arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / powerpc / lib / sstep.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 #ifdef CONFIG_PPC64
19 /* Bits in SRR1 that are copied from MSR */
20 #define MSR_MASK        0xffffffff87c0ffffUL
21 #else
22 #define MSR_MASK        0x87c0ffff
23 #endif
24
25 /* Bits in XER */
26 #define XER_SO          0x80000000U
27 #define XER_OV          0x40000000U
28 #define XER_CA          0x20000000U
29 #define XER_OV32        0x00080000U
30 #define XER_CA32        0x00040000U
31
32 #ifdef CONFIG_VSX
33 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
34 #endif
35
36 #ifdef CONFIG_PPC_FPU
37 /*
38  * Functions in ldstfp.S
39  */
40 extern void get_fpr(int rn, double *p);
41 extern void put_fpr(int rn, const double *p);
42 extern void get_vr(int rn, __vector128 *p);
43 extern void put_vr(int rn, __vector128 *p);
44 extern void load_vsrn(int vsr, const void *p);
45 extern void store_vsrn(int vsr, void *p);
46 extern void conv_sp_to_dp(const float *sp, double *dp);
47 extern void conv_dp_to_sp(const double *dp, float *sp);
48 #endif
49
50 #ifdef __powerpc64__
51 /*
52  * Functions in quad.S
53  */
54 extern int do_lq(unsigned long ea, unsigned long *regs);
55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56 extern int do_lqarx(unsigned long ea, unsigned long *regs);
57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
58                     unsigned int *crp);
59 #endif
60
61 #ifdef __LITTLE_ENDIAN__
62 #define IS_LE   1
63 #define IS_BE   0
64 #else
65 #define IS_LE   0
66 #define IS_BE   1
67 #endif
68
69 /*
70  * Emulate the truncation of 64 bit values in 32-bit mode.
71  */
72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
73                                                         unsigned long val)
74 {
75         if ((msr & MSR_64BIT) == 0)
76                 val &= 0xffffffffUL;
77         return val;
78 }
79
80 /*
81  * Determine whether a conditional branch instruction would branch.
82  */
83 static nokprobe_inline int branch_taken(unsigned int instr,
84                                         const struct pt_regs *regs,
85                                         struct instruction_op *op)
86 {
87         unsigned int bo = (instr >> 21) & 0x1f;
88         unsigned int bi;
89
90         if ((bo & 4) == 0) {
91                 /* decrement counter */
92                 op->type |= DECCTR;
93                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94                         return 0;
95         }
96         if ((bo & 0x10) == 0) {
97                 /* check bit from CR */
98                 bi = (instr >> 16) & 0x1f;
99                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100                         return 0;
101         }
102         return 1;
103 }
104
105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106                                        unsigned long ea, int nb)
107 {
108         if (!user_mode(regs))
109                 return 1;
110         if (access_ok((void __user *)ea, nb))
111                 return 1;
112         if (access_ok((void __user *)ea, 1))
113                 /* Access overlaps the end of the user region */
114                 regs->dar = TASK_SIZE_MAX - 1;
115         else
116                 regs->dar = ea;
117         return 0;
118 }
119
120 /*
121  * Calculate effective address for a D-form instruction
122  */
123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124                                               const struct pt_regs *regs)
125 {
126         int ra;
127         unsigned long ea;
128
129         ra = (instr >> 16) & 0x1f;
130         ea = (signed short) instr;              /* sign-extend */
131         if (ra)
132                 ea += regs->gpr[ra];
133
134         return ea;
135 }
136
137 #ifdef __powerpc64__
138 /*
139  * Calculate effective address for a DS-form instruction
140  */
141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142                                                const struct pt_regs *regs)
143 {
144         int ra;
145         unsigned long ea;
146
147         ra = (instr >> 16) & 0x1f;
148         ea = (signed short) (instr & ~3);       /* sign-extend */
149         if (ra)
150                 ea += regs->gpr[ra];
151
152         return ea;
153 }
154
155 /*
156  * Calculate effective address for a DQ-form instruction
157  */
158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159                                                const struct pt_regs *regs)
160 {
161         int ra;
162         unsigned long ea;
163
164         ra = (instr >> 16) & 0x1f;
165         ea = (signed short) (instr & ~0xf);     /* sign-extend */
166         if (ra)
167                 ea += regs->gpr[ra];
168
169         return ea;
170 }
171 #endif /* __powerpc64 */
172
173 /*
174  * Calculate effective address for an X-form instruction
175  */
176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177                                               const struct pt_regs *regs)
178 {
179         int ra, rb;
180         unsigned long ea;
181
182         ra = (instr >> 16) & 0x1f;
183         rb = (instr >> 11) & 0x1f;
184         ea = regs->gpr[rb];
185         if (ra)
186                 ea += regs->gpr[ra];
187
188         return ea;
189 }
190
191 /*
192  * Calculate effective address for a MLS:D-form / 8LS:D-form
193  * prefixed instruction
194  */
195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196                                                   unsigned int suffix,
197                                                   const struct pt_regs *regs)
198 {
199         int ra, prefix_r;
200         unsigned int  dd;
201         unsigned long ea, d0, d1, d;
202
203         prefix_r = GET_PREFIX_R(instr);
204         ra = GET_PREFIX_RA(suffix);
205
206         d0 = instr & 0x3ffff;
207         d1 = suffix & 0xffff;
208         d = (d0 << 16) | d1;
209
210         /*
211          * sign extend a 34 bit number
212          */
213         dd = (unsigned int)(d >> 2);
214         ea = (signed int)dd;
215         ea = (ea << 2) | (d & 0x3);
216
217         if (!prefix_r && ra)
218                 ea += regs->gpr[ra];
219         else if (!prefix_r && !ra)
220                 ; /* Leave ea as is */
221         else if (prefix_r)
222                 ea += regs->nip;
223
224         /*
225          * (prefix_r && ra) is an invalid form. Should already be
226          * checked for by caller!
227          */
228
229         return ea;
230 }
231
232 /*
233  * Return the largest power of 2, not greater than sizeof(unsigned long),
234  * such that x is a multiple of it.
235  */
236 static nokprobe_inline unsigned long max_align(unsigned long x)
237 {
238         x |= sizeof(unsigned long);
239         return x & -x;          /* isolates rightmost bit */
240 }
241
242 static nokprobe_inline unsigned long byterev_2(unsigned long x)
243 {
244         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
245 }
246
247 static nokprobe_inline unsigned long byterev_4(unsigned long x)
248 {
249         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
251 }
252
253 #ifdef __powerpc64__
254 static nokprobe_inline unsigned long byterev_8(unsigned long x)
255 {
256         return (byterev_4(x) << 32) | byterev_4(x >> 32);
257 }
258 #endif
259
260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
261 {
262         switch (nb) {
263         case 2:
264                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
265                 break;
266         case 4:
267                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
268                 break;
269 #ifdef __powerpc64__
270         case 8:
271                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
272                 break;
273         case 16: {
274                 unsigned long *up = (unsigned long *)ptr;
275                 unsigned long tmp;
276                 tmp = byterev_8(up[0]);
277                 up[0] = byterev_8(up[1]);
278                 up[1] = tmp;
279                 break;
280         }
281         case 32: {
282                 unsigned long *up = (unsigned long *)ptr;
283                 unsigned long tmp;
284
285                 tmp = byterev_8(up[0]);
286                 up[0] = byterev_8(up[3]);
287                 up[3] = tmp;
288                 tmp = byterev_8(up[2]);
289                 up[2] = byterev_8(up[1]);
290                 up[1] = tmp;
291                 break;
292         }
293
294 #endif
295         default:
296                 WARN_ON_ONCE(1);
297         }
298 }
299
300 static __always_inline int
301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
302 {
303         unsigned long x = 0;
304
305         switch (nb) {
306         case 1:
307                 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
308                 break;
309         case 2:
310                 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
311                 break;
312         case 4:
313                 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
314                 break;
315 #ifdef __powerpc64__
316         case 8:
317                 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
318                 break;
319 #endif
320         }
321         *dest = x;
322         return 0;
323
324 Efault:
325         regs->dar = ea;
326         return -EFAULT;
327 }
328
329 static nokprobe_inline int
330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
331 {
332         int err;
333
334         if (is_kernel_addr(ea))
335                 return __read_mem_aligned(dest, ea, nb, regs);
336
337         if (user_read_access_begin((void __user *)ea, nb)) {
338                 err = __read_mem_aligned(dest, ea, nb, regs);
339                 user_read_access_end();
340         } else {
341                 err = -EFAULT;
342                 regs->dar = ea;
343         }
344
345         return err;
346 }
347
348 /*
349  * Copy from userspace to a buffer, using the largest possible
350  * aligned accesses, up to sizeof(long).
351  */
352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
353 {
354         int c;
355
356         for (; nb > 0; nb -= c) {
357                 c = max_align(ea);
358                 if (c > nb)
359                         c = max_align(nb);
360                 switch (c) {
361                 case 1:
362                         unsafe_get_user(*dest, (u8 __user *)ea, Efault);
363                         break;
364                 case 2:
365                         unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
366                         break;
367                 case 4:
368                         unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
369                         break;
370 #ifdef __powerpc64__
371                 case 8:
372                         unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
373                         break;
374 #endif
375                 }
376                 dest += c;
377                 ea += c;
378         }
379         return 0;
380
381 Efault:
382         regs->dar = ea;
383         return -EFAULT;
384 }
385
386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
387 {
388         int err;
389
390         if (is_kernel_addr(ea))
391                 return __copy_mem_in(dest, ea, nb, regs);
392
393         if (user_read_access_begin((void __user *)ea, nb)) {
394                 err = __copy_mem_in(dest, ea, nb, regs);
395                 user_read_access_end();
396         } else {
397                 err = -EFAULT;
398                 regs->dar = ea;
399         }
400
401         return err;
402 }
403
404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405                                               unsigned long ea, int nb,
406                                               struct pt_regs *regs)
407 {
408         union {
409                 unsigned long ul;
410                 u8 b[sizeof(unsigned long)];
411         } u;
412         int i;
413         int err;
414
415         u.ul = 0;
416         i = IS_BE ? sizeof(unsigned long) - nb : 0;
417         err = copy_mem_in(&u.b[i], ea, nb, regs);
418         if (!err)
419                 *dest = u.ul;
420         return err;
421 }
422
423 /*
424  * Read memory at address ea for nb bytes, return 0 for success
425  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
426  * If nb < sizeof(long), the result is right-justified on BE systems.
427  */
428 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429                               struct pt_regs *regs)
430 {
431         if (!address_ok(regs, ea, nb))
432                 return -EFAULT;
433         if ((ea & (nb - 1)) == 0)
434                 return read_mem_aligned(dest, ea, nb, regs);
435         return read_mem_unaligned(dest, ea, nb, regs);
436 }
437 NOKPROBE_SYMBOL(read_mem);
438
439 static __always_inline int
440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
441 {
442         switch (nb) {
443         case 1:
444                 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
445                 break;
446         case 2:
447                 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
448                 break;
449         case 4:
450                 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
451                 break;
452 #ifdef __powerpc64__
453         case 8:
454                 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
455                 break;
456 #endif
457         }
458         return 0;
459
460 Efault:
461         regs->dar = ea;
462         return -EFAULT;
463 }
464
465 static nokprobe_inline int
466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
467 {
468         int err;
469
470         if (is_kernel_addr(ea))
471                 return __write_mem_aligned(val, ea, nb, regs);
472
473         if (user_write_access_begin((void __user *)ea, nb)) {
474                 err = __write_mem_aligned(val, ea, nb, regs);
475                 user_write_access_end();
476         } else {
477                 err = -EFAULT;
478                 regs->dar = ea;
479         }
480
481         return err;
482 }
483
484 /*
485  * Copy from a buffer to userspace, using the largest possible
486  * aligned accesses, up to sizeof(long).
487  */
488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
489 {
490         int c;
491
492         for (; nb > 0; nb -= c) {
493                 c = max_align(ea);
494                 if (c > nb)
495                         c = max_align(nb);
496                 switch (c) {
497                 case 1:
498                         unsafe_put_user(*dest, (u8 __user *)ea, Efault);
499                         break;
500                 case 2:
501                         unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
502                         break;
503                 case 4:
504                         unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
505                         break;
506 #ifdef __powerpc64__
507                 case 8:
508                         unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
509                         break;
510 #endif
511                 }
512                 dest += c;
513                 ea += c;
514         }
515         return 0;
516
517 Efault:
518         regs->dar = ea;
519         return -EFAULT;
520 }
521
522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
523 {
524         int err;
525
526         if (is_kernel_addr(ea))
527                 return __copy_mem_out(dest, ea, nb, regs);
528
529         if (user_write_access_begin((void __user *)ea, nb)) {
530                 err = __copy_mem_out(dest, ea, nb, regs);
531                 user_write_access_end();
532         } else {
533                 err = -EFAULT;
534                 regs->dar = ea;
535         }
536
537         return err;
538 }
539
540 static nokprobe_inline int write_mem_unaligned(unsigned long val,
541                                                unsigned long ea, int nb,
542                                                struct pt_regs *regs)
543 {
544         union {
545                 unsigned long ul;
546                 u8 b[sizeof(unsigned long)];
547         } u;
548         int i;
549
550         u.ul = val;
551         i = IS_BE ? sizeof(unsigned long) - nb : 0;
552         return copy_mem_out(&u.b[i], ea, nb, regs);
553 }
554
555 /*
556  * Write memory at address ea for nb bytes, return 0 for success
557  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
558  */
559 static int write_mem(unsigned long val, unsigned long ea, int nb,
560                                struct pt_regs *regs)
561 {
562         if (!address_ok(regs, ea, nb))
563                 return -EFAULT;
564         if ((ea & (nb - 1)) == 0)
565                 return write_mem_aligned(val, ea, nb, regs);
566         return write_mem_unaligned(val, ea, nb, regs);
567 }
568 NOKPROBE_SYMBOL(write_mem);
569
570 #ifdef CONFIG_PPC_FPU
571 /*
572  * These access either the real FP register or the image in the
573  * thread_struct, depending on regs->msr & MSR_FP.
