LOAD_VSX, 0, 2);
2412                         op->element_size = 8;
2413                         op->vsx_flags = VSX_CHECK_VEC;
2414                         break;
2415
2416                 case 844:       /* lxvd2x */
2417                         op->reg = rd | ((instr & 1) << 5);
2418                         op->type = MKOP(LOAD_VSX, 0, 16);
2419                         op->element_size = 8;
2420                         break;
2421
2422                 case 876:       /* lxvb16x */
2423                         op->reg = rd | ((instr & 1) << 5);
2424                         op->type = MKOP(LOAD_VSX, 0, 16);
2425                         op->element_size = 1;
2426                         op->vsx_flags = VSX_CHECK_VEC;
2427                         break;
2428
2429                 case 908:       /* stxvw4x */
2430                         op->reg = rd | ((instr & 1) << 5);
2431                         op->type = MKOP(STORE_VSX, 0, 16);
2432                         op->element_size = 4;
2433                         break;
2434
2435                 case 909:       /* stxsibx */
2436                         op->reg = rd | ((instr & 1) << 5);
2437                         op->type = MKOP(STORE_VSX, 0, 1);
2438                         op->element_size = 8;
2439                         op->vsx_flags = VSX_CHECK_VEC;
2440                         break;
2441
2442                 case 940:       /* stxvh8x */
2443                         op->reg = rd | ((instr & 1) << 5);
2444                         op->type = MKOP(STORE_VSX, 0, 16);
2445                         op->element_size = 2;
2446                         op->vsx_flags = VSX_CHECK_VEC;
2447                         break;
2448
2449                 case 941:       /* stxsihx */
2450                         op->reg = rd | ((instr & 1) << 5);
2451                         op->type = MKOP(STORE_VSX, 0, 2);
2452                         op->element_size = 8;
2453                         op->vsx_flags = VSX_CHECK_VEC;
2454                         break;
2455
2456                 case 972:       /* stxvd2x */
2457                         op->reg = rd | ((instr & 1) << 5);
2458                         op->type = MKOP(STORE_VSX, 0, 16);
2459                         op->element_size = 8;
2460                         break;
2461
2462                 case 1004:      /* stxvb16x */
2463                         op->reg = rd | ((instr & 1) << 5);
2464                         op->type = MKOP(STORE_VSX, 0, 16);
2465                         op->element_size = 1;
2466                         op->vsx_flags = VSX_CHECK_VEC;
2467                         break;
2468
2469 #endif /* CONFIG_VSX */
2470                 }
2471                 break;
2472
2473         case 32:        /* lwz */
2474         case 33:        /* lwzu */
2475                 op->type = MKOP(LOAD, u, 4);
2476                 op->ea = dform_ea(instr, regs);
2477                 break;
2478
2479         case 34:        /* lbz */
2480         case 35:        /* lbzu */
2481                 op->type = MKOP(LOAD, u, 1);
2482                 op->ea = dform_ea(instr, regs);
2483                 break;
2484
2485         case 36:        /* stw */
2486         case 37:        /* stwu */
2487                 op->type = MKOP(STORE, u, 4);
2488                 op->ea = dform_ea(instr, regs);
2489                 break;
2490
2491         case 38:        /* stb */
2492         case 39:        /* stbu */
2493                 op->type = MKOP(STORE, u, 1);
2494                 op->ea = dform_ea(instr, regs);
2495                 break;
2496
2497         case 40:        /* lhz */
2498         case 41:        /* lhzu */
2499                 op->type = MKOP(LOAD, u, 2);
2500                 op->ea = dform_ea(instr, regs);
2501                 break;
2502
2503         case 42:        /* lha */
2504         case 43:        /* lhau */
2505                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2506                 op->ea = dform_ea(instr, regs);
2507                 break;
2508
2509         case 44:        /* sth */
2510         case 45:        /* sthu */
