GNU Linux-libre 6.5.10-gnu
[releases.git] / arch / powerpc / lib / qspinlock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #include <linux/bug.h>
3 #include <linux/compiler.h>
4 #include <linux/export.h>
5 #include <linux/percpu.h>
6 #include <linux/processor.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/sched/clock.h>
10 #include <asm/qspinlock.h>
11 #include <asm/paravirt.h>
12
13 #define MAX_NODES       4
14
15 struct qnode {
16         struct qnode    *next;
17         struct qspinlock *lock;
18         int             cpu;
19         int             yield_cpu;
20         u8              locked; /* 1 if lock acquired */
21 };
22
23 struct qnodes {
24         int             count;
25         struct qnode nodes[MAX_NODES];
26 };
27
28 /* Tuning parameters */
29 static int steal_spins __read_mostly = (1 << 5);
30 static int remote_steal_spins __read_mostly = (1 << 2);
31 #if _Q_SPIN_TRY_LOCK_STEAL == 1
32 static const bool maybe_stealers = true;
33 #else
34 static bool maybe_stealers __read_mostly = true;
35 #endif
36 static int head_spins __read_mostly = (1 << 8);
37
38 static bool pv_yield_owner __read_mostly = true;
39 static bool pv_yield_allow_steal __read_mostly = false;
40 static bool pv_spin_on_preempted_owner __read_mostly = false;
41 static bool pv_sleepy_lock __read_mostly = true;
42 static bool pv_sleepy_lock_sticky __read_mostly = false;
43 static u64 pv_sleepy_lock_interval_ns __read_mostly = 0;
44 static int pv_sleepy_lock_factor __read_mostly = 256;
45 static bool pv_yield_prev __read_mostly = true;
46 static bool pv_yield_propagate_owner __read_mostly = true;
47 static bool pv_prod_head __read_mostly = false;
48
49 static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes);
50 static DEFINE_PER_CPU_ALIGNED(u64, sleepy_lock_seen_clock);
51
52 #if _Q_SPIN_SPEC_BARRIER == 1
53 #define spec_barrier() do { asm volatile("ori 31,31,0" ::: "memory"); } while (0)
54 #else
55 #define spec_barrier() do { } while (0)
56 #endif
57
58 static __always_inline bool recently_sleepy(void)
59 {
60         /* pv_sleepy_lock is true when this is called */
61         if (pv_sleepy_lock_interval_ns) {
62                 u64 seen = this_cpu_read(sleepy_lock_seen_clock);
63
64                 if (seen) {
65                         u64 delta = sched_clock() - seen;
66                         if (delta < pv_sleepy_lock_interval_ns)
67                                 return true;
68                         this_cpu_write(sleepy_lock_seen_clock, 0);
69                 }
70         }
71
72         return false;
73 }
74
75 static __always_inline int get_steal_spins(bool paravirt, bool sleepy)
76 {
77         if (paravirt && sleepy)
78                 return steal_spins * pv_sleepy_lock_factor;
79         else
80                 return steal_spins;
81 }
82
83 static __always_inline int get_remote_steal_spins(bool paravirt, bool sleepy)
84 {
85         if (paravirt && sleepy)
86                 return remote_steal_spins * pv_sleepy_lock_factor;
87         else
88                 return remote_steal_spins;
89 }
90
91 static __always_inline int get_head_spins(bool paravirt, bool sleepy)
92 {
93         if (paravirt && sleepy)
94                 return head_spins * pv_sleepy_lock_factor;
95         else
96                 return head_spins;
97 }
98
99 static inline u32 encode_tail_cpu(int cpu)
100 {
101         return (cpu + 1) << _Q_TAIL_CPU_OFFSET;
102 }
103
104 static inline int decode_tail_cpu(u32 val)
105 {
106         return (val >> _Q_TAIL_CPU_OFFSET) - 1;
107 }
108
109 static inline int get_owner_cpu(u32 val)
110 {
111         return (val & _Q_OWNER_CPU_MASK) >> _Q_OWNER_CPU_OFFSET;
112 }
113
114 /*
115  * Try to acquire the lock if it was not already locked. If the tail matches
116  * mytail then clear it, otherwise leave it unchnaged. Return previous value.
117  *
118  * This is used by the head of the queue to acquire the lock and clean up
119  * its tail if it was the last one queued.