574  */
575 static int do_fp_load(struct instruction_op *op, unsigned long ea,
576                       struct pt_regs *regs, bool cross_endian)
577 {
578         int err, rn, nb;
579         union {
580                 int i;
581                 unsigned int u;
582                 float f;
583                 double d[2];
584                 unsigned long l[2];
585                 u8 b[2 * sizeof(double)];
586         } u;
587
588         nb = GETSIZE(op->type);
589         if (!address_ok(regs, ea, nb))
590                 return -EFAULT;
591         rn = op->reg;
592         err = copy_mem_in(u.b, ea, nb, regs);
593         if (err)
594                 return err;
595         if (unlikely(cross_endian)) {
596                 do_byte_reverse(u.b, min(nb, 8));
597                 if (nb == 16)
598                         do_byte_reverse(&u.b[8], 8);
599         }
600         preempt_disable();
601         if (nb == 4) {
602                 if (op->type & FPCONV)
603                         conv_sp_to_dp(&u.f, &u.d[0]);
604                 else if (op->type & SIGNEXT)
605                         u.l[0] = u.i;
606                 else
607                         u.l[0] = u.u;
608         }
609         if (regs->msr & MSR_FP)
610                 put_fpr(rn, &u.d[0]);
611         else
612                 current->thread.TS_FPR(rn) = u.l[0];
613         if (nb == 16) {
614                 /* lfdp */
615                 rn |= 1;
616                 if (regs->msr & MSR_FP)
617                         put_fpr(rn, &u.d[1]);
618                 else
619                         current->thread.TS_FPR(rn) = u.l[1];
620         }
621         preempt_enable();
622         return 0;
623 }
624 NOKPROBE_SYMBOL(do_fp_load);
625
626 static int do_fp_store(struct instruction_op *op, unsigned long ea,
627                        struct pt_regs *regs, bool cross_endian)
628 {
629         int rn, nb;
630         union {
631                 unsigned int u;
632                 float f;
633                 double d[2];
634                 unsigned long l[2];
635                 u8 b[2 * sizeof(double)];
636         } u;
637
638         nb = GETSIZE(op->type);
639         if (!address_ok(regs, ea, nb))
640                 return -EFAULT;
641         rn = op->reg;
642         preempt_disable();
643         if (regs->msr & MSR_FP)
644                 get_fpr(rn, &u.d[0]);
645         else
646                 u.l[0] = current->thread.TS_FPR(rn);
647         if (nb == 4) {
648                 if (op->type & FPCONV)
649                         conv_dp_to_sp(&u.d[0], &u.f);
650                 else
651                         u.u = u.l[0];
652         }
653         if (nb == 16) {
654                 rn |= 1;
655                 if (regs->msr & MSR_FP)
656                         get_fpr(rn, &u.d[1]);
657                 else
658                         u.l[1] = current->thread.TS_FPR(rn);
659         }
660         preempt_enable();
661         if (unlikely(cross_endian)) {
662                 do_byte_reverse(u.b, min(nb, 8));
663                 if (nb == 16)
664                         do_byte_reverse(&u.b[8], 8);
665         }
666         return copy_mem_out(u.b, ea, nb, regs);
667 }
668 NOKPROBE_SYMBOL(do_fp_store);
669 #endif
670
671 #ifdef CONFIG_ALTIVEC
672 /* For Altivec/VMX, no need to worry about alignment */
673 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
674                                        int size, struct pt_regs *regs,
675                                        bool cross_endian)
676 {
677         int err;
678         union {
679                 __vector128 v;
680                 u8 b[sizeof(__vector128)];
681         } u = {};
682
683         if (!address_ok(regs, ea & ~0xfUL, 16))
684                 return -EFAULT;
685         /* align to multiple of size */
686         ea &= ~(size - 1);
687         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
688         if (err)
689                 return err;
690         if (unlikely(cross_endian))
691                 do_byte_reverse(&u.b[ea & 0xf], size);
692         preempt_disable();
693         if (regs->msr & MSR_VEC)
694                 put_vr(rn, &u.v);
695         else
696                 current->thread.vr_state.vr[rn] = u.v;
697         preempt_enable();
698         return 0;
699 }
700
701 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
702                                         int size, struct pt_regs *regs,
703                                         bool cross_endian)
704 {
705         union {
706                 __vector128 v;
707                 u8 b[sizeof(__vector128)];
708         } u;
709
710         if (!address_ok(regs, ea & ~0xfUL, 16))
711                 return -EFAULT;
712         /* align to multiple of size */
713         ea &= ~(size - 1);
714
715         preempt_disable();
716         if (regs->msr & MSR_VEC)
717                 get_vr(rn, &u.v);
718         else
719                 u.v = current->thread.vr_state.vr[rn];
720         preempt_enable();
721         if (unlikely(cross_endian))
722                 do_byte_reverse(&u.b[ea & 0xf], size);
723         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
724 }
725 #endif /* CONFIG_ALTIVEC */
726
727 #ifdef __powerpc64__
728 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
729                                       int reg, bool cross_endian)
730 {
731         int err;
732
733         if (!address_ok(regs, ea, 16))
734                 return -EFAULT;
735         /* if aligned, should be atomic */
736         if ((ea & 0xf) == 0) {
737                 err = do_lq(ea, &regs->gpr[reg]);
738         } else {
739                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
740                 if (!err)
741                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
742         }
743         if (!err && unlikely(cross_endian))
744                 do_byte_reverse(&regs->gpr[reg], 16);
745         return err;
746 }
747
748 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
749                                        int reg, bool cross_endian)
750 {
751         int err;
752         unsigned long vals[2];
753
754         if (!address_ok(regs, ea, 16))
755                 return -EFAULT;
756         vals[0] = regs->gpr[reg];
757         vals[1] = regs->gpr[reg + 1];
758         if (unlikely(cross_endian))
759                 do_byte_reverse(vals, 16);
760
761         /* if aligned, should be atomic */
762         if ((ea & 0xf) == 0)
763                 return do_stq(ea, vals[0], vals[1]);
764
765         err = write_mem(vals[IS_LE], ea, 8, regs);
766         if (!err)
767                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
768         return err;
769 }
770 #endif /* __powerpc64 */
771
772 #ifdef CONFIG_VSX
773 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
774                       const void *mem, bool rev)
775 {
776         int size, read_size;
777         int i, j;
778         const unsigned int *wp;
779         const unsigned short *hp;
780         const unsigned char *bp;
781
782         size = GETSIZE(op->type);
783         reg->d[0] = reg->d[1] = 0;
784
785         switch (op->element_size) {
786         case 32:
787                 /* [p]lxvp[x] */
788         case 16:
789                 /* whole vector; lxv[x] or lxvl[l] */
790                 if (size == 0)
791                         break;
792                 memcpy(reg, mem, size);
793                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
794                         rev = !rev;
795                 if (rev)
796                         do_byte_reverse(reg, size);
797                 break;
798         case 8:
799                 /* scalar loads, lxvd2x, lxvdsx */
800                 read_size = (size >= 8) ? 8 : size;
801                 i = IS_LE ? 8 : 8 - read_size;
802                 memcpy(&reg->b[i], mem, read_size);
803                 if (rev)
804                         do_byte_reverse(&reg->b[i], 8);
805                 if (size < 8) {
806                         if (op->type & SIGNEXT) {
807                                 /* size == 4 is the only case here */
808                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
809                         } else if (op->vsx_flags & VSX_FPCONV) {
810                                 preempt_disable();
811                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
812                                               &reg->dp[IS_LE]);
813                                 preempt_enable();
814                         }
815                 } else {
816                         if (size == 16) {
817                                 unsigned long v = *(unsigned long *)(mem + 8);
818                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
819                         } else if (op->vsx_flags & VSX_SPLAT)
820                                 reg->d[IS_BE] = reg->d[IS_LE];
821                 }
822                 break;
823         case 4:
824                 /* lxvw4x, lxvwsx */
825                 wp = mem;
826                 for (j = 0; j < size / 4; ++j) {
827                         i = IS_LE ? 3 - j : j;
828                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
829                 }
830                 if (op->vsx_flags & VSX_SPLAT) {
831                         u32 val = reg->w[IS_LE ? 3 : 0];
832                         for (; j < 4; ++j) {
833                                 i = IS_LE ? 3 - j : j;
834                                 reg->w[i] = val;
835                         }
836                 }
837                 break;
838         case 2:
839                 /* lxvh8x */
840                 hp = mem;
841                 for (j = 0; j < size / 2; ++j) {
842                         i = IS_LE ? 7 - j : j;
843                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
844                 }
845                 break;
846         case 1:
847                 /* lxvb16x */
848                 bp = mem;
849                 for (j = 0; j < size; ++j) {
850                         i = IS_LE ? 15 - j : j;
851                         reg->b[i] = *bp++;
852                 }
853                 break;
854         }
855 }
856 EXPORT_SYMBOL_GPL(emulate_vsx_load);
857 NOKPROBE_SYMBOL(emulate_vsx_load);
858
859 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
860                        void *mem, bool rev)
861 {
862         int size, write_size;
863         int i, j;
864         union vsx_reg buf;
865         unsigned int *wp;
866         unsigned short *hp;
867         unsigned char *bp;
868
869         size = GETSIZE(op->type);
870
871         switch (op->element_size) {
872         case 32:
873                 /* [p]stxvp[x] */
874                 if (size == 0)
875                         break;
876                 if (rev) {
877                         /* reverse 32 bytes */
878                         union vsx_reg buf32[2];
879                         buf32[0].d[0] = byterev_8(reg[1].d[1]);
880                         buf32[0].d[1] = byterev_8(reg[1].d[0]);
881                         buf32[1].d[0] = byterev_8(reg[0].d[1]);
882                         buf32[1].d[1] = byterev_8(reg[0].d[0]);
883                         memcpy(mem, buf32, size);
884                 } else {
885                         memcpy(mem, reg, size);
886                 }
887                 break;
888         case 16:
889                 /* stxv, stxvx, stxvl, stxvll */
890                 if (size == 0)
891                         break;
892                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
893                         rev = !rev;
894                 if (rev) {
895                         /* reverse 16 bytes */
896                         buf.d[0] = byterev_8(reg->d[1]);
897                         buf.d[1] = byterev_8(reg->d[0]);
898                         reg = &buf;
899                 }
900                 memcpy(mem, reg, size);
901                 break;
902         case 8:
903                 /* scalar stores, stxvd2x */
904                 write_size = (size >= 8) ? 8 : size;
905                 i = IS_LE ? 8 : 8 - write_size;
906                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
907                         buf.d[0] = buf.d[1] = 0;
908                         preempt_disable();
909                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
910                         preempt_enable();
911                         reg = &buf;
912                 }
913                 memcpy(mem, &reg->b[i], write_size);
914                 if (size == 16)
915                         memcpy(mem + 8, &reg->d[IS_BE], 8);
916                 if (unlikely(rev)) {
917                         do_byte_reverse(mem, write_size);
918                         if (size == 16)
919                                 do_byte_reverse(mem + 8, 8);
920                 }
921                 break;
922         case 4:
923                 /* stxvw4x */
924                 wp = mem;
925                 for (j = 0; j < size / 4; ++j) {
926                         i = IS_LE ? 3 - j : j;
927                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
928                 }
929                 break;
930         case 2:
931                 /* stxvh8x */
932                 hp = mem;
933                 for (j = 0; j < size / 2; ++j) {
934                         i = IS_LE ? 7 - j : j;
935                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
936                 }
937                 break;
938         case 1:
939                 /* stvxb16x */
940                 bp = mem;
941                 for (j = 0; j < size; ++j) {
942                         i = IS_LE ? 15 - j : j;
943                         *bp++ = reg->b[i];
944                 }
945                 break;
946         }
947 }
948 EXPORT_SYMBOL_GPL(emulate_vsx_store);
949 NOKPROBE_SYMBOL(emulate_vsx_store);
950
951 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
952                                        unsigned long ea, struct pt_regs *regs,
953                                        bool cross_endian)
954 {
955         int reg = op->reg;
956         int i, j, nr_vsx_regs;
957         u8 mem[32];
958         union vsx_reg buf[2];
959         int size = GETSIZE(op->type);
960
961         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
962                 return -EFAULT;
963
964         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
965         emulate_vsx_load(op, buf, mem, cross_endian);
966         preempt_disable();
967         if (reg < 32) {
968                 /* FP regs + extensions */
969                 if (regs->msr & MSR_FP) {
970                         for (i = 0; i < nr_vsx_regs; i++) {
971                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
972                                 load_vsrn(reg + i, &buf[j].v);
973                         }
974                 } else {
975                         for (i = 0; i < nr_vsx_regs; i++) {
976                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
977                                 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
978                                 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
979                         }
980                 }
981         } else {
982                 if (regs->msr & MSR_VEC) {
983                         for (i = 0; i < nr_vsx_regs; i++) {
984                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
985                                 load_vsrn(reg + i, &buf[j].v);
986                         }
987                 } else {
988                         for (i = 0; i < nr_vsx_regs; i++) {
989                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
990                                 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
991                         }
992                 }
993         }
994         preempt_enable();
995         return 0;
996 }
997
998 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
999                                         unsigned long ea, struct pt_regs *regs,
1000                                         bool cross_endian)
1001 {
1002         int reg = op->reg;
1003         int i, j, nr_vsx_regs;
1004         u8 mem[32];
1005         union vsx_reg buf[2];
1006         int size = GETSIZE(op->type);
1007
1008         if (!address_ok(regs, ea, size))
1009                 return -EFAULT;
1010
1011         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1012         preempt_disable();
1013         if (reg < 32) {
1014                 /* FP regs + extensions */
1015                 if (regs->msr & MSR_FP) {
1016                         for (i = 0; i < nr_vsx_regs; i++) {
1017                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1018                                 store_vsrn(reg + i, &buf[j].v);
1019                         }
1020                 } else {
1021                         for (i = 0; i < nr_vsx_regs; i++) {
1022                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1023                                 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1024                                 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1025                         }
1026                 }
1027         } else {
1028                 if (regs->msr & MSR_VEC) {
1029                         for (i = 0; i < nr_vsx_regs; i++) {
1030                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1031                                 store_vsrn(reg + i, &buf[j].v);
1032                         }
1033                 } else {
1034                         for (i = 0; i < nr_vsx_regs; i++) {
1035                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1036                                 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1037                         }
1038                 }
1039         }
1040         preempt_enable();
1041         emulate_vsx_store(op, buf, mem, cross_endian);
1042         return  copy_mem_out(mem, ea, size, regs);
1043 }
1044 #endif /* CONFIG_VSX */
1045
1046 static __always_inline int __emulate_dcbz(unsigned long ea)
1047 {
1048         unsigned long i;
1049         unsigned long size = l1_dcache_bytes();
1050
1051         for (i = 0; i < size; i += sizeof(long))
1052                 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1053
1054         return 0;
1055
1056 Efault:
1057         return -EFAULT;
1058 }
1059
1060 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1061 {
1062         int err;
1063         unsigned long size = l1_dcache_bytes();
1064
1065         ea = truncate_if_32bit(regs->msr, ea);
1066         ea &= ~(size - 1);
1067         if (!address_ok(regs, ea, size))
1068                 return -EFAULT;
1069
1070         if (is_kernel_addr(ea)) {
1071                 err = __emulate_dcbz(ea);
1072         } else if (user_write_access_begin((void __user *)ea, size)) {
1073                 err = __emulate_dcbz(ea);
1074                 user_write_access_end();
1075         } else {
1076                 err = -EFAULT;
1077         }
1078
1079         if (err)
1080                 regs->dar = ea;
1081
1082
1083         return err;
1084 }
1085 NOKPROBE_SYMBOL(emulate_dcbz);