2511                 op->type = MKOP(STORE, u, 2);
2512                 op->ea = dform_ea(instr, regs);
2513                 break;
2514
2515         case 46:        /* lmw */
2516                 if (ra >= rd)
2517                         break;          /* invalid form, ra in range to load */
2518                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2519                 op->ea = dform_ea(instr, regs);
2520                 break;
2521
2522         case 47:        /* stmw */
2523                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2524                 op->ea = dform_ea(instr, regs);
2525                 break;
2526
2527 #ifdef CONFIG_PPC_FPU
2528         case 48:        /* lfs */
2529         case 49:        /* lfsu */
2530                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2531                 op->ea = dform_ea(instr, regs);
2532                 break;
2533
2534         case 50:        /* lfd */
2535         case 51:        /* lfdu */
2536                 op->type = MKOP(LOAD_FP, u, 8);
2537                 op->ea = dform_ea(instr, regs);
2538                 break;
2539
2540         case 52:        /* stfs */
2541         case 53:        /* stfsu */
2542                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2543                 op->ea = dform_ea(instr, regs);
2544                 break;
2545
2546         case 54:        /* stfd */
2547         case 55:        /* stfdu */
2548                 op->type = MKOP(STORE_FP, u, 8);
2549                 op->ea = dform_ea(instr, regs);
2550                 break;
2551 #endif
2552
2553 #ifdef __powerpc64__
2554         case 56:        /* lq */
2555                 if (!((rd & 1) || (rd == ra)))
2556                         op->type = MKOP(LOAD, 0, 16);
2557                 op->ea = dqform_ea(instr, regs);
2558                 break;
2559 #endif
2560
2561 #ifdef CONFIG_VSX
2562         case 57:        /* lfdp, lxsd, lxssp */
2563                 op->ea = dsform_ea(instr, regs);
2564                 switch (instr & 3) {
2565                 case 0:         /* lfdp */
2566                         if (rd & 1)
2567                                 break;          /* reg must be even */
2568                         op->type = MKOP(LOAD_FP, 0, 16);
2569                         break;
2570                 case 2:         /* lxsd */
2571                         op->reg = rd + 32;
2572                         op->type = MKOP(LOAD_VSX, 0, 8);
2573                         op->element_size = 8;
2574                         op->vsx_flags = VSX_CHECK_VEC;
2575                         break;
2576                 case 3:         /* lxssp */
2577                         op->reg = rd + 32;
2578                         op->type = MKOP(LOAD_VSX, 0, 4);
2579                         op->element_size = 8;
2580                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2581                         break;
2582                 }
2583                 break;
2584 #endif /* CONFIG_VSX */
2585
2586 #ifdef __powerpc64__
2587         case 58:        /* ld[u], lwa */
2588                 op->ea = dsform_ea(instr, regs);
2589                 switch (instr & 3) {
2590                 case 0:         /* ld */
2591                         op->type = MKOP(LOAD, 0, 8);
2592                         break;
2593                 case 1:         /* ldu */
2594                         op->type = MKOP(LOAD, UPDATE, 8);
2595                         break;
2596                 case 2:         /* lwa */
2597                         op->type = MKOP(LOAD, SIGNEXT, 4);
2598                         break;
2599                 }
2600                 break;
2601 #endif
2602
2603 #ifdef CONFIG_VSX
2604         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2605                 switch (instr & 7) {
2606                 case 0:         /* stfdp with LSB of DS field = 0 */
2607                 case 4:         /* stfdp with LSB of DS field = 1 */
2608                         op->ea = dsform_ea(instr, regs);
2609                         op->type = MKOP(STORE_FP, 0, 16);
2610                         break;