120  */
121 static __always_inline u32 trylock_clean_tail(struct qspinlock *lock, u32 tail)
122 {
123         u32 newval = queued_spin_encode_locked_val();
124         u32 prev, tmp;
125
126         asm volatile(
127 "1:     lwarx   %0,0,%2,%7      # trylock_clean_tail                    \n"
128         /* This test is necessary if there could be stealers */
129 "       andi.   %1,%0,%5                                                \n"
130 "       bne     3f                                                      \n"
131         /* Test whether the lock tail == mytail */
132 "       and     %1,%0,%6                                                \n"
133 "       cmpw    0,%1,%3                                                 \n"
134         /* Merge the new locked value */
135 "       or      %1,%1,%4                                                \n"
136 "       bne     2f                                                      \n"
137         /* If the lock tail matched, then clear it, otherwise leave it. */
138 "       andc    %1,%1,%6                                                \n"
139 "2:     stwcx.  %1,0,%2                                                 \n"
140 "       bne-    1b                                                      \n"
141 "\t"    PPC_ACQUIRE_BARRIER "                                           \n"
142 "3:                                                                     \n"
143         : "=&r" (prev), "=&r" (tmp)
144         : "r" (&lock->val), "r"(tail), "r" (newval),
145           "i" (_Q_LOCKED_VAL),
146           "r" (_Q_TAIL_CPU_MASK),
147           "i" (_Q_SPIN_EH_HINT)
148         : "cr0", "memory");
149
150         return prev;
151 }
152
153 /*
154  * Publish our tail, replacing previous tail. Return previous value.
155  *
156  * This provides a release barrier for publishing node, this pairs with the
157  * acquire barrier in get_tail_qnode() when the next CPU finds this tail
158  * value.
159  */
160 static __always_inline u32 publish_tail_cpu(struct qspinlock *lock, u32 tail)
161 {
162         u32 prev, tmp;
163
164         kcsan_release();
165
166         asm volatile(
167 "\t"    PPC_RELEASE_BARRIER "                                           \n"
168 "1:     lwarx   %0,0,%2         # publish_tail_cpu                      \n"
169 "       andc    %1,%0,%4                                                \n"
170 "       or      %1,%1,%3                                                \n"
171 "       stwcx.  %1,0,%2                                                 \n"
172 "       bne-    1b                                                      \n"
173         : "=&r" (prev), "=&r"(tmp)
174         : "r" (&lock->val), "r" (tail), "r"(_Q_TAIL_CPU_MASK)
175         : "cr0", "memory");
176
177         return prev;
178 }
179
180 static __always_inline u32 set_mustq(struct qspinlock *lock)
181 {
182         u32 prev;
183
184         asm volatile(
185 "1:     lwarx   %0,0,%1         # set_mustq                             \n"
186 "       or      %0,%0,%2                                                \n"
187 "       stwcx.  %0,0,%1                                                 \n"
188 "       bne-    1b                                                      \n"
189         : "=&r" (prev)
190         : "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
191         : "cr0", "memory");
192
193         return prev;
194 }
195
196 static __always_inline u32 clear_mustq(struct qspinlock *lock)
197 {
198         u32 prev;
199
200         asm volatile(
201 "1:     lwarx   %0,0,%1         # clear_mustq                           \n"
202 "       andc    %0,%0,%2                                                \n"
203 "       stwcx.  %0,0,%1                                                 \n"
204 "       bne-    1b                                                      \n"
205         : "=&r" (prev)
206         : "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
207         : "cr0", "memory");
208
209         return prev;
210 }
211
212 static __always_inline bool try_set_sleepy(struct qspinlock *lock, u32 old)
213 {
214         u32 prev;
215         u32 new = old | _Q_SLEEPY_VAL;
216
217         BUG_ON(!(old & _Q_LOCKED_VAL));
218         BUG_ON(old & _Q_SLEEPY_VAL);
219
220         asm volatile(
221 "1:     lwarx   %0,0,%1         # try_set_sleepy                        \n"
222 "       cmpw    0,%0,%2                                                 \n"
223 "       bne-    2f                                                      \n"
224 "       stwcx.  %3,0,%1                                                 \n"
225 "       bne-    1b                                                      \n"
226 "2:                                                                     \n"
227         : "=&r" (prev)
228         : "r" (&lock->val), "r"(old), "r" (new)
229         : "cr0", "memory");
230
231         return likely(prev == old);
232 }
233
234 static __always_inline void seen_sleepy_owner(struct qspinlock *lock, u32 val)
235 {
236         if (pv_sleepy_lock) {
237                 if (pv_sleepy_lock_interval_ns)
238                         this_cpu_write(sleepy_lock_seen_clock, sched_clock());
239                 if (!(val & _Q_SLEEPY_VAL))
240                         try_set_sleepy(lock, val);
241         }
242 }
243
244 static __always_inline void seen_sleepy_lock(void)
245 {
246         if (pv_sleepy_lock && pv_sleepy_lock_interval_ns)
247                 this_cpu_write(sleepy_lock_seen_clock, sched_clock());
248 }
249
250 static __always_inline void seen_sleepy_node(struct qspinlock *lock, u32 val)
251 {
252         if (pv_sleepy_lock) {
253                 if (pv_sleepy_lock_interval_ns)
254                         this_cpu_write(sleepy_lock_seen_clock, sched_clock());
255                 if (val & _Q_LOCKED_VAL) {
256                         if (!(val & _Q_SLEEPY_VAL))
257                                 try_set_sleepy(lock, val);
258                 }
259         }
260 }
261
262 static struct qnode *get_tail_qnode(struct qspinlock *lock, u32 val)
263 {
264         int cpu = decode_tail_cpu(val);
265         struct qnodes *qnodesp = per_cpu_ptr(&qnodes, cpu);
266         int idx;
267
268         /*
269          * After publishing the new tail and finding a previous tail in the
270          * previous val (which is the control dependency), this barrier
271          * orders the release barrier in publish_tail_cpu performed by the
272          * last CPU, with subsequently looking at its qnode structures
273          * after the barrier.