1086
1087 #define __put_user_asmx(x, addr, err, op, cr)           \
1088         __asm__ __volatile__(                           \
1089                 ".machine push\n"                       \
1090                 ".machine power8\n"                     \
1091                 "1:     " op " %2,0,%3\n"               \
1092                 ".machine pop\n"                        \
1093                 "       mfcr    %1\n"                   \
1094                 "2:\n"                                  \
1095                 ".section .fixup,\"ax\"\n"              \
1096                 "3:     li      %0,%4\n"                \
1097                 "       b       2b\n"                   \
1098                 ".previous\n"                           \
1099                 EX_TABLE(1b, 3b)                        \
1100                 : "=r" (err), "=r" (cr)                 \
1101                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1102
1103 #define __get_user_asmx(x, addr, err, op)               \
1104         __asm__ __volatile__(                           \
1105                 ".machine push\n"                       \
1106                 ".machine power8\n"                     \
1107                 "1:     "op" %1,0,%2\n"                 \
1108                 ".machine pop\n"                        \
1109                 "2:\n"                                  \
1110                 ".section .fixup,\"ax\"\n"              \
1111                 "3:     li      %0,%3\n"                \
1112                 "       b       2b\n"                   \
1113                 ".previous\n"                           \
1114                 EX_TABLE(1b, 3b)                        \
1115                 : "=r" (err), "=r" (x)                  \
1116                 : "r" (addr), "i" (-EFAULT), "0" (err))
1117
1118 #define __cacheop_user_asmx(addr, err, op)              \
1119         __asm__ __volatile__(                           \
1120                 "1:     "op" 0,%1\n"                    \
1121                 "2:\n"                                  \
1122                 ".section .fixup,\"ax\"\n"              \
1123                 "3:     li      %0,%3\n"                \
1124                 "       b       2b\n"                   \
1125                 ".previous\n"                           \
1126                 EX_TABLE(1b, 3b)                        \
1127                 : "=r" (err)                            \
1128                 : "r" (addr), "i" (-EFAULT), "0" (err))
1129
1130 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1131                                     struct instruction_op *op)
1132 {
1133         long val = op->val;
1134
1135         op->type |= SETCC;
1136         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1137         if (!(regs->msr & MSR_64BIT))
1138                 val = (int) val;
1139         if (val < 0)
1140                 op->ccval |= 0x80000000;
1141         else if (val > 0)
1142                 op->ccval |= 0x40000000;
1143         else
1144                 op->ccval |= 0x20000000;
1145 }
1146
1147 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1148 {
1149         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1150                 if (val)
1151                         op->xerval |= XER_CA32;
1152                 else
1153                         op->xerval &= ~XER_CA32;
1154         }
1155 }
1156
1157 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1158                                      struct instruction_op *op, int rd,
1159                                      unsigned long val1, unsigned long val2,
1160                                      unsigned long carry_in)
1161 {
1162         unsigned long val = val1 + val2;
1163
1164         if (carry_in)
1165                 ++val;
1166         op->type = COMPUTE | SETREG | SETXER;
1167         op->reg = rd;
1168         op->val = val;
1169         val = truncate_if_32bit(regs->msr, val);
1170         val1 = truncate_if_32bit(regs->msr, val1);
1171         op->xerval = regs->xer;
1172         if (val < val1 || (carry_in && val == val1))
1173                 op->xerval |= XER_CA;
1174         else
1175                 op->xerval &= ~XER_CA;
1176
1177         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1178                         (carry_in && (unsigned int)val == (unsigned int)val1));
1179 }
1180
1181 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1182                                           struct instruction_op *op,
1183                                           long v1, long v2, int crfld)
1184 {
1185         unsigned int crval, shift;
1186
1187         op->type = COMPUTE | SETCC;
1188         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1189         if (v1 < v2)
1190                 crval |= 8;
1191         else if (v1 > v2)
1192                 crval |= 4;
1193         else
1194                 crval |= 2;
1195         shift = (7 - crfld) * 4;
1196         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1197 }
1198
1199 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1200                                             struct instruction_op *op,
1201                                             unsigned long v1,
1202                                             unsigned long v2, int crfld)
1203 {
1204         unsigned int crval, shift;
1205
1206         op->type = COMPUTE | SETCC;
1207         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1208         if (v1 < v2)
1209                 crval |= 8;
1210         else if (v1 > v2)
1211                 crval |= 4;
1212         else
1213                 crval |= 2;
1214         shift = (7 - crfld) * 4;
1215         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1216 }
1217
1218 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1219                                     struct instruction_op *op,
1220                                     unsigned long v1, unsigned long v2)
1221 {
1222         unsigned long long out_val, mask;
1223         int i;
1224
1225         out_val = 0;
1226         for (i = 0; i < 8; i++) {
1227                 mask = 0xffUL << (i * 8);
1228                 if ((v1 & mask) == (v2 & mask))
1229                         out_val |= mask;
1230         }
1231         op->val = out_val;
1232 }
1233
1234 /*
1235  * The size parameter is used to adjust the equivalent popcnt instruction.
1236  * popcntb = 8, popcntw = 32, popcntd = 64
1237  */
1238 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1239                                       struct instruction_op *op,
1240                                       unsigned long v1, int size)
1241 {
1242         unsigned long long out = v1;
1243
1244         out -= (out >> 1) & 0x5555555555555555ULL;
1245         out = (0x3333333333333333ULL & out) +
1246               (0x3333333333333333ULL & (out >> 2));
1247         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1248
1249         if (size == 8) {        /* popcntb */
1250                 op->val = out;
1251                 return;
1252         }
1253         out += out >> 8;
1254         out += out >> 16;
1255         if (size == 32) {       /* popcntw */
1256                 op->val = out & 0x0000003f0000003fULL;
1257                 return;
1258         }
1259
1260         out = (out + (out >> 32)) & 0x7f;
1261         op->val = out;  /* popcntd */
1262 }
1263
1264 #ifdef CONFIG_PPC64
1265 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1266                                       struct instruction_op *op,
1267                                       unsigned long v1, unsigned long v2)
1268 {
1269         unsigned char perm, idx;
1270         unsigned int i;
1271
1272         perm = 0;
1273         for (i = 0; i < 8; i++) {
1274                 idx = (v1 >> (i * 8)) & 0xff;
1275                 if (idx < 64)
1276                         if (v2 & PPC_BIT(idx))
1277                                 perm |= 1 << i;
1278         }
1279         op->val = perm;
1280 }
1281 #endif /* CONFIG_PPC64 */
1282 /*
1283  * The size parameter adjusts the equivalent prty instruction.
1284  * prtyw = 32, prtyd = 64
1285  */
1286 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1287                                     struct instruction_op *op,
1288                                     unsigned long v, int size)
1289 {
1290         unsigned long long res = v ^ (v >> 8);
1291
1292         res ^= res >> 16;
1293         if (size == 32) {               /* prtyw */
1294                 op->val = res & 0x0000000100000001ULL;
1295                 return;
1296         }
1297
1298         res ^= res >> 32;
1299         op->val = res & 1;      /*prtyd */
1300 }
1301
1302 static nokprobe_inline int trap_compare(long v1, long v2)
1303 {
1304         int ret = 0;
1305
1306         if (v1 < v2)
1307                 ret |= 0x10;
1308         else if (v1 > v2)
1309                 ret |= 0x08;
1310         else
1311                 ret |= 0x04;
1312         if ((unsigned long)v1 < (unsigned long)v2)
1313                 ret |= 0x02;
1314         else if ((unsigned long)v1 > (unsigned long)v2)
1315                 ret |= 0x01;
1316         return ret;
1317 }
1318
1319 /*
1320  * Elements of 32-bit rotate and mask instructions.
1321  */
1322 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1323                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1324 #ifdef __powerpc64__
1325 #define MASK64_L(mb)    (~0UL >> (mb))
1326 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1327 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1328 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1329 #else
1330 #define DATA32(x)       (x)
1331 #endif
1332 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1333
1334 /*
1335  * Decode an instruction, and return information about it in *op
1336  * without changing *regs.
1337  * Integer arithmetic and logical instructions, branches, and barrier
1338  * instructions can be emulated just using the information in *op.
1339  *
1340  * Return value is 1 if the instruction can be emulated just by
1341  * updating *regs with the information in *op, -1 if we need the
1342  * GPRs but *regs doesn't contain the full register set, or 0
1343  * otherwise.
1344  */
1345 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1346                   ppc_inst_t instr)
1347 {
1348 #ifdef CONFIG_PPC64
1349         unsigned int suffixopcode, prefixtype, prefix_r;
1350 #endif
1351         unsigned int opcode, ra, rb, rc, rd, spr, u;
1352         unsigned long int imm;
1353         unsigned long int val, val2;
1354         unsigned int mb, me, sh;
1355         unsigned int word, suffix;
1356         long ival;
1357
1358         word = ppc_inst_val(instr);
1359         suffix = ppc_inst_suffix(instr);
1360
1361         op->type = COMPUTE;
1362
1363         opcode = ppc_inst_primary_opcode(instr);
1364         switch (opcode) {
1365         case 16:        /* bc */
1366                 op->type = BRANCH;
1367                 imm = (signed short)(word & 0xfffc);
1368                 if ((word & 2) == 0)
1369                         imm += regs->nip;
1370                 op->val = truncate_if_32bit(regs->msr, imm);
1371                 if (word & 1)
1372                         op->type |= SETLK;
1373                 if (branch_taken(word, regs, op))
1374                         op->type |= BRTAKEN;
1375                 return 1;
1376         case 17:        /* sc */
1377                 if ((word & 0xfe2) == 2)
1378                         op->type = SYSCALL;
1379                 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1380                                 (word & 0xfe3) == 1) {  /* scv */
1381                         op->type = SYSCALL_VECTORED_0;
1382                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1383                                 goto unknown_opcode;
1384                 } else
1385                         op->type = UNKNOWN;
1386                 return 0;
1387         case 18:        /* b */
1388                 op->type = BRANCH | BRTAKEN;
1389                 imm = word & 0x03fffffc;
1390                 if (imm & 0x02000000)
1391                         imm -= 0x04000000;
1392                 if ((word & 2) == 0)
1393                         imm += regs->nip;
1394                 op->val = truncate_if_32bit(regs->msr, imm);
1395                 if (word & 1)
1396                         op->type |= SETLK;
1397                 return 1;
1398         case 19:
1399                 switch ((word >> 1) & 0x3ff) {
1400                 case 0:         /* mcrf */
1401                         op->type = COMPUTE + SETCC;
1402                         rd = 7 - ((word >> 23) & 0x7);
1403                         ra = 7 - ((word >> 18) & 0x7);
1404                         rd *= 4;
1405                         ra *= 4;
1406                         val = (regs->ccr >> ra) & 0xf;
1407                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1408                         return 1;
1409
1410                 case 16:        /* bclr */
1411                 case 528:       /* bcctr */
1412                         op->type = BRANCH;
1413                         imm = (word & 0x400)? regs->ctr: regs->link;
1414                         op->val = truncate_if_32bit(regs->msr, imm);
1415                         if (word & 1)
1416                                 op->type |= SETLK;
1417                         if (branch_taken(word, regs, op))
1418                                 op->type |= BRTAKEN;
1419                         return 1;
1420
1421                 case 18:        /* rfid, scary */
1422                         if (regs->msr & MSR_PR)
1423                                 goto priv;
1424                         op->type = RFI;
1425                         return 0;
1426
1427                 case 150:       /* isync */
1428                         op->type = BARRIER | BARRIER_ISYNC;
1429                         return 1;
1430
1431                 case 33:        /* crnor */
1432                 case 129:       /* crandc */
1433                 case 193:       /* crxor */
1434                 case 225:       /* crnand */
1435                 case 257:       /* crand */
1436                 case 289:       /* creqv */
1437                 case 417:       /* crorc */
1438                 case 449:       /* cror */
1439                         op->type = COMPUTE + SETCC;
1440                         ra = (word >> 16) & 0x1f;
1441                         rb = (word >> 11) & 0x1f;
1442                         rd = (word >> 21) & 0x1f;
1443                         ra = (regs->ccr >> (31 - ra)) & 1;
1444                         rb = (regs->ccr >> (31 - rb)) & 1;
1445                         val = (word >> (6 + ra * 2 + rb)) & 1;
1446                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1447                                 (val << (31 - rd));
1448                         return 1;
1449                 }
1450                 break;
1451         case 31:
1452                 switch ((word >> 1) & 0x3ff) {
1453                 case 598:       /* sync */
1454                         op->type = BARRIER + BARRIER_SYNC;
1455 #ifdef __powerpc64__
1456                         switch ((word >> 21) & 3) {
1457                         case 1:         /* lwsync */
1458                                 op->type = BARRIER + BARRIER_LWSYNC;
1459                                 break;
1460                         case 2:         /* ptesync */
1461                                 op->type = BARRIER + BARRIER_PTESYNC;
1462                                 break;
1463                         }
1464 #endif
1465                         return 1;
1466
1467                 case 854:       /* eieio */
1468                         op->type = BARRIER + BARRIER_EIEIO;
1469                         return 1;
1470                 }
1471                 break;
1472         }
1473
1474         rd = (word >> 21) & 0x1f;
1475         ra = (word >> 16) & 0x1f;
1476         rb = (word >> 11) & 0x1f;
1477         rc = (word >> 6) & 0x1f;
1478
1479         switch (opcode) {
1480 #ifdef __powerpc64__
1481         case 1:
1482                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1483                         goto unknown_opcode;
1484
1485                 prefix_r = GET_PREFIX_R(word);
1486                 ra = GET_PREFIX_RA(suffix);
1487                 rd = (suffix >> 21) & 0x1f;
1488                 op->reg = rd;
1489                 op->val = regs->gpr[rd];
1490                 suffixopcode = get_op(suffix);
1491                 prefixtype = (word >> 24) & 0x3;
1492                 switch (prefixtype) {
1493                 case 2:
1494                         if (prefix_r && ra)
1495                                 return 0;
1496                         switch (suffixopcode) {
1497                         case 14:        /* paddi */
1498                                 op->type = COMPUTE | PREFIXED;
1499                                 op->val = mlsd_8lsd_ea(word, suffix, regs);
1500                                 goto compute_done;
1501                         }
1502                 }
1503                 break;
1504         case 2:         /* tdi */
1505                 if (rd & trap_compare(regs->gpr[ra], (short) word))
1506                         goto trap;
1507                 return 1;
1508 #endif
1509         case 3:         /* twi */
1510                 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1511                         goto trap;
1512                 return 1;
1513
1514 #ifdef __powerpc64__
1515         case 4:
1516                 /*
1517                  * There are very many instructions with this primary opcode
1518                  * introduced in the ISA as early as v2.03. However, the ones
1519                  * we currently emulate were all introduced with ISA 3.0
1520                  */
1521                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1522                         goto unknown_opcode;
1523
1524                 switch (word & 0x3f) {
1525                 case 48:        /* maddhd */
1526                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1527                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1528                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1529                         goto compute_done;
1530
1531                 case 49:        /* maddhdu */
1532                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1533                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1534                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1535                         goto compute_done;
1536
1537                 case 51:        /* maddld */
1538                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1539                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1540                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1541                         goto compute_done;
1542                 }
1543
1544                 /*
1545                  * There are other instructions from ISA 3.0 with the same
1546                  * primary opcode which do not have emulation support yet.