2611
2612                 case 1:         /* lxv */
2613                         op->ea = dqform_ea(instr, regs);
2614                         if (instr & 8)
2615                                 op->reg = rd + 32;
2616                         op->type = MKOP(LOAD_VSX, 0, 16);
2617                         op->element_size = 16;
2618                         op->vsx_flags = VSX_CHECK_VEC;
2619                         break;
2620
2621                 case 2:         /* stxsd with LSB of DS field = 0 */
2622                 case 6:         /* stxsd with LSB of DS field = 1 */
2623                         op->ea = dsform_ea(instr, regs);
2624                         op->reg = rd + 32;
2625                         op->type = MKOP(STORE_VSX, 0, 8);
2626                         op->element_size = 8;
2627                         op->vsx_flags = VSX_CHECK_VEC;
2628                         break;
2629
2630                 case 3:         /* stxssp with LSB of DS field = 0 */
2631                 case 7:         /* stxssp with LSB of DS field = 1 */
2632                         op->ea = dsform_ea(instr, regs);
2633                         op->reg = rd + 32;
2634                         op->type = MKOP(STORE_VSX, 0, 4);
2635                         op->element_size = 8;
2636                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2637                         break;
2638
2639                 case 5:         /* stxv */
2640                         op->ea = dqform_ea(instr, regs);
2641                         if (instr & 8)
2642                                 op->reg = rd + 32;
2643                         op->type = MKOP(STORE_VSX, 0, 16);
2644                         op->element_size = 16;
2645                         op->vsx_flags = VSX_CHECK_VEC;
2646                         break;
2647                 }
2648                 break;
2649 #endif /* CONFIG_VSX */
2650
2651 #ifdef __powerpc64__
2652         case 62:        /* std[u] */
2653                 op->ea = dsform_ea(instr, regs);
2654                 switch (instr & 3) {
2655                 case 0:         /* std */
2656                         op->type = MKOP(STORE, 0, 8);
2657                         break;
2658                 case 1:         /* stdu */
2659                         op->type = MKOP(STORE, UPDATE, 8);
2660                         break;
2661                 case 2:         /* stq */
2662                         if (!(rd & 1))
2663                                 op->type = MKOP(STORE, 0, 16);
2664                         break;
2665                 }
2666                 break;
2667 #endif /* __powerpc64__ */
2668
2669         }
2670
2671 #ifdef CONFIG_VSX
2672         if ((GETTYPE(op->type) == LOAD_VSX ||
2673              GETTYPE(op->type) == STORE_VSX) &&
2674             !cpu_has_feature(CPU_FTR_VSX)) {
2675                 return -1;
2676         }
2677 #endif /* CONFIG_VSX */
2678
2679         return 0;
2680
2681  logical_done:
2682         if (instr & 1)
2683                 set_cr0(regs, op);
2684  logical_done_nocc:
2685         op->reg = ra;
2686         op->type |= SETREG;
2687         return 1;
2688
2689  arith_done:
2690         if (instr & 1)
2691                 set_cr0(regs, op);
2692  compute_done:
2693         op->reg = rd;
2694         op->type |= SETREG;
2695         return 1;
2696
2697  priv:
2698         op->type = INTERRUPT | 0x700;
2699         op->val = SRR1_PROGPRIV;
2700         return 0;
2701
2702  trap:
2703         op->type = INTERRUPT | 0x700;
2704         op->val = SRR1_PROGTRAP;
2705         return 0;
2706 }
2707 EXPORT_SYMBOL_GPL(analyse_instr);
2708 NOKPROBE_SYMBOL(analyse_instr);
2709
2710 /*
2711  * For PPC32 we always use stwu with r1 to change the stack pointer.
2712  * So this emulated store may corrupt the exception frame, now we
2713  * have to provide the exception frame trampoline, which is pushed
2714  * below the kprobed function stack. So we only update gpr[1] but
2715  * don't emulate the real store operation. We will do real store
2716  * operation safely in exception return code by checking this flag.