274          */
275         smp_acquire__after_ctrl_dep();
276
277         for (idx = 0; idx < MAX_NODES; idx++) {
278                 struct qnode *qnode = &qnodesp->nodes[idx];
279                 if (qnode->lock == lock)
280                         return qnode;
281         }
282
283         BUG();
284 }
285
286 /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
287 static __always_inline bool __yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt, bool mustq)
288 {
289         int owner;
290         u32 yield_count;
291         bool preempted = false;
292
293         BUG_ON(!(val & _Q_LOCKED_VAL));
294
295         if (!paravirt)
296                 goto relax;
297
298         if (!pv_yield_owner)
299                 goto relax;
300
301         owner = get_owner_cpu(val);
302         yield_count = yield_count_of(owner);
303
304         if ((yield_count & 1) == 0)
305                 goto relax; /* owner vcpu is running */
306
307         spin_end();
308
309         seen_sleepy_owner(lock, val);
310         preempted = true;
311
312         /*
313          * Read the lock word after sampling the yield count. On the other side
314          * there may a wmb because the yield count update is done by the
315          * hypervisor preemption and the value update by the OS, however this
316          * ordering might reduce the chance of out of order accesses and
317          * improve the heuristic.
318          */
319         smp_rmb();
320
321         if (READ_ONCE(lock->val) == val) {
322                 if (mustq)
323                         clear_mustq(lock);
324                 yield_to_preempted(owner, yield_count);
325                 if (mustq)
326                         set_mustq(lock);
327                 spin_begin();
328
329                 /* Don't relax if we yielded. Maybe we should? */
330                 return preempted;
331         }
332         spin_begin();
333 relax:
334         spin_cpu_relax();
335
336         return preempted;
337 }
338
339 /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
340 static __always_inline bool yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
341 {
342         return __yield_to_locked_owner(lock, val, paravirt, false);
343 }
344
345 /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
346 static __always_inline bool yield_head_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
347 {
348         bool mustq = false;
349
350         if ((val & _Q_MUST_Q_VAL) && pv_yield_allow_steal)
351                 mustq = true;
352
353         return __yield_to_locked_owner(lock, val, paravirt, mustq);
354 }
355
356 static __always_inline void propagate_yield_cpu(struct qnode *node, u32 val, int *set_yield_cpu, bool paravirt)
357 {
358         struct qnode *next;
359         int owner;
360
361         if (!paravirt)
362                 return;
363         if (!pv_yield_propagate_owner)
364                 return;
365
366         owner = get_owner_cpu(val);
367         if (*set_yield_cpu == owner)
368                 return;
369
370         next = READ_ONCE(node->next);
371         if (!next)
372                 return;
373
374         if (vcpu_is_preempted(owner)) {
375                 next->yield_cpu = owner;
376                 *set_yield_cpu = owner;
377         } else if (*set_yield_cpu != -1) {
378                 next->yield_cpu = owner;
379                 *set_yield_cpu = owner;
380         }
381 }
382
383 /* Called inside spin_begin() */
384 static __always_inline bool yield_to_prev(struct qspinlock *lock, struct qnode *node, u32 val, bool paravirt)
385 {
386         int prev_cpu = decode_tail_cpu(val);
387         u32 yield_count;
388         int yield_cpu;
389         bool preempted = false;
390
391         if (!paravirt)
392                 goto relax;
393
394         if (!pv_yield_propagate_owner)
395                 goto yield_prev;
396
397         yield_cpu = READ_ONCE(node->yield_cpu);
398         if (yield_cpu == -1) {
399                 /* Propagate back the -1 CPU */
400                 if (node->next && node->next->yield_cpu != -1)
401                         node->next->yield_cpu = yield_cpu;
402                 goto yield_prev;
403         }
404
405         yield_count = yield_count_of(yield_cpu);
406         if ((yield_count & 1) == 0)
407                 goto yield_prev; /* owner vcpu is running */
408
409         if (get_owner_cpu(READ_ONCE(lock->val)) != yield_cpu)
410                 goto yield_prev; /* re-sample lock owner */
411
412         spin_end();
413
414         preempted = true;
415         seen_sleepy_node(lock, val);
416
417         smp_rmb();
418
419         if (yield_cpu == node->yield_cpu) {