1547                  */
1548                 goto unknown_opcode;
1549 #endif
1550
1551         case 7:         /* mulli */
1552                 op->val = regs->gpr[ra] * (short) word;
1553                 goto compute_done;
1554
1555         case 8:         /* subfic */
1556                 imm = (short) word;
1557                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1558                 return 1;
1559
1560         case 10:        /* cmpli */
1561                 imm = (unsigned short) word;
1562                 val = regs->gpr[ra];
1563 #ifdef __powerpc64__
1564                 if ((rd & 1) == 0)
1565                         val = (unsigned int) val;
1566 #endif
1567                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1568                 return 1;
1569
1570         case 11:        /* cmpi */
1571                 imm = (short) word;
1572                 val = regs->gpr[ra];
1573 #ifdef __powerpc64__
1574                 if ((rd & 1) == 0)
1575                         val = (int) val;
1576 #endif
1577                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1578                 return 1;
1579
1580         case 12:        /* addic */
1581                 imm = (short) word;
1582                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1583                 return 1;
1584
1585         case 13:        /* addic. */
1586                 imm = (short) word;
1587                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1588                 set_cr0(regs, op);
1589                 return 1;
1590
1591         case 14:        /* addi */
1592                 imm = (short) word;
1593                 if (ra)
1594                         imm += regs->gpr[ra];
1595                 op->val = imm;
1596                 goto compute_done;
1597
1598         case 15:        /* addis */
1599                 imm = ((short) word) << 16;
1600                 if (ra)
1601                         imm += regs->gpr[ra];
1602                 op->val = imm;
1603                 goto compute_done;
1604
1605         case 19:
1606                 if (((word >> 1) & 0x1f) == 2) {
1607                         /* addpcis */
1608                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1609                                 goto unknown_opcode;
1610                         imm = (short) (word & 0xffc1);  /* d0 + d2 fields */
1611                         imm |= (word >> 15) & 0x3e;     /* d1 field */
1612                         op->val = regs->nip + (imm << 16) + 4;
1613                         goto compute_done;
1614                 }
1615                 op->type = UNKNOWN;
1616                 return 0;
1617
1618         case 20:        /* rlwimi */
1619                 mb = (word >> 6) & 0x1f;
1620                 me = (word >> 1) & 0x1f;
1621                 val = DATA32(regs->gpr[rd]);
1622                 imm = MASK32(mb, me);
1623                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1624                 goto logical_done;
1625
1626         case 21:        /* rlwinm */
1627                 mb = (word >> 6) & 0x1f;
1628                 me = (word >> 1) & 0x1f;
1629                 val = DATA32(regs->gpr[rd]);
1630                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1631                 goto logical_done;
1632
1633         case 23:        /* rlwnm */
1634                 mb = (word >> 6) & 0x1f;
1635                 me = (word >> 1) & 0x1f;
1636                 rb = regs->gpr[rb] & 0x1f;
1637                 val = DATA32(regs->gpr[rd]);
1638                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1639                 goto logical_done;
1640
1641         case 24:        /* ori */
1642                 op->val = regs->gpr[rd] | (unsigned short) word;
1643                 goto logical_done_nocc;
1644
1645         case 25:        /* oris */
1646                 imm = (unsigned short) word;
1647                 op->val = regs->gpr[rd] | (imm << 16);
1648                 goto logical_done_nocc;
1649
1650         case 26:        /* xori */
1651                 op->val = regs->gpr[rd] ^ (unsigned short) word;
1652                 goto logical_done_nocc;
1653
1654         case 27:        /* xoris */
1655                 imm = (unsigned short) word;
1656                 op->val = regs->gpr[rd] ^ (imm << 16);
1657                 goto logical_done_nocc;
1658
1659         case 28:        /* andi. */
1660                 op->val = regs->gpr[rd] & (unsigned short) word;
1661                 set_cr0(regs, op);
1662                 goto logical_done_nocc;
1663
1664         case 29:        /* andis. */
1665                 imm = (unsigned short) word;
1666                 op->val = regs->gpr[rd] & (imm << 16);
1667                 set_cr0(regs, op);
1668                 goto logical_done_nocc;
1669
1670 #ifdef __powerpc64__
1671         case 30:        /* rld* */
1672                 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1673                 val = regs->gpr[rd];
1674                 if ((word & 0x10) == 0) {
1675                         sh = rb | ((word & 2) << 4);
1676                         val = ROTATE(val, sh);
1677                         switch ((word >> 2) & 3) {
1678                         case 0:         /* rldicl */
1679                                 val &= MASK64_L(mb);
1680                                 break;
1681                         case 1:         /* rldicr */
1682                                 val &= MASK64_R(mb);
1683                                 break;
1684                         case 2:         /* rldic */
1685                                 val &= MASK64(mb, 63 - sh);
1686                                 break;
1687                         case 3:         /* rldimi */
1688                                 imm = MASK64(mb, 63 - sh);
1689                                 val = (regs->gpr[ra] & ~imm) |
1690                                         (val & imm);
1691                         }
1692                         op->val = val;
1693                         goto logical_done;
1694                 } else {
1695                         sh = regs->gpr[rb] & 0x3f;
1696                         val = ROTATE(val, sh);
1697                         switch ((word >> 1) & 7) {
1698                         case 0:         /* rldcl */
1699                                 op->val = val & MASK64_L(mb);
1700                                 goto logical_done;
1701                         case 1:         /* rldcr */
1702                                 op->val = val & MASK64_R(mb);
1703                                 goto logical_done;
1704                         }
1705                 }
1706 #endif
1707                 op->type = UNKNOWN;     /* illegal instruction */
1708                 return 0;
1709
1710         case 31:
1711                 /* isel occupies 32 minor opcodes */
1712                 if (((word >> 1) & 0x1f) == 15) {
1713                         mb = (word >> 6) & 0x1f; /* bc field */
1714                         val = (regs->ccr >> (31 - mb)) & 1;
1715                         val2 = (ra) ? regs->gpr[ra] : 0;
1716
1717                         op->val = (val) ? val2 : regs->gpr[rb];
1718                         goto compute_done;
1719                 }
1720
1721                 switch ((word >> 1) & 0x3ff) {
1722                 case 4:         /* tw */
1723                         if (rd == 0x1f ||
1724                             (rd & trap_compare((int)regs->gpr[ra],
1725                                                (int)regs->gpr[rb])))
1726                                 goto trap;
1727                         return 1;
1728 #ifdef __powerpc64__
1729                 case 68:        /* td */
1730                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1731                                 goto trap;
1732                         return 1;
1733 #endif
1734                 case 83:        /* mfmsr */
1735                         if (regs->msr & MSR_PR)
1736                                 goto priv;
1737                         op->type = MFMSR;
1738                         op->reg = rd;
1739                         return 0;
1740                 case 146:       /* mtmsr */
1741                         if (regs->msr & MSR_PR)
1742                                 goto priv;
1743                         op->type = MTMSR;
1744                         op->reg = rd;
1745                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1746                         return 0;
1747 #ifdef CONFIG_PPC64
1748                 case 178:       /* mtmsrd */
1749                         if (regs->msr & MSR_PR)
1750                                 goto priv;
1751                         op->type = MTMSR;
1752                         op->reg = rd;
1753                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1754                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1755                         imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1756                         op->val = imm;
1757                         return 0;
1758 #endif
1759
1760                 case 19:        /* mfcr */
1761                         imm = 0xffffffffUL;
1762                         if ((word >> 20) & 1) {
1763                                 imm = 0xf0000000UL;
1764                                 for (sh = 0; sh < 8; ++sh) {
1765                                         if (word & (0x80000 >> sh))
1766                                                 break;
1767                                         imm >>= 4;
1768                                 }
1769                         }
1770                         op->val = regs->ccr & imm;
1771                         goto compute_done;
1772
1773                 case 128:       /* setb */
1774                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1775                                 goto unknown_opcode;
1776                         /*
1777                          * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1778                          * Since each CR field is 4 bits,
1779                          * we can simply mask off the bottom two bits (bfa * 4)
1780                          * to yield the first bit in the CR field.
1781                          */
1782                         ra = ra & ~0x3;
1783                         /* 'val' stores bits of the CR field (bfa) */
1784                         val = regs->ccr >> (CR0_SHIFT - ra);
1785                         /* checks if the LT bit of CR field (bfa) is set */
1786                         if (val & 8)
1787                                 op->val = -1;
1788                         /* checks if the GT bit of CR field (bfa) is set */
1789                         else if (val & 4)
1790                                 op->val = 1;
1791                         else
1792                                 op->val = 0;
1793                         goto compute_done;
1794
1795                 case 144:       /* mtcrf */
1796                         op->type = COMPUTE + SETCC;
1797                         imm = 0xf0000000UL;
1798                         val = regs->gpr[rd];
1799                         op->ccval = regs->ccr;
1800                         for (sh = 0; sh < 8; ++sh) {
1801                                 if (word & (0x80000 >> sh))
1802                                         op->ccval = (op->ccval & ~imm) |
1803                                                 (val & imm);
1804                                 imm >>= 4;
1805                         }
1806                         return 1;
1807
1808                 case 339:       /* mfspr */
1809                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1810                         op->type = MFSPR;
1811                         op->reg = rd;
1812                         op->spr = spr;
1813                         if (spr == SPRN_XER || spr == SPRN_LR ||
1814                             spr == SPRN_CTR)
1815                                 return 1;
1816                         return 0;
1817
1818                 case 467:       /* mtspr */
1819                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1820                         op->type = MTSPR;
1821                         op->val = regs->gpr[rd];
1822                         op->spr = spr;
1823                         if (spr == SPRN_XER || spr == SPRN_LR ||
1824                             spr == SPRN_CTR)
1825                                 return 1;
1826                         return 0;
1827
1828 /*
1829  * Compare instructions
1830  */
1831                 case 0: /* cmp */
1832                         val = regs->gpr[ra];
1833                         val2 = regs->gpr[rb];
1834 #ifdef __powerpc64__
1835                         if ((rd & 1) == 0) {
1836                                 /* word (32-bit) compare */
1837                                 val = (int) val;
1838                                 val2 = (int) val2;
1839                         }
1840 #endif
1841                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1842                         return 1;
1843
1844                 case 32:        /* cmpl */
1845                         val = regs->gpr[ra];
1846                         val2 = regs->gpr[rb];
1847 #ifdef __powerpc64__
1848                         if ((rd & 1) == 0) {
1849                                 /* word (32-bit) compare */
1850                                 val = (unsigned int) val;
1851                                 val2 = (unsigned int) val2;
1852                         }
1853 #endif
1854                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1855                         return 1;
1856
1857                 case 508: /* cmpb */
1858                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1859                         goto logical_done_nocc;
1860
1861 /*
1862  * Arithmetic instructions
1863  */
1864                 case 8: /* subfc */
1865                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1866                                        regs->gpr[rb], 1);
1867                         goto arith_done;
1868 #ifdef __powerpc64__
1869                 case 9: /* mulhdu */
1870                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1871                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1872                         goto arith_done;
1873 #endif
1874                 case 10:        /* addc */
1875                         add_with_carry(regs, op, rd, regs->gpr[ra],
1876                                        regs->gpr[rb], 0);
1877                         goto arith_done;
1878
1879                 case 11:        /* mulhwu */
1880                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1881                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1882                         goto arith_done;
1883
1884                 case 40:        /* subf */
1885                         op->val = regs->gpr[rb] - regs->gpr[ra];
1886                         goto arith_done;
1887 #ifdef __powerpc64__
1888                 case 73:        /* mulhd */
1889                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1890                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1891                         goto arith_done;
1892 #endif
1893                 case 75:        /* mulhw */
1894                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1895                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1896                         goto arith_done;
1897
1898                 case 104:       /* neg */
1899                         op->val = -regs->gpr[ra];
1900                         goto arith_done;
1901
1902                 case 136:       /* subfe */
1903                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1904                                        regs->gpr[rb], regs->xer & XER_CA);
1905                         goto arith_done;
1906
1907                 case 138:       /* adde */
1908                         add_with_carry(regs, op, rd, regs->gpr[ra],
1909                                        regs->gpr[rb], regs->xer & XER_CA);
1910                         goto arith_done;
1911
1912                 case 200:       /* subfze */
1913                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1914                                        regs->xer & XER_CA);
1915                         goto arith_done;
1916
1917                 case 202:       /* addze */
1918                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1919                                        regs->xer & XER_CA);
1920                         goto arith_done;
1921
1922                 case 232:       /* subfme */
1923                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1924                                        regs->xer & XER_CA);
1925                         goto arith_done;
1926 #ifdef __powerpc64__
1927                 case 233:       /* mulld */
1928                         op->val = regs->gpr[ra] * regs->gpr[rb];
1929                         goto arith_done;
1930 #endif
1931                 case 234:       /* addme */
1932                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1933                                        regs->xer & XER_CA);
1934                         goto arith_done;
1935
1936                 case 235:       /* mullw */
1937                         op->val = (long)(int) regs->gpr[ra] *
1938                                 (int) regs->gpr[rb];
1939
1940                         goto arith_done;
1941 #ifdef __powerpc64__
1942                 case 265:       /* modud */