2717  */
2718 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2719 {
2720 #ifdef CONFIG_PPC32
2721         /*
2722          * Check if we will touch kernel stack overflow
2723          */
2724         if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2725                 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2726                 return -EINVAL;
2727         }
2728 #endif /* CONFIG_PPC32 */
2729         /*
2730          * Check if we already set since that means we'll
2731          * lose the previous value.
2732          */
2733         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2734         set_thread_flag(TIF_EMULATE_STACK_STORE);
2735         return 0;
2736 }
2737
2738 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2739 {
2740         switch (size) {
2741         case 2:
2742                 *valp = (signed short) *valp;
2743                 break;
2744         case 4:
2745                 *valp = (signed int) *valp;
2746                 break;
2747         }
2748 }
2749
2750 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2751 {
2752         switch (size) {
2753         case 2:
2754                 *valp = byterev_2(*valp);
2755                 break;
2756         case 4:
2757                 *valp = byterev_4(*valp);
2758                 break;
2759 #ifdef __powerpc64__
2760         case 8:
2761                 *valp = byterev_8(*valp);
2762                 break;
2763 #endif
2764         }
2765 }
2766
2767 /*
2768  * Emulate an instruction that can be executed just by updating
2769  * fields in *regs.
2770  */
2771 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2772 {
2773         unsigned long next_pc;
2774
2775         next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2776         switch (GETTYPE(op->type)) {
2777         case COMPUTE:
2778                 if (op->type & SETREG)
2779                         regs->gpr[op->reg] = op->val;
2780                 if (op->type & SETCC)
2781                         regs->ccr = op->ccval;
2782                 if (op->type & SETXER)
2783                         regs->xer = op->xerval;
2784                 break;
2785
2786         case BRANCH:
2787                 if (op->type & SETLK)
2788                         regs->link = next_pc;
2789                 if (op->type & BRTAKEN)
2790                         next_pc = op->val;
2791                 if (op->type & DECCTR)
2792                         --regs->ctr;
2793                 break;
2794
2795         case BARRIER:
2796                 switch (op->type & BARRIER_MASK) {
2797                 case BARRIER_SYNC:
2798                         mb();
2799                         break;
2800                 case BARRIER_ISYNC:
2801                         isync();
2802                         break;
2803                 case BARRIER_EIEIO:
2804                         eieio();
2805                         break;
2806 #ifdef CONFIG_PPC64
2807                 case BARRIER_LWSYNC:
2808                         asm volatile("lwsync" : : : "memory");
2809                         break;
2810                 case BARRIER_PTESYNC:
2811                         asm volatile("ptesync" : : : "memory");
2812                         break;
2813 #endif
2814                 }
2815                 break;
2816
2817         case MFSPR:
2818                 switch (op->spr) {
2819                 case SPRN_XER:
2820                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2821                         break;
2822                 case SPRN_LR:
2823                         regs->gpr[op->reg] = regs->link;
2824                         break;
2825                 case SPRN_CTR:
2826                         regs->gpr[op->reg] = regs->ctr;
2827                         break;
2828                 default:
2829                         WARN_ON_ONCE(1);
2830                 }
2831                 break;
2832
2833         case MTSPR:
2834                 switch (op->spr) {
2835                 case SPRN_XER:
2836                         regs->xer = op->val & 0xffffffffUL;
2837                         break;
2838                 case SPRN_LR:
2839                         regs->link = op->val;
2840                         break;
2841                 case SPRN_CTR:
2842                         regs->ctr = op->val;
2843                         break;
2844                 default:
2845                         WARN_ON_ONCE(1);
2846                 }
2847                 break;
2848
2849         default:
2850                 WARN_ON_ONCE(1);
2851         }
2852         regs->nip = next_pc;
2853 }
2854 NOKPROBE_SYMBOL(emulate_update_regs);
2855
2856 /*
2857  * Emulate a previously-analysed load or store instruction.
2858  * Return values are:
2859  * 0 = instruction emulated successfully
2860  * -EFAULT = address out of range or access faulted (regs->dar
2861  *           contains the faulting address)
2862  * -EACCES = misaligned access, instruction requires alignment
2863  * -EINVAL = unknown operation in *op
2864  */
2865 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2866 {
2867         int err, size, type;
2868         int i, rd, nb;
2869         unsigned int cr;
2870         unsigned long val;
2871         unsigned long ea;
2872         bool cross_endian;
2873
2874         err = 0;
2875         size = GETSIZE(op->type);
2876         type = GETTYPE(op->type);
2877         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2878         ea = truncate_if_32bit(regs->msr, op->ea);
2879
2880         switch (type) {
2881         case LARX:
2882                 if (ea & (size - 1))
2883                         return -EACCES;         /* can't handle misaligned */
2884                 if (!address_ok(regs, ea, size))
2885                         return -EFAULT;
2886                 err = 0;
2887                 val = 0;
2888                 switch (size) {
2889 #ifdef __powerpc64__
2890                 case 1:
2891                         __get_user_asmx(val, ea, err, "lbarx");
2892                         break;
2893                 case 2:
2894                         __get_user_asmx(val, ea, err, "lharx");
2895                         break;
2896 #endif
2897                 case 4:
2898                         __get_user_asmx(val, ea, err, "lwarx");
2899                         break;
2900 #ifdef __powerpc64__
2901                 case 8:
2902                         __get_user_asmx(val, ea, err, "ldarx");
2903                         break;
2904                 case 16:
2905                         err = do_lqarx(ea, &regs->gpr[op->reg]);
2906                         break;
2907 #endif
2908                 default:
2909                         return -EINVAL;
2910                 }
2911                 if (err) {
2912                         regs->dar = ea;
2913                         break;
2914                 }
2915                 if (size < 16)
2916                         regs->gpr[op->reg] = val;
2917                 break;
2918
2919         case STCX:
2920                 if (ea & (size - 1))
2921                         return -EACCES;         /* can't handle misaligned */
2922                 if (!address_ok(regs, ea, size))
2923                         return -EFAULT;
2924                 err = 0;
2925                 switch (size) {
2926 #ifdef __powerpc64__
2927                 case 1:
2928                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2929                         break;
2930                 case 2:
2931                         __put_user_asmx(op->val, ea, err, "sthcx.", cr);
2932                         break;
2933 #endif
2934                 case 4:
2935                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2936                         break;
2937 #ifdef __powerpc64__
2938                 case 8:
2939                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2940                         break;
2941                 case 16:
2942                         err = do_stqcx(ea, regs->gpr[op->reg],
2943                                        regs->gpr[op->reg + 1], &cr);
2944                         break;
2945 #endif
2946                 default:
2947                         return -EINVAL;
2948                 }
2949                 if (!err)
2950                         regs->ccr = (regs->ccr & 0x0fffffff) |
2951                                 (cr & 0xe0000000) |
2952                                 ((regs->xer >> 3) & 0x10000000);
2953                 else
2954                         regs->dar = ea;
2955                 break;
2956
2957         case LOAD:
2958 #ifdef __powerpc64__
2959                 if (size == 16) {
2960                         err = emulate_lq(regs, ea, op->reg, cross_endian);
2961                         break;
2962                 }
2963 #endif
2964                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2965                 if (!err) {
2966                         if (op->type & SIGNEXT)
2967                                 do_signext(&regs->gpr[op->reg], size);
2968                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2969                                 do_byterev(&regs->gpr[op->reg], size);
2970                 }
2971                 break;
2972
2973 #ifdef CONFIG_PPC_FPU
2974         case LOAD_FP:
2975                 /*
2976                  * If the instruction is in userspace, we can emulate it even
2977                  * if the VMX state is not live, because we have the state
2978                  * stored in the thread_struct.  If the instruction is in
2979                  * the kernel, we must not touch the state in the thread_struct.