1943                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1944                                 goto unknown_opcode;
1945                         op->val = regs->gpr[ra] % regs->gpr[rb];
1946                         goto compute_done;
1947 #endif
1948                 case 266:       /* add */
1949                         op->val = regs->gpr[ra] + regs->gpr[rb];
1950                         goto arith_done;
1951
1952                 case 267:       /* moduw */
1953                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1954                                 goto unknown_opcode;
1955                         op->val = (unsigned int) regs->gpr[ra] %
1956                                 (unsigned int) regs->gpr[rb];
1957                         goto compute_done;
1958 #ifdef __powerpc64__
1959                 case 457:       /* divdu */
1960                         op->val = regs->gpr[ra] / regs->gpr[rb];
1961                         goto arith_done;
1962 #endif
1963                 case 459:       /* divwu */
1964                         op->val = (unsigned int) regs->gpr[ra] /
1965                                 (unsigned int) regs->gpr[rb];
1966                         goto arith_done;
1967 #ifdef __powerpc64__
1968                 case 489:       /* divd */
1969                         op->val = (long int) regs->gpr[ra] /
1970                                 (long int) regs->gpr[rb];
1971                         goto arith_done;
1972 #endif
1973                 case 491:       /* divw */
1974                         op->val = (int) regs->gpr[ra] /
1975                                 (int) regs->gpr[rb];
1976                         goto arith_done;
1977 #ifdef __powerpc64__
1978                 case 425:       /* divde[.] */
1979                         asm volatile(PPC_DIVDE(%0, %1, %2) :
1980                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1981                                 "r" (regs->gpr[rb]));
1982                         goto arith_done;
1983                 case 393:       /* divdeu[.] */
1984                         asm volatile(PPC_DIVDEU(%0, %1, %2) :
1985                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1986                                 "r" (regs->gpr[rb]));
1987                         goto arith_done;
1988 #endif
1989                 case 755:       /* darn */
1990                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1991                                 goto unknown_opcode;
1992                         switch (ra & 0x3) {
1993                         case 0:
1994                                 /* 32-bit conditioned */
1995                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1996                                 goto compute_done;
1997
1998                         case 1:
1999                                 /* 64-bit conditioned */
2000                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2001                                 goto compute_done;
2002
2003                         case 2:
2004                                 /* 64-bit raw */
2005                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2006                                 goto compute_done;
2007                         }
2008
2009                         goto unknown_opcode;
2010 #ifdef __powerpc64__
2011                 case 777:       /* modsd */
2012                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2013                                 goto unknown_opcode;
2014                         op->val = (long int) regs->gpr[ra] %
2015                                 (long int) regs->gpr[rb];
2016                         goto compute_done;
2017 #endif
2018                 case 779:       /* modsw */
2019                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2020                                 goto unknown_opcode;
2021                         op->val = (int) regs->gpr[ra] %
2022                                 (int) regs->gpr[rb];
2023                         goto compute_done;
2024
2025
2026 /*
2027  * Logical instructions
2028  */
2029                 case 26:        /* cntlzw */
2030                         val = (unsigned int) regs->gpr[rd];
2031                         op->val = ( val ? __builtin_clz(val) : 32 );
2032                         goto logical_done;
2033 #ifdef __powerpc64__
2034                 case 58:        /* cntlzd */
2035                         val = regs->gpr[rd];
2036                         op->val = ( val ? __builtin_clzl(val) : 64 );
2037                         goto logical_done;
2038 #endif
2039                 case 28:        /* and */
2040                         op->val = regs->gpr[rd] & regs->gpr[rb];
2041                         goto logical_done;
2042
2043                 case 60:        /* andc */
2044                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
2045                         goto logical_done;
2046
2047                 case 122:       /* popcntb */
2048                         do_popcnt(regs, op, regs->gpr[rd], 8);
2049                         goto logical_done_nocc;
2050
2051                 case 124:       /* nor */
2052                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2053                         goto logical_done;
2054
2055                 case 154:       /* prtyw */
2056                         do_prty(regs, op, regs->gpr[rd], 32);
2057                         goto logical_done_nocc;
2058
2059                 case 186:       /* prtyd */
2060                         do_prty(regs, op, regs->gpr[rd], 64);
2061                         goto logical_done_nocc;
2062 #ifdef CONFIG_PPC64
2063                 case 252:       /* bpermd */
2064                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2065                         goto logical_done_nocc;
2066 #endif
2067                 case 284:       /* xor */
2068                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2069                         goto logical_done;
2070
2071                 case 316:       /* xor */
2072                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
2073                         goto logical_done;
2074
2075                 case 378:       /* popcntw */
2076                         do_popcnt(regs, op, regs->gpr[rd], 32);
2077                         goto logical_done_nocc;
2078
2079                 case 412:       /* orc */
2080                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
2081                         goto logical_done;
2082
2083                 case 444:       /* or */
2084                         op->val = regs->gpr[rd] | regs->gpr[rb];
2085                         goto logical_done;
2086
2087                 case 476:       /* nand */
2088                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2089                         goto logical_done;
2090 #ifdef CONFIG_PPC64
2091                 case 506:       /* popcntd */
2092                         do_popcnt(regs, op, regs->gpr[rd], 64);
2093                         goto logical_done_nocc;
2094 #endif
2095                 case 538:       /* cnttzw */
2096                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2097                                 goto unknown_opcode;
2098                         val = (unsigned int) regs->gpr[rd];
2099                         op->val = (val ? __builtin_ctz(val) : 32);
2100                         goto logical_done;
2101 #ifdef __powerpc64__
2102                 case 570:       /* cnttzd */
2103                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2104                                 goto unknown_opcode;
2105                         val = regs->gpr[rd];
2106                         op->val = (val ? __builtin_ctzl(val) : 64);
2107                         goto logical_done;
2108 #endif
2109                 case 922:       /* extsh */
2110                         op->val = (signed short) regs->gpr[rd];
2111                         goto logical_done;
2112
2113                 case 954:       /* extsb */
2114                         op->val = (signed char) regs->gpr[rd];
2115                         goto logical_done;
2116 #ifdef __powerpc64__
2117                 case 986:       /* extsw */
2118                         op->val = (signed int) regs->gpr[rd];
2119                         goto logical_done;
2120 #endif
2121
2122 /*
2123  * Shift instructions
2124  */
2125                 case 24:        /* slw */
2126                         sh = regs->gpr[rb] & 0x3f;
2127                         if (sh < 32)
2128                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2129                         else
2130                                 op->val = 0;
2131                         goto logical_done;
2132
2133                 case 536:       /* srw */
2134                         sh = regs->gpr[rb] & 0x3f;
2135                         if (sh < 32)
2136                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2137                         else
2138                                 op->val = 0;
2139                         goto logical_done;
2140
2141                 case 792:       /* sraw */
2142                         op->type = COMPUTE + SETREG + SETXER;
2143                         sh = regs->gpr[rb] & 0x3f;
2144                         ival = (signed int) regs->gpr[rd];
2145                         op->val = ival >> (sh < 32 ? sh : 31);
2146                         op->xerval = regs->xer;
2147                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2148                                 op->xerval |= XER_CA;
2149                         else
2150                                 op->xerval &= ~XER_CA;
2151                         set_ca32(op, op->xerval & XER_CA);
2152                         goto logical_done;
2153
2154                 case 824:       /* srawi */
2155                         op->type = COMPUTE + SETREG + SETXER;
2156                         sh = rb;
2157                         ival = (signed int) regs->gpr[rd];
2158                         op->val = ival >> sh;
2159                         op->xerval = regs->xer;
2160                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2161                                 op->xerval |= XER_CA;
2162                         else
2163                                 op->xerval &= ~XER_CA;
2164                         set_ca32(op, op->xerval & XER_CA);
2165                         goto logical_done;
2166
2167 #ifdef __powerpc64__
2168                 case 27:        /* sld */
2169                         sh = regs->gpr[rb] & 0x7f;
2170                         if (sh < 64)
2171                                 op->val = regs->gpr[rd] << sh;
2172                         else
2173                                 op->val = 0;
2174                         goto logical_done;
2175
2176                 case 539:       /* srd */
2177                         sh = regs->gpr[rb] & 0x7f;
2178                         if (sh < 64)
2179                                 op->val = regs->gpr[rd] >> sh;
2180                         else
2181                                 op->val = 0;
2182                         goto logical_done;
2183
2184                 case 794:       /* srad */
2185                         op->type = COMPUTE + SETREG + SETXER;
2186                         sh = regs->gpr[rb] & 0x7f;
2187                         ival = (signed long int) regs->gpr[rd];
2188                         op->val = ival >> (sh < 64 ? sh : 63);
2189                         op->xerval = regs->xer;
2190                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2191                                 op->xerval |= XER_CA;
2192                         else
2193                                 op->xerval &= ~XER_CA;
2194                         set_ca32(op, op->xerval & XER_CA);
2195                         goto logical_done;
2196
2197                 case 826:       /* sradi with sh_5 = 0 */
2198                 case 827:       /* sradi with sh_5 = 1 */
2199                         op->type = COMPUTE + SETREG + SETXER;
2200                         sh = rb | ((word & 2) << 4);
2201                         ival = (signed long int) regs->gpr[rd];
2202                         op->val = ival >> sh;
2203                         op->xerval = regs->xer;
2204                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2205                                 op->xerval |= XER_CA;
2206                         else
2207                                 op->xerval &= ~XER_CA;
2208                         set_ca32(op, op->xerval & XER_CA);
2209                         goto logical_done;
2210
2211                 case 890:       /* extswsli with sh_5 = 0 */
2212                 case 891:       /* extswsli with sh_5 = 1 */
2213                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2214                                 goto unknown_opcode;
2215                         op->type = COMPUTE + SETREG;
2216                         sh = rb | ((word & 2) << 4);
2217                         val = (signed int) regs->gpr[rd];
2218                         if (sh)
2219                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2220                         else
2221                                 op->val = val;
2222                         goto logical_done;
2223
2224 #endif /* __powerpc64__ */
2225
2226 /*
2227  * Cache instructions
2228  */
2229                 case 54:        /* dcbst */
2230                         op->type = MKOP(CACHEOP, DCBST, 0);
2231                         op->ea = xform_ea(word, regs);
2232                         return 0;
2233
2234                 case 86:        /* dcbf */
2235                         op->type = MKOP(CACHEOP, DCBF, 0);
2236                         op->ea = xform_ea(word, regs);
2237                         return 0;
2238
2239                 case 246:       /* dcbtst */
2240                         op->type = MKOP(CACHEOP, DCBTST, 0);
2241                         op->ea = xform_ea(word, regs);
2242                         op->reg = rd;
2243                         return 0;
2244
2245                 case 278:       /* dcbt */
2246                         op->type = MKOP(CACHEOP, DCBTST, 0);
2247                         op->ea = xform_ea(word, regs);
2248                         op->reg = rd;
2249                         return 0;
2250
2251                 case 982:       /* icbi */
2252                         op->type = MKOP(CACHEOP, ICBI, 0);
2253                         op->ea = xform_ea(word, regs);
2254                         return 0;
2255
2256                 case 1014:      /* dcbz */
2257                         op->type = MKOP(CACHEOP, DCBZ, 0);
2258                         op->ea = xform_ea(word, regs);
2259                         return 0;
2260                 }
2261                 break;
2262         }
2263
2264 /*
2265  * Loads and stores.
2266  */
2267         op->type = UNKNOWN;
2268         op->update_reg = ra;
2269         op->reg = rd;
2270         op->val = regs->gpr[rd];
2271         u = (word >> 20) & UPDATE;
2272         op->vsx_flags = 0;
2273
2274         switch (opcode) {
2275         case 31:
2276                 u = word & UPDATE;
2277                 op->ea = xform_ea(word, regs);
2278                 switch ((word >> 1) & 0x3ff) {
2279                 case 20:        /* lwarx */
2280                         op->type = MKOP(LARX, 0, 4);
2281                         break;
2282
2283                 case 150:       /* stwcx. */
2284                         op->type = MKOP(STCX, 0, 4);
2285                         break;
2286
2287 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
2288                 case 52:        /* lbarx */
2289                         op->type = MKOP(LARX, 0, 1);
2290                         break;
2291
2292                 case 694:       /* stbcx. */
2293                         op->type = MKOP(STCX, 0, 1);
2294                         break;
2295
2296                 case 116:       /* lharx */
2297                         op->type = MKOP(LARX, 0, 2);
2298                         break;
2299
2300                 case 726:       /* sthcx. */
2301                         op->type = MKOP(STCX, 0, 2);
2302                         break;
2303 #endif
2304 #ifdef __powerpc64__
2305                 case 84:        /* ldarx */
2306                         op->type = MKOP(LARX, 0, 8);
2307                         break;
2308
2309                 case 214:       /* stdcx. */
2310                         op->type = MKOP(STCX, 0, 8);
2311                         break;
2312
2313                 case 276:       /* lqarx */
2314                         if (!((rd & 1) || rd == ra || rd == rb))
2315                                 op->type = MKOP(LARX, 0, 16);
2316                         break;
2317
2318                 case 182:       /* stqcx. */
2319                         if (!(rd & 1))
2320                                 op->type = MKOP(STCX, 0, 16);
2321                         break;
2322 #endif
2323
2324                 case 23:        /* lwzx */
2325                 case 55:        /* lwzux */
2326                         op->type = MKOP(LOAD, u, 4);
2327                         break;
2328
2329                 case 87:        /* lbzx */
2330                 case 119:       /* lbzux */
2331                         op->type = MKOP(LOAD, u, 1);
2332                         break;
2333
2334 #ifdef CONFIG_ALTIVEC
2335                 /*
2336                  * Note: for the load/store vector element instructions,
2337                  * bits of the EA say which field of the VMX register to use.