2980                  */
2981                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2982                         return 0;
2983                 err = do_fp_load(op, ea, regs, cross_endian);
2984                 break;
2985 #endif
2986 #ifdef CONFIG_ALTIVEC
2987         case LOAD_VMX:
2988                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2989                         return 0;
2990                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2991                 break;
2992 #endif
2993 #ifdef CONFIG_VSX
2994         case LOAD_VSX: {
2995                 unsigned long msrbit = MSR_VSX;
2996
2997                 /*
2998                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2999                  * when the target of the instruction is a vector register.
3000                  */
3001                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3002                         msrbit = MSR_VEC;
3003                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3004                         return 0;
3005                 err = do_vsx_load(op, ea, regs, cross_endian);
3006                 break;
3007         }
3008 #endif
3009         case LOAD_MULTI:
3010                 if (!address_ok(regs, ea, size))
3011                         return -EFAULT;
3012                 rd = op->reg;
3013                 for (i = 0; i < size; i += 4) {
3014                         unsigned int v32 = 0;
3015
3016                         nb = size - i;
3017                         if (nb > 4)
3018                                 nb = 4;
3019                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3020                         if (err)
3021                                 break;
3022                         if (unlikely(cross_endian))
3023                                 v32 = byterev_4(v32);
3024                         regs->gpr[rd] = v32;
3025                         ea += 4;
3026                         /* reg number wraps from 31 to 0 for lsw[ix] */
3027                         rd = (rd + 1) & 0x1f;
3028                 }
3029                 break;
3030
3031         case STORE:
3032 #ifdef __powerpc64__
3033                 if (size == 16) {
3034                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3035                         break;
3036                 }
3037 #endif
3038                 if ((op->type & UPDATE) && size == sizeof(long) &&
3039                     op->reg == 1 && op->update_reg == 1 &&
3040                     !(regs->msr & MSR_PR) &&
3041                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3042                         err = handle_stack_update(ea, regs);
3043                         break;
3044                 }
3045                 if (unlikely(cross_endian))
3046                         do_byterev(&op->val, size);
3047                 err = write_mem(op->val, ea, size, regs);
3048                 break;
3049
3050 #ifdef CONFIG_PPC_FPU
3051         case STORE_FP:
3052                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3053                         return 0;
3054                 err = do_fp_store(op, ea, regs, cross_endian);
3055                 break;
3056 #endif
3057 #ifdef CONFIG_ALTIVEC
3058         case STORE_VMX:
3059                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3060                         return 0;
3061                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3062                 break;
3063 #endif
3064 #ifdef CONFIG_VSX
3065         case STORE_VSX: {
3066                 unsigned long msrbit = MSR_VSX;
3067
3068                 /*
3069                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3070                  * when the target of the instruction is a vector register.
3071                  */
3072                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3073                         msrbit = MSR_VEC;
3074                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3075                         return 0;
3076                 err = do_vsx_store(op, ea, regs, cross_endian);
3077                 break;
3078         }
3079 #endif
3080         case STORE_MULTI:
3081                 if (!address_ok(regs, ea, size))
3082                         return -EFAULT;
3083                 rd = op->reg;
3084                 for (i = 0; i < size; i += 4) {
3085                         unsigned int v32 = regs->gpr[rd];
3086
3087                         nb = size - i;
3088                         if (nb > 4)
3089                                 nb = 4;
3090                         if (unlikely(cross_endian))
3091                                 v32 = byterev_4(v32);
3092                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3093                         if (err)
3094                                 break;
3095                         ea += 4;
3096                         /* reg number wraps from 31 to 0 for stsw[ix] */
3097                         rd = (rd + 1) & 0x1f;
3098                 }
3099                 break;
3100
3101         default:
3102                 return -EINVAL;
3103         }
3104
3105         if (err)
3106                 return err;
3107
3108         if (op->type & UPDATE)
3109                 regs->gpr[op->update_reg] = op->ea;
3110
3111         return 0;
3112 }
3113 NOKPROBE_SYMBOL(emulate_loadstore);
3114
3115 /*
3116  * Emulate instructions that cause a transfer of control,
3117  * loads and stores, and a few other instructions.
3118  * Returns 1 if the step was emulated, 0 if not,
3119  * or -1 if the instruction is one that should not be stepped,
3120  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3121  */
3122 int emulate_step(struct pt_regs *regs, unsigned int instr)
3123 {
3124         struct instruction_op op;
3125         int r, err, type;
3126         unsigned long val;
3127         unsigned long ea;
3128
3129         r = analyse_instr(&op, regs, instr);
3130         if (r < 0)
3131                 return r;
3132         if (r > 0) {
3133                 emulate_update_regs(regs, &op);
3134                 return 1;
3135         }
3136
3137         err = 0;
3138         type = GETTYPE(op.type);
3139
3140         if (OP_IS_LOAD_STORE(type)) {
3141                 err = emulate_loadstore(regs, &op);
3142                 if (err)
3143                         return 0;
3144                 goto instr_done;
3145         }
3146
3147         switch (type) {
3148         case CACHEOP:
3149                 ea = truncate_if_32bit(regs->msr, op.ea);
3150                 if (!address_ok(regs, ea, 8))
3151                         return 0;
3152                 switch (op.type & CACHEOP_MASK) {
3153                 case DCBST:
3154                         __cacheop_user_asmx(ea, err, "dcbst");
3155                         break;
3156                 case DCBF:
3157                         __cacheop_user_asmx(ea, err, "dcbf");
3158                         break;
3159                 case DCBTST:
3160                         if (op.reg == 0)
3161                                 prefetchw((void *) ea);
3162                         break;
3163                 case DCBT:
3164                         if (op.reg == 0)
3165                                 prefetch((void *) ea);
3166                         break;
3167                 case ICBI:
3168                         __cacheop_user_asmx(ea, err, "icbi");
3169                         break;
3170                 case DCBZ:
3171                         err = emulate_dcbz(ea, regs);
3172                         break;
3173                 }
3174                 if (err) {
3175                         regs->dar = ea;
3176                         return 0;
3177                 }
3178                 goto instr_done;
3179
3180         case MFMSR:
3181                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3182                 goto instr_done;
3183
3184         case MTMSR:
3185                 val = regs->gpr[op.reg];
3186                 if ((val & MSR_RI) == 0)
3187                         /* can't step mtmsr[d] that would clear MSR_RI */
3188                         return -1;
3189                 /* here op.val is the mask of bits to change */
3190                 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3191                 goto instr_done;
3192
3193 #ifdef CONFIG_PPC64
3194         case SYSCALL:   /* sc */
3195                 /*
3196                  * N.B. this uses knowledge about how the syscall
3197                  * entry code works.  If that is changed, this will
3198                  * need to be changed also.
3199                  */
3200                 if (regs->gpr[0] == 0x1ebe &&
3201                     cpu_has_feature(CPU_FTR_REAL_LE)) {
3202                         regs->msr ^= MSR_LE;
3203                         goto instr_done;
3204                 }
3205                 regs->gpr[9] = regs->gpr[13];
3206                 regs->gpr[10] = MSR_KERNEL;
3207                 regs->gpr[11] = regs->nip + 4;
3208                 regs->gpr[12] = regs->msr & MSR_MASK;
3209                 regs->gpr[13] = (unsigned long) get_paca();
3210                 regs->nip = (unsigned long) &system_call_common;
3211                 regs->msr = MSR_KERNEL;
3212                 return 1;
3213
3214         case RFI:
3215                 return -1;
3216 #endif
3217         }
3218         return 0;
3219
3220  instr_done:
3221         regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3222         return 1;
3223 }
3224 NOKPROBE_SYMBOL(emulate_step);