2338                  */
2339                 case 7:         /* lvebx */
2340                         op->type = MKOP(LOAD_VMX, 0, 1);
2341                         op->element_size = 1;
2342                         break;
2343
2344                 case 39:        /* lvehx */
2345                         op->type = MKOP(LOAD_VMX, 0, 2);
2346                         op->element_size = 2;
2347                         break;
2348
2349                 case 71:        /* lvewx */
2350                         op->type = MKOP(LOAD_VMX, 0, 4);
2351                         op->element_size = 4;
2352                         break;
2353
2354                 case 103:       /* lvx */
2355                 case 359:       /* lvxl */
2356                         op->type = MKOP(LOAD_VMX, 0, 16);
2357                         op->element_size = 16;
2358                         break;
2359
2360                 case 135:       /* stvebx */
2361                         op->type = MKOP(STORE_VMX, 0, 1);
2362                         op->element_size = 1;
2363                         break;
2364
2365                 case 167:       /* stvehx */
2366                         op->type = MKOP(STORE_VMX, 0, 2);
2367                         op->element_size = 2;
2368                         break;
2369
2370                 case 199:       /* stvewx */
2371                         op->type = MKOP(STORE_VMX, 0, 4);
2372                         op->element_size = 4;
2373                         break;
2374
2375                 case 231:       /* stvx */
2376                 case 487:       /* stvxl */
2377                         op->type = MKOP(STORE_VMX, 0, 16);
2378                         break;
2379 #endif /* CONFIG_ALTIVEC */
2380
2381 #ifdef __powerpc64__
2382                 case 21:        /* ldx */
2383                 case 53:        /* ldux */
2384                         op->type = MKOP(LOAD, u, 8);
2385                         break;
2386
2387                 case 149:       /* stdx */
2388                 case 181:       /* stdux */
2389                         op->type = MKOP(STORE, u, 8);
2390                         break;
2391 #endif
2392
2393                 case 151:       /* stwx */
2394                 case 183:       /* stwux */
2395                         op->type = MKOP(STORE, u, 4);
2396                         break;
2397
2398                 case 215:       /* stbx */
2399                 case 247:       /* stbux */
2400                         op->type = MKOP(STORE, u, 1);
2401                         break;
2402
2403                 case 279:       /* lhzx */
2404                 case 311:       /* lhzux */
2405                         op->type = MKOP(LOAD, u, 2);
2406                         break;
2407
2408 #ifdef __powerpc64__
2409                 case 341:       /* lwax */
2410                 case 373:       /* lwaux */
2411                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2412                         break;
2413 #endif
2414
2415                 case 343:       /* lhax */
2416                 case 375:       /* lhaux */
2417                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2418                         break;
2419
2420                 case 407:       /* sthx */
2421                 case 439:       /* sthux */
2422                         op->type = MKOP(STORE, u, 2);
2423                         break;
2424
2425 #ifdef __powerpc64__
2426                 case 532:       /* ldbrx */
2427                         op->type = MKOP(LOAD, BYTEREV, 8);
2428                         break;
2429
2430 #endif
2431                 case 533:       /* lswx */
2432                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2433                         break;
2434
2435                 case 534:       /* lwbrx */
2436                         op->type = MKOP(LOAD, BYTEREV, 4);
2437                         break;
2438
2439                 case 597:       /* lswi */
2440                         if (rb == 0)
2441                                 rb = 32;        /* # bytes to load */
2442                         op->type = MKOP(LOAD_MULTI, 0, rb);
2443                         op->ea = ra ? regs->gpr[ra] : 0;
2444                         break;
2445
2446 #ifdef CONFIG_PPC_FPU
2447                 case 535:       /* lfsx */
2448                 case 567:       /* lfsux */
2449                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2450                         break;
2451
2452                 case 599:       /* lfdx */
2453                 case 631:       /* lfdux */
2454                         op->type = MKOP(LOAD_FP, u, 8);
2455                         break;
2456
2457                 case 663:       /* stfsx */
2458                 case 695:       /* stfsux */
2459                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2460                         break;
2461
2462                 case 727:       /* stfdx */
2463                 case 759:       /* stfdux */
2464                         op->type = MKOP(STORE_FP, u, 8);
2465                         break;
2466
2467 #ifdef __powerpc64__
2468                 case 791:       /* lfdpx */
2469                         op->type = MKOP(LOAD_FP, 0, 16);
2470                         break;
2471
2472                 case 855:       /* lfiwax */
2473                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2474                         break;
2475
2476                 case 887:       /* lfiwzx */
2477                         op->type = MKOP(LOAD_FP, 0, 4);
2478                         break;
2479
2480                 case 919:       /* stfdpx */
2481                         op->type = MKOP(STORE_FP, 0, 16);
2482                         break;
2483
2484                 case 983:       /* stfiwx */
2485                         op->type = MKOP(STORE_FP, 0, 4);
2486                         break;
2487 #endif /* __powerpc64 */
2488 #endif /* CONFIG_PPC_FPU */
2489
2490 #ifdef __powerpc64__
2491                 case 660:       /* stdbrx */
2492                         op->type = MKOP(STORE, BYTEREV, 8);
2493                         op->val = byterev_8(regs->gpr[rd]);
2494                         break;
2495
2496 #endif
2497                 case 661:       /* stswx */
2498                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2499                         break;
2500
2501                 case 662:       /* stwbrx */
2502                         op->type = MKOP(STORE, BYTEREV, 4);
2503                         op->val = byterev_4(regs->gpr[rd]);
2504                         break;
2505
2506                 case 725:       /* stswi */
2507                         if (rb == 0)
2508                                 rb = 32;        /* # bytes to store */
2509                         op->type = MKOP(STORE_MULTI, 0, rb);
2510                         op->ea = ra ? regs->gpr[ra] : 0;
2511                         break;
2512
2513                 case 790:       /* lhbrx */
2514                         op->type = MKOP(LOAD, BYTEREV, 2);
2515                         break;
2516
2517                 case 918:       /* sthbrx */
2518                         op->type = MKOP(STORE, BYTEREV, 2);
2519                         op->val = byterev_2(regs->gpr[rd]);
2520                         break;
2521
2522 #ifdef CONFIG_VSX
2523                 case 12:        /* lxsiwzx */
2524                         op->reg = rd | ((word & 1) << 5);
2525                         op->type = MKOP(LOAD_VSX, 0, 4);
2526                         op->element_size = 8;
2527                         break;
2528
2529                 case 76:        /* lxsiwax */
2530                         op->reg = rd | ((word & 1) << 5);
2531                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2532                         op->element_size = 8;
2533                         break;
2534
2535                 case 140:       /* stxsiwx */
2536                         op->reg = rd | ((word & 1) << 5);
2537                         op->type = MKOP(STORE_VSX, 0, 4);
2538                         op->element_size = 8;
2539                         break;
2540
2541                 case 268:       /* lxvx */
2542                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2543                                 goto unknown_opcode;
2544                         op->reg = rd | ((word & 1) << 5);
2545                         op->type = MKOP(LOAD_VSX, 0, 16);
2546                         op->element_size = 16;
2547                         op->vsx_flags = VSX_CHECK_VEC;
2548                         break;
2549
2550                 case 269:       /* lxvl */
2551                 case 301: {     /* lxvll */
2552                         int nb;
2553                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2554                                 goto unknown_opcode;
2555                         op->reg = rd | ((word & 1) << 5);
2556                         op->ea = ra ? regs->gpr[ra] : 0;
2557                         nb = regs->gpr[rb] & 0xff;
2558                         if (nb > 16)
2559                                 nb = 16;
2560                         op->type = MKOP(LOAD_VSX, 0, nb);
2561                         op->element_size = 16;
2562                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2563                                 VSX_CHECK_VEC;
2564                         break;
2565                 }
2566                 case 332:       /* lxvdsx */
2567                         op->reg = rd | ((word & 1) << 5);
2568                         op->type = MKOP(LOAD_VSX, 0, 8);
2569                         op->element_size = 8;
2570                         op->vsx_flags = VSX_SPLAT;
2571                         break;
2572
2573                 case 333:       /* lxvpx */
2574                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2575                                 goto unknown_opcode;
2576                         op->reg = VSX_REGISTER_XTP(rd);
2577                         op->type = MKOP(LOAD_VSX, 0, 32);
2578                         op->element_size = 32;
2579                         break;
2580
2581                 case 364:       /* lxvwsx */
2582                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2583                                 goto unknown_opcode;
2584                         op->reg = rd | ((word & 1) << 5);
2585                         op->type = MKOP(LOAD_VSX, 0, 4);
2586                         op->element_size = 4;
2587                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2588                         break;
2589
2590                 case 396:       /* stxvx */
2591                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2592                                 goto unknown_opcode;
2593                         op->reg = rd | ((word & 1) << 5);
2594                         op->type = MKOP(STORE_VSX, 0, 16);
2595                         op->element_size = 16;
2596                         op->vsx_flags = VSX_CHECK_VEC;
2597                         break;
2598
2599                 case 397:       /* stxvl */
2600                 case 429: {     /* stxvll */
2601                         int nb;
2602                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2603                                 goto unknown_opcode;
2604                         op->reg = rd | ((word & 1) << 5);
2605                         op->ea = ra ? regs->gpr[ra] : 0;
2606                         nb = regs->gpr[rb] & 0xff;
2607                         if (nb > 16)
2608                                 nb = 16;
2609                         op->type = MKOP(STORE_VSX, 0, nb);
2610                         op->element_size = 16;
2611                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2612                                 VSX_CHECK_VEC;
2613                         break;
2614                 }
2615                 case 461:       /* stxvpx */
2616                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2617                                 goto unknown_opcode;
2618                         op->reg = VSX_REGISTER_XTP(rd);
2619                         op->type = MKOP(STORE_VSX, 0, 32);
2620                         op->element_size = 32;
2621                         break;
2622                 case 524:       /* lxsspx */
2623                         op->reg = rd | ((word & 1) << 5);
2624                         op->type = MKOP(LOAD_VSX, 0, 4);
2625                         op->element_size = 8;
2626                         op->vsx_flags = VSX_FPCONV;
2627                         break;
2628
2629                 case 588:       /* lxsdx */
2630                         op->reg = rd | ((word & 1) << 5);
2631                         op->type = MKOP(LOAD_VSX, 0, 8);
2632                         op->element_size = 8;
2633                         break;
2634
2635                 case 652:       /* stxsspx */
2636                         op->reg = rd | ((word & 1) << 5);
2637                         op->type = MKOP(STORE_VSX, 0, 4);
2638                         op->element_size = 8;
2639                         op->vsx_flags = VSX_FPCONV;
2640                         break;
2641
2642                 case 716:       /* stxsdx */
2643                         op->reg = rd | ((word & 1) << 5);
2644                         op->type = MKOP(STORE_VSX, 0, 8);
2645                         op->element_size = 8;
2646                         break;
2647
2648                 case 780:       /* lxvw4x */
2649                         op->reg = rd | ((word & 1) << 5);
2650                         op->type = MKOP(LOAD_VSX, 0, 16);
2651                         op->element_size = 4;
2652                         break;
2653
2654                 case 781:       /* lxsibzx */
2655                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2656                                 goto unknown_opcode;
2657                         op->reg = rd | ((word & 1) << 5);
2658                         op->type = MKOP(LOAD_VSX, 0, 1);
2659                         op->element_size = 8;
2660                         op->vsx_flags = VSX_CHECK_VEC;
2661                         break;
2662
2663                 case 812:       /* lxvh8x */
2664                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2665                                 goto unknown_opcode;
2666                         op->reg = rd | ((word & 1) << 5);
2667                         op->type = MKOP(LOAD_VSX, 0, 16);
2668                         op->element_size = 2;
2669                         op->vsx_flags = VSX_CHECK_VEC;
2670                         break;
2671
2672                 case 813:       /* lxsihzx */
2673                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2674                                 goto unknown_opcode;
2675                         op->reg = rd | ((word & 1) << 5);
2676                         op->type = MKOP(LOAD_VSX, 0, 2);
2677                         op->element_size = 8;
2678                         op->vsx_flags = VSX_CHECK_VEC;
2679                         break;
2680
2681                 case 844:       /* lxvd2x */
2682                         op->reg = rd | ((word & 1) << 5);
2683                         op->type = MKOP(LOAD_VSX, 0, 16);
2684                         op->element_size = 8;
2685                         break;
2686
2687                 case 876:       /* lxvb16x */
2688                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2689                                 goto unknown_opcode;
2690                         op->reg = rd | ((word & 1) << 5);
2691                         op->type = MKOP(LOAD_VSX, 0, 16);
2692                         op->element_size = 1;
2693                         op->vsx_flags = VSX_CHECK_VEC;
2694                         break;
2695
2696                 case 908:       /* stxvw4x */
2697                         op->reg = rd | ((word & 1) << 5);
2698                         op->type = MKOP(STORE_VSX, 0, 16);
2699                         op->element_size = 4;
2700                         break;
2701
2702                 case 909:       /* stxsibx */
2703                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2704                                 goto unknown_opcode;
2705                         op->reg = rd | ((word & 1) << 5);
2706                         op->type = MKOP(STORE_VSX, 0, 1);
2707                         op->element_size = 8;
2708                         op->vsx_flags = VSX_CHECK_VEC;
2709                         break;
2710
2711                 case 940:       /* stxvh8x */
2712                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2713                                 goto unknown_opcode;
2714                         op->reg = rd | ((word & 1) << 5);
2715                         op->type = MKOP(STORE_VSX, 0, 16);
2716                         op->element_size = 2;
2717                         op->vsx_flags = VSX_CHECK_VEC;
2718                         break;
2719
2720                 case 941:       /* stxsihx */
2721                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2722                                 goto unknown_opcode;
2723                         op->reg = rd | ((word & 1) << 5);
2724                         op->type = MKOP(STORE_VSX, 0, 2);
2725                         op->element_size = 8;
2726                         op->vsx_flags = VSX_CHECK_VEC;
2727                         break;
2728
2729                 case 972:       /* stxvd2x */
2730                         op->reg = rd | ((word & 1) << 5);
2731                         op->type = MKOP(STORE_VSX, 0, 16);
2732                         op->element_size = 8;
2733                         break;
2734
2735                 case 1004:      /* stxvb16x */
2736                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2737                                 goto unknown_opcode;
2738                         op->reg = rd | ((word & 1) << 5);
2739                         op->type = MKOP(STORE_VSX, 0, 16);
2740                         op->element_size = 1;
2741                         op->vsx_flags = VSX_CHECK_VEC;
2742                         break;
2743
2744 #endif /* CONFIG_VSX */
2745                 }
2746                 break;
2747
2748         case 32:        /* lwz */
2749         case 33:        /* lwzu */
2750                 op->type = MKOP(LOAD, u, 4);
2751                 op->ea = dform_ea(word, regs);
2752                 break;
2753
2754         case 34:        /* lbz */
2755         case 35:        /* lbzu */
2756                 op->type = MKOP(LOAD, u, 1);
2757                 op->ea = dform_ea(word, regs);
2758                 break;
2759
2760         case 36:        /* stw */
2761         case 37:        /* stwu */
2762                 op->type = MKOP(STORE, u, 4);
2763                 op->ea = dform_ea(word, regs);
2764                 break;
2765
2766         case 38:        /* stb */
2767         case 39:        /* stbu */
2768                 op->type = MKOP(STORE, u, 1);
2769                 op->ea = dform_ea(word, regs);
2770                 break;
2771
2772         case 40:        /* lhz */
2773         case 41:        /* lhzu */
2774                 op->type = MKOP(LOAD, u, 2);
2775                 op->ea = dform_ea(word, regs);
2776                 break;
2777
2778         case 42:        /* lha */
2779         case 43:        /* lhau */
2780                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2781                 op->ea = dform_ea(word, regs);
2782                 break;
2783
2784         case 44:        /* sth */
2785         case 45:        /* sthu */
2786                 op->type = MKOP(STORE, u, 2);
2787                 op->ea = dform_ea(word, regs);
2788                 break;
2789
2790         case 46:        /* lmw */
2791                 if (ra >= rd)
2792                         break;          /* invalid form, ra in range to load */
2793                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2794                 op->ea = dform_ea(word, regs);
2795                 break;
2796
2797         case 47:        /* stmw */
2798                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2799                 op->ea = dform_ea(word, regs);
2800                 break;
2801
2802 #ifdef CONFIG_PPC_FPU
2803         case 48:        /* lfs */
2804         case 49:        /* lfsu */
2805                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2806                 op->ea = dform_ea(word, regs);
2807                 break;
2808
2809         case 50:        /* lfd */
2810         case 51:        /* lfdu */
2811                 op->type = MKOP(LOAD_FP, u, 8);
2812                 op->ea = dform_ea(word, regs);
2813                 break;
2814
2815         case 52:        /* stfs */
2816         case 53:        /* stfsu */
2817                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2818                 op->ea = dform_ea(word, regs);
2819                 break;
2820
2821         case 54:        /* stfd */
2822         case 55:        /* stfdu */
2823                 op->type = MKOP(STORE_FP, u, 8);
2824                 op->ea = dform_ea(word, regs);
2825                 break;
2826 #endif
2827
2828 #ifdef __powerpc64__
2829         case 56:        /* lq */
2830                 if (!((rd & 1) || (rd == ra)))
2831                         op->type = MKOP(LOAD, 0, 16);
2832                 op->ea = dqform_ea(word, regs);
2833                 break;
2834 #endif
2835
2836 #ifdef CONFIG_VSX
2837         case 57:        /* lfdp, lxsd, lxssp */
2838                 op->ea = dsform_ea(word, regs);
2839                 switch (word & 3) {
2840                 case 0:         /* lfdp */
2841                         if (rd & 1)
2842                                 break;          /* reg must be even */
2843                         op->type = MKOP(LOAD_FP, 0, 16);
2844                         break;
2845                 case 2:         /* lxsd */
2846                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2847                                 goto unknown_opcode;
2848                         op->reg = rd + 32;
2849                         op->type = MKOP(LOAD_VSX, 0, 8);
2850                         op->element_size = 8;
2851                         op->vsx_flags = VSX_CHECK_VEC;
2852                         break;
2853                 case 3:         /* lxssp */
2854                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2855                                 goto unknown_opcode;
2856                         op->reg = rd + 32;
2857                         op->type = MKOP(LOAD_VSX, 0, 4);
2858                         op->element_size = 8;
2859                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2860                         break;
2861                 }
2862                 break;
2863 #endif /* CONFIG_VSX */
2864
2865 #ifdef __powerpc64__
2866         case 58:        /* ld[u], lwa */
2867                 op->ea = dsform_ea(word, regs);
2868                 switch (word & 3) {
2869                 case 0:         /* ld */
2870                         op->type = MKOP(LOAD, 0, 8);
2871                         break;
2872                 case 1:         /* ldu */
2873                         op->type = MKOP(LOAD, UPDATE, 8);
2874                         break;
2875                 case 2:         /* lwa */
2876                         op->type = MKOP(LOAD, SIGNEXT, 4);
2877                         break;
2878                 }
2879                 break;
2880 #endif
2881
2882 #ifdef CONFIG_VSX
2883         case 6:
2884                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2885                         goto unknown_opcode;
2886                 op->ea = dqform_ea(word, regs);
2887                 op->reg = VSX_REGISTER_XTP(rd);
2888                 op->element_size = 32;
2889                 switch (word & 0xf) {
2890                 case 0:         /* lxvp */
2891                         op->type = MKOP(LOAD_VSX, 0, 32);
2892                         break;
2893                 case 1:         /* stxvp */
2894                         op->type = MKOP(STORE_VSX, 0, 32);
2895                         break;
2896                 }
2897                 break;
2898
2899         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2900                 switch (word & 7) {
2901                 case 0:         /* stfdp with LSB of DS field = 0 */
2902                 case 4:         /* stfdp with LSB of DS field = 1 */
2903                         op->ea = dsform_ea(word, regs);
2904                         op->type = MKOP(STORE_FP, 0, 16);
2905                         break;
2906
2907                 case 1:         /* lxv */
2908                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2909                                 goto unknown_opcode;
2910                         op->ea = dqform_ea(word, regs);
2911                         if (word & 8)
2912                                 op->reg = rd + 32;
2913                         op->type = MKOP(LOAD_VSX, 0, 16);
2914                         op->element_size = 16;
2915                         op->vsx_flags = VSX_CHECK_VEC;
2916                         break;
2917
2918                 case 2:         /* stxsd with LSB of DS field = 0 */
2919                 case 6:         /* stxsd with LSB of DS field = 1 */
2920                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2921                                 goto unknown_opcode;
2922                         op->ea = dsform_ea(word, regs);
2923                         op->reg = rd + 32;
2924                         op->type = MKOP(STORE_VSX, 0, 8);
2925                         op->element_size = 8;
2926                         op->vsx_flags = VSX_CHECK_VEC;
2927                         break;
2928
2929                 case 3:         /* stxssp with LSB of DS field = 0 */
2930                 case 7:         /* stxssp with LSB of DS field = 1 */
2931                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2932                                 goto unknown_opcode;
2933                         op->ea = dsform_ea(word, regs);
2934                         op->reg = rd + 32;
2935                         op->type = MKOP(STORE_VSX, 0, 4);
2936                         op->element_size = 8;
2937                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2938                         break;
2939
2940                 case 5:         /* stxv */
2941                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2942                                 goto unknown_opcode;
2943                         op->ea = dqform_ea(word, regs);
2944                         if (word & 8)
2945                                 op->reg = rd + 32;
2946                         op->type = MKOP(STORE_VSX, 0, 16);
2947                         op->element_size = 16;
2948                         op->vsx_flags = VSX_CHECK_VEC;
2949                         break;
2950                 }
2951                 break;
2952 #endif /* CONFIG_VSX */
2953
2954 #ifdef __powerpc64__
2955         case 62:        /* std[u] */
2956                 op->ea = dsform_ea(word, regs);
2957                 switch (word & 3) {
2958                 case 0:         /* std */
2959                         op->type = MKOP(STORE, 0, 8);
2960                         break;
2961                 case 1:         /* stdu */
2962                         op->type = MKOP(STORE, UPDATE, 8);
2963                         break;
2964                 case 2:         /* stq */
2965                         if (!(rd & 1))
2966                                 op->type = MKOP(STORE, 0, 16);
2967                         break;
2968                 }
2969                 break;
2970         case 1: /* Prefixed instructions */
2971                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2972                         goto unknown_opcode;
2973
2974                 prefix_r = GET_PREFIX_R(word);
2975                 ra = GET_PREFIX_RA(suffix);
2976                 op->update_reg = ra;
2977                 rd = (suffix >> 21) & 0x1f;
2978                 op->reg = rd;
2979                 op->val = regs->gpr[rd];
2980
2981                 suffixopcode = get_op(suffix);
2982                 prefixtype = (word >> 24) & 0x3;
2983                 switch (prefixtype) {
2984                 case 0: /* Type 00  Eight-Byte Load/Store */
2985                         if (prefix_r && ra)
2986                                 break;
2987                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
2988                         switch (suffixopcode) {
2989                         case 41:        /* plwa */
2990                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2991                                 break;
2992 #ifdef CONFIG_VSX
2993                         case 42:        /* plxsd */
2994                                 op->reg = rd + 32;
2995                                 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2996                                 op->element_size = 8;
2997                                 op->vsx_flags = VSX_CHECK_VEC;
2998                                 break;
2999                         case 43:        /* plxssp */
3000                                 op->reg = rd + 32;
3001                                 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3002                                 op->element_size = 8;
3003                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3004                                 break;
3005                         case 46:        /* pstxsd */
3006                                 op->reg = rd + 32;
3007                                 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3008                                 op->element_size = 8;
3009                                 op->vsx_flags = VSX_CHECK_VEC;
3010                                 break;
3011                         case 47:        /* pstxssp */
3012                                 op->reg = rd + 32;
3013                                 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3014                                 op->element_size = 8;
3015                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3016                                 break;
3017                         case 51:        /* plxv1 */
3018                                 op->reg += 32;
3019                                 fallthrough;
3020                         case 50:        /* plxv0 */
3021                                 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3022                                 op->element_size = 16;
3023                                 op->vsx_flags = VSX_CHECK_VEC;
3024                                 break;
3025                         case 55:        /* pstxv1 */
3026                                 op->reg = rd + 32;
3027                                 fallthrough;
3028                         case 54:        /* pstxv0 */
3029                                 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3030                                 op->element_size = 16;
3031                                 op->vsx_flags = VSX_CHECK_VEC;
3032                                 break;
3033 #endif /* CONFIG_VSX */
3034                         case 56:        /* plq */
3035                                 op->type = MKOP(LOAD, PREFIXED, 16);
3036                                 break;
3037                         case 57:        /* pld */
3038                                 op->type = MKOP(LOAD, PREFIXED, 8);
3039                                 break;
3040 #ifdef CONFIG_VSX
3041                         case 58:        /* plxvp */
3042                                 op->reg = VSX_REGISTER_XTP(rd);
3043                                 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3044                                 op->element_size = 32;
3045                                 break;
3046 #endif /* CONFIG_VSX */
3047                         case 60:        /* pstq */
3048                                 op->type = MKOP(STORE, PREFIXED, 16);
3049                                 break;
3050                         case 61:        /* pstd */
3051                                 op->type = MKOP(STORE, PREFIXED, 8);
3052                                 break;
3053 #ifdef CONFIG_VSX
3054                         case 62:        /* pstxvp */
3055                                 op->reg = VSX_REGISTER_XTP(rd);
3056                                 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3057                                 op->element_size = 32;
3058                                 break;
3059 #endif /* CONFIG_VSX */
3060                         }
3061                         break;
3062                 case 1: /* Type 01 Eight-Byte Register-to-Register */
3063                         break;
3064                 case 2: /* Type 10 Modified Load/Store */
3065                         if (prefix_r && ra)
3066                                 break;
3067                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
3068                         switch (suffixopcode) {
3069                         case 32:        /* plwz */
3070                                 op->type = MKOP(LOAD, PREFIXED, 4);
3071                                 break;
3072                         case 34:        /* plbz */
3073                                 op->type = MKOP(LOAD, PREFIXED, 1);
3074                                 break;
3075                         case 36:        /* pstw */
3076                                 op->type = MKOP(STORE, PREFIXED, 4);
3077                                 break;
3078                         case 38:        /* pstb */
3079                                 op->type = MKOP(STORE, PREFIXED, 1);
3080                                 break;
3081                         case 40:        /* plhz */
3082                                 op->type = MKOP(LOAD, PREFIXED, 2);
3083                                 break;
3084                         case 42:        /* plha */
3085                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3086                                 break;
3087                         case 44:        /* psth */
3088                                 op->type = MKOP(STORE, PREFIXED, 2);
3089                                 break;
3090                         case 48:        /* plfs */
3091                                 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3092                                 break;
3093                         case 50:        /* plfd */
3094                                 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3095                                 break;
3096                         case 52:        /* pstfs */
3097                                 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3098                                 break;
3099                         case 54:        /* pstfd */
3100                                 op->type = MKOP(STORE_FP, PREFIXED, 8);
3101                                 break;
3102                         }
3103                         break;
3104                 case 3: /* Type 11 Modified Register-to-Register */
3105                         break;
3106                 }
3107 #endif /* __powerpc64__ */
3108
3109         }
3110
3111         if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3112                 switch (GETTYPE(op->type)) {
3113                 case LOAD:
3114                         if (ra == rd)
3115                                 goto unknown_opcode;
3116                         fallthrough;
3117                 case STORE:
3118                 case LOAD_FP:
3119                 case STORE_FP:
3120                         if (ra == 0)
3121                                 goto unknown_opcode;
3122                 }
3123         }
3124
3125 #ifdef CONFIG_VSX
3126         if ((GETTYPE(op->type) == LOAD_VSX ||
3127              GETTYPE(op->type) == STORE_VSX) &&
3128             !cpu_has_feature(CPU_FTR_VSX)) {
3129                 return -1;
3130         }
3131 #endif /* CONFIG_VSX */
3132
3133         return 0;
3134
3135  unknown_opcode:
3136         op->type = UNKNOWN;
3137         return 0;
3138
3139  logical_done:
3140         if (word & 1)
3141                 set_cr0(regs, op);
3142  logical_done_nocc:
3143         op->reg = ra;
3144         op->type |= SETREG;
3145         return 1;
3146
3147  arith_done:
3148         if (word & 1)
3149                 set_cr0(regs, op);
3150  compute_done:
3151         op->reg = rd;
3152         op->type |= SETREG;
3153         return 1;
3154
3155  priv:
3156         op->type = INTERRUPT | 0x700;
3157         op->val = SRR1_PROGPRIV;
3158         return 0;
3159
3160  trap:
3161         op->type = INTERRUPT | 0x700;
3162         op->val = SRR1_PROGTRAP;
3163         return 0;
3164 }
3165 EXPORT_SYMBOL_GPL(analyse_instr);
3166 NOKPROBE_SYMBOL(analyse_instr);
3167
3168 /*
3169  * For PPC32 we always use stwu with r1 to change the stack pointer.
3170  * So this emulated store may corrupt the exception frame, now we
3171  * have to provide the exception frame trampoline, which is pushed
3172  * below the kprobed function stack. So we only update gpr[1] but
3173  * don't emulate the real store operation. We will do real store
3174  * operation safely in exception return code by checking this flag.
3175  */
3176 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3177 {
3178         /*
3179          * Check if we already set since that means we'll
3180          * lose the previous value.
3181          */
3182         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3183         set_thread_flag(TIF_EMULATE_STACK_STORE);
3184         return 0;
3185 }
3186
3187 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3188 {
3189         switch (size) {
3190         case 2:
3191                 *valp = (signed short) *valp;
3192                 break;
3193         case 4:
3194                 *valp = (signed int) *valp;
3195                 break;
3196         }
3197 }
3198
3199 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3200 {
3201         switch (size) {
3202         case 2:
3203                 *valp = byterev_2(*valp);
3204                 break;
3205         case 4:
3206                 *valp = byterev_4(*valp);
3207                 break;
3208 #ifdef __powerpc64__
3209         case 8:
3210                 *valp = byterev_8(*valp);
3211                 break;
3212 #endif
3213         }
3214 }
3215
3216 /*
3217  * Emulate an instruction that can be executed just by updating
3218  * fields in *regs.
3219  */
3220 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3221 {
3222         unsigned long next_pc;
3223
3224         next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3225         switch (GETTYPE(op->type)) {
3226         case COMPUTE:
3227                 if (op->type & SETREG)
3228                         regs->gpr[op->reg] = op->val;
3229                 if (op->type & SETCC)
3230                         regs->ccr = op->ccval;
3231                 if (op->type & SETXER)
3232                         regs->xer = op->xerval;
3233                 break;
3234
3235         case BRANCH:
3236                 if (op->type & SETLK)
3237                         regs->link = next_pc;
3238                 if (op->type & BRTAKEN)
3239                         next_pc = op->val;
3240                 if (op->type & DECCTR)
3241                         --regs->ctr;
3242                 break;
3243
3244         case BARRIER:
3245                 switch (op->type & BARRIER_MASK) {
3246                 case BARRIER_SYNC:
3247                         mb();
3248                         break;
3249                 case BARRIER_ISYNC:
3250                         isync();
3251                         break;
3252                 case BARRIER_EIEIO:
3253                         eieio();
3254                         break;
3255 #ifdef CONFIG_PPC64
3256                 case BARRIER_LWSYNC:
3257                         asm volatile("lwsync" : : : "memory");
3258                         break;
3259                 case BARRIER_PTESYNC:
3260                         asm volatile("ptesync" : : : "memory");
3261                         break;
3262 #endif
3263                 }
3264                 break;
3265
3266         case MFSPR:
3267                 switch (op->spr) {
3268                 case SPRN_XER:
3269                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3270                         break;
3271                 case SPRN_LR:
3272                         regs->gpr[op->reg] = regs->link;
3273                         break;
3274                 case SPRN_CTR:
3275                         regs->gpr[op->reg] = regs->ctr;
3276                         break;
3277                 default:
3278                         WARN_ON_ONCE(1);
3279                 }
3280                 break;
3281
3282         case MTSPR:
3283                 switch (op->spr) {
3284                 case SPRN_XER:
3285                         regs->xer = op->val & 0xffffffffUL;
3286                         break;
3287                 case SPRN_LR:
3288                         regs->link = op->val;
3289                         break;
3290                 case SPRN_CTR:
3291                         regs->ctr = op->val;
3292                         break;
3293                 default:
3294                         WARN_ON_ONCE(1);
3295                 }
3296                 break;
3297
3298         default:
3299                 WARN_ON_ONCE(1);
3300         }
3301         regs_set_return_ip(regs, next_pc);
3302 }
3303 NOKPROBE_SYMBOL(emulate_update_regs);
3304
3305 /*
3306  * Emulate a previously-analysed load or store instruction.
3307  * Return values are:
3308  * 0 = instruction emulated successfully
3309  * -EFAULT = address out of range or access faulted (regs->dar
3310  *           contains the faulting address)
3311  * -EACCES = misaligned access, instruction requires alignment
3312  * -EINVAL = unknown operation in *op
3313  */
3314 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3315 {
3316         int err, size, type;
3317         int i, rd, nb;
3318         unsigned int cr;
3319         unsigned long val;
3320         unsigned long ea;
3321         bool cross_endian;
3322
3323         err = 0;
3324         size = GETSIZE(op->type);
3325         type = GETTYPE(op->type);
3326         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3327         ea = truncate_if_32bit(regs->msr, op->ea);
3328
3329         switch (type) {
3330         case LARX:
3331                 if (ea & (size - 1))
3332                         return -EACCES;         /* can't handle misaligned */
3333                 if (!address_ok(regs, ea, size))
3334                         return -EFAULT;
3335                 err = 0;
3336                 val = 0;
3337                 switch (size) {
3338 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
3339                 case 1:
3340                         __get_user_asmx(val, ea, err, "lbarx");
3341                         break;
3342                 case 2:
3343                         __get_user_asmx(val, ea, err, "lharx");
3344                         break;
3345 #endif
3346                 case 4:
3347                         __get_user_asmx(val, ea, err, "lwarx");
3348                         break;
3349 #ifdef __powerpc64__
3350                 case 8:
3351                         __get_user_asmx(val, ea, err, "ldarx");
3352                         break;
3353                 case 16:
3354                         err = do_lqarx(ea, &regs->gpr[op->reg]);
3355                         break;
3356 #endif
3357                 default:
3358                         return -EINVAL;
3359                 }
3360                 if (err) {
3361                         regs->dar = ea;
3362                         break;
3363                 }
3364                 if (size < 16)
3365                         regs->gpr[op->reg] = val;
3366                 break;
3367
3368         case STCX:
3369                 if (ea & (size - 1))
3370                         return -EACCES;         /* can't handle misaligned */
3371                 if (!address_ok(regs, ea, size))
3372                         return -EFAULT;
3373                 err = 0;
3374                 switch (size) {
3375 #ifdef __powerpc64__
3376                 case 1:
3377                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3378                         break;
3379                 case 2:
3380                         __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3381                         break;
3382 #endif
3383                 case 4:
3384                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3385                         break;
3386 #ifdef __powerpc64__
3387                 case 8:
3388                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3389                         break;
3390                 case 16:
3391                         err = do_stqcx(ea, regs->gpr[op->reg],
3392                                        regs->gpr[op->reg + 1], &cr);
3393                         break;
3394 #endif
3395                 default:
3396                         return -EINVAL;
3397                 }
3398                 if (!err)
3399                         regs->ccr = (regs->ccr & 0x0fffffff) |
3400                                 (cr & 0xe0000000) |
3401                                 ((regs->xer >> 3) & 0x10000000);
3402                 else
3403                         regs->dar = ea;
3404                 break;
3405
3406         case LOAD:
3407 #ifdef __powerpc64__
3408                 if (size == 16) {
3409                         err = emulate_lq(regs, ea, op->reg, cross_endian);
3410                         break;
3411                 }
3412 #endif
3413                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3414                 if (!err) {
3415                         if (op->type & SIGNEXT)
3416                                 do_signext(&regs->gpr[op->reg], size);
3417                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3418                                 do_byterev(&regs->gpr[op->reg], size);
3419                 }
3420                 break;
3421
3422 #ifdef CONFIG_PPC_FPU
3423         case LOAD_FP:
3424                 /*
3425                  * If the instruction is in userspace, we can emulate it even
3426                  * if the VMX state is not live, because we have the state
3427                  * stored in the thread_struct.  If the instruction is in
3428                  * the kernel, we must not touch the state in the thread_struct.
3429                  */
3430                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3431                         return 0;
3432                 err = do_fp_load(op, ea, regs, cross_endian);
3433                 break;
3434 #endif
3435 #ifdef CONFIG_ALTIVEC
3436         case LOAD_VMX:
3437                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3438                         return 0;
3439                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3440                 break;
3441 #endif
3442 #ifdef CONFIG_VSX
3443         case LOAD_VSX: {
3444                 unsigned long msrbit = MSR_VSX;
3445
3446                 /*
3447                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3448                  * when the target of the instruction is a vector register.
3449                  */
3450                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3451                         msrbit = MSR_VEC;
3452                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3453                         return 0;
3454                 err = do_vsx_load(op, ea, regs, cross_endian);
3455                 break;
3456         }
3457 #endif
3458         case LOAD_MULTI:
3459                 if (!address_ok(regs, ea, size))
3460                         return -EFAULT;
3461                 rd = op->reg;
3462                 for (i = 0; i < size; i += 4) {
3463                         unsigned int v32 = 0;
3464
3465                         nb = size - i;
3466                         if (nb > 4)
3467                                 nb = 4;
3468                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3469                         if (err)
3470                                 break;
3471                         if (unlikely(cross_endian))
3472                                 v32 = byterev_4(v32);
3473                         regs->gpr[rd] = v32;
3474                         ea += 4;
3475                         /* reg number wraps from 31 to 0 for lsw[ix] */
3476                         rd = (rd + 1) & 0x1f;
3477                 }
3478                 break;
3479
3480         case STORE:
3481 #ifdef __powerpc64__
3482                 if (size == 16) {
3483                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3484                         break;
3485                 }
3486 #endif
3487                 if ((op->type & UPDATE) && size == sizeof(long) &&
3488                     op->reg == 1 && op->update_reg == 1 &&
3489                     !(regs->msr & MSR_PR) &&
3490                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3491                         err = handle_stack_update(ea, regs);
3492                         break;
3493                 }
3494                 if (unlikely(cross_endian))
3495                         do_byterev(&op->val, size);
3496                 err = write_mem(op->val, ea, size, regs);
3497                 break;
3498
3499 #ifdef CONFIG_PPC_FPU
3500         case STORE_FP:
3501                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3502                         return 0;
3503                 err = do_fp_store(op, ea, regs, cross_endian);
3504                 break;
3505 #endif
3506 #ifdef CONFIG_ALTIVEC
3507         case STORE_VMX:
3508                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3509                         return 0;
3510                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3511                 break;
3512 #endif
3513 #ifdef CONFIG_VSX
3514         case STORE_VSX: {
3515                 unsigned long msrbit = MSR_VSX;
3516
3517                 /*
3518                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3519                  * when the target of the instruction is a vector register.
3520                  */
3521                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3522                         msrbit = MSR_VEC;
3523                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3524                         return 0;
3525                 err = do_vsx_store(op, ea, regs, cross_endian);
3526                 break;
3527         }
3528 #endif
3529         case STORE_MULTI:
3530                 if (!address_ok(regs, ea, size))
3531                         return -EFAULT;
3532                 rd = op->reg;
3533                 for (i = 0; i < size; i += 4) {
3534                         unsigned int v32 = regs->gpr[rd];
3535
3536                         nb = size - i;
3537                         if (nb > 4)
3538                                 nb = 4;
3539                         if (unlikely(cross_endian))
3540                                 v32 = byterev_4(v32);
3541                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3542                         if (err)
3543                                 break;
3544                         ea += 4;
3545                         /* reg number wraps from 31 to 0 for stsw[ix] */
3546                         rd = (rd + 1) & 0x1f;
3547                 }
3548                 break;
3549
3550         default:
3551                 return -EINVAL;
3552         }
3553
3554         if (err)
3555                 return err;
3556
3557         if (op->type & UPDATE)
3558                 regs->gpr[op->update_reg] = op->ea;
3559
3560         return 0;
3561 }
3562 NOKPROBE_SYMBOL(emulate_loadstore);
3563
3564 /*
3565  * Emulate instructions that cause a transfer of control,
3566  * loads and stores, and a few other instructions.
3567  * Returns 1 if the step was emulated, 0 if not,
3568  * or -1 if the instruction is one that should not be stepped,
3569  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3570  */
3571 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3572 {
3573         struct instruction_op op;
3574         int r, err, type;
3575         unsigned long val;
3576         unsigned long ea;
3577
3578         r = analyse_instr(&op, regs, instr);
3579         if (r < 0)
3580                 return r;
3581         if (r > 0) {
3582                 emulate_update_regs(regs, &op);
3583                 return 1;
3584         }
3585
3586         err = 0;
3587         type = GETTYPE(op.type);
3588
3589         if (OP_IS_LOAD_STORE(type)) {
3590                 err = emulate_loadstore(regs, &op);
3591                 if (err)
3592                         return 0;
3593                 goto instr_done;
3594         }
3595
3596         switch (type) {
3597         case CACHEOP:
3598                 ea = truncate_if_32bit(regs->msr, op.ea);
3599                 if (!address_ok(regs, ea, 8))
3600                         return 0;
3601                 switch (op.type & CACHEOP_MASK) {
3602                 case DCBST:
3603                         __cacheop_user_asmx(ea, err, "dcbst");
3604                         break;
3605                 case DCBF:
3606                         __cacheop_user_asmx(ea, err, "dcbf");
3607                         break;
3608                 case DCBTST:
3609                         if (op.reg == 0)
3610                                 prefetchw((void *) ea);
3611                         break;
3612                 case DCBT:
3613                         if (op.reg == 0)
3614                                 prefetch((void *) ea);
3615                         break;
3616                 case ICBI:
3617                         __cacheop_user_asmx(ea, err, "icbi");
3618                         break;
3619                 case DCBZ:
3620                         err = emulate_dcbz(ea, regs);
3621                         break;
3622                 }
3623                 if (err) {
3624                         regs->dar = ea;
3625                         return 0;
3626                 }
3627                 goto instr_done;
3628
3629         case MFMSR:
3630                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3631                 goto instr_done;
3632
3633         case MTMSR:
3634                 val = regs->gpr[op.reg];
3635                 if ((val & MSR_RI) == 0)
3636                         /* can't step mtmsr[d] that would clear MSR_RI */
3637                         return -1;
3638                 /* here op.val is the mask of bits to change */
3639                 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3640                 goto instr_done;
3641
3642         case SYSCALL:   /* sc */
3643                 /*
3644                  * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3645                  * single step a system call instruction:
3646                  *
3647                  *   Successful completion for an instruction means that the
3648                  *   instruction caused no other interrupt. Thus a Trace
3649                  *   interrupt never occurs for a System Call or System Call
3650                  *   Vectored instruction, or for a Trap instruction that
3651                  *   traps.
3652                  */
3653                 return -1;
3654         case SYSCALL_VECTORED_0:        /* scv 0 */
3655                 return -1;
3656         case RFI:
3657                 return -1;
3658         }
3659         return 0;
3660
3661  instr_done:
3662         regs_set_return_ip(regs,
3663                 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3664         return 1;
3665 }
3666 NOKPROBE_SYMBOL(emulate_step);