420                 if (node->next && node->next->yield_cpu != yield_cpu)
421                         node->next->yield_cpu = yield_cpu;
422                 yield_to_preempted(yield_cpu, yield_count);
423                 spin_begin();
424                 return preempted;
425         }
426         spin_begin();
427
428 yield_prev:
429         if (!pv_yield_prev)
430                 goto relax;
431
432         yield_count = yield_count_of(prev_cpu);
433         if ((yield_count & 1) == 0)
434                 goto relax; /* owner vcpu is running */
435
436         spin_end();
437
438         preempted = true;
439         seen_sleepy_node(lock, val);
440
441         smp_rmb(); /* See __yield_to_locked_owner comment */
442
443         if (!READ_ONCE(node->locked)) {
444                 yield_to_preempted(prev_cpu, yield_count);
445                 spin_begin();
446                 return preempted;
447         }
448         spin_begin();
449
450 relax:
451         spin_cpu_relax();
452
453         return preempted;
454 }
455
456 static __always_inline bool steal_break(u32 val, int iters, bool paravirt, bool sleepy)
457 {
458         if (iters >= get_steal_spins(paravirt, sleepy))
459                 return true;
460
461         if (IS_ENABLED(CONFIG_NUMA) &&
462             (iters >= get_remote_steal_spins(paravirt, sleepy))) {
463                 int cpu = get_owner_cpu(val);
464                 if (numa_node_id() != cpu_to_node(cpu))
465                         return true;
466         }
467         return false;
468 }
469
470 static __always_inline bool try_to_steal_lock(struct qspinlock *lock, bool paravirt)
471 {
472         bool seen_preempted = false;
473         bool sleepy = false;
474         int iters = 0;
475         u32 val;
476
477         if (!steal_spins) {
478                 /* XXX: should spin_on_preempted_owner do anything here? */
479                 return false;
480         }
481
482         /* Attempt to steal the lock */
483         spin_begin();
484         do {
485                 bool preempted = false;
486
487                 val = READ_ONCE(lock->val);
488                 if (val & _Q_MUST_Q_VAL)
489                         break;
490                 spec_barrier();
491
492                 if (unlikely(!(val & _Q_LOCKED_VAL))) {
493                         spin_end();
494                         if (__queued_spin_trylock_steal(lock))
495                                 return true;
496                         spin_begin();
497                 } else {
498                         preempted = yield_to_locked_owner(lock, val, paravirt);
499                 }
500
501                 if (paravirt && pv_sleepy_lock) {
502                         if (!sleepy) {
503                                 if (val & _Q_SLEEPY_VAL) {
504                                         seen_sleepy_lock();
505                                         sleepy = true;
506                                 } else if (recently_sleepy()) {
507                                         sleepy = true;
508                                 }
509                         }
510                         if (pv_sleepy_lock_sticky && seen_preempted &&
511                             !(val & _Q_SLEEPY_VAL)) {
512                                 if (try_set_sleepy(lock, val))
513                                         val |= _Q_SLEEPY_VAL;
514                         }
515                 }
516
517                 if (preempted) {
518                         seen_preempted = true;
519                         sleepy = true;
520                         if (!pv_spin_on_preempted_owner)
521                                 iters++;
522                         /*
523                          * pv_spin_on_preempted_owner don't increase iters
524                          * while the owner is preempted -- we won't interfere
525                          * with it by definition. This could introduce some
526                          * latency issue if we continually observe preempted
527                          * owners, but hopefully that's a rare corner case of
528                          * a badly oversubscribed system.
529                          */
530                 } else {
531                         iters++;
532                 }
533         } while (!steal_break(val, iters, paravirt, sleepy));
534
535         spin_end();
536
537         return false;
538 }
539
540 static __always_inline void queued_spin_lock_mcs_queue(struct qspinlock *lock, bool paravirt)
541 {
542         struct qnodes *qnodesp;
543         struct qnode *next, *node;
544         u32 val, old, tail;
545         bool seen_preempted = false;
546         bool sleepy = false;
547         bool mustq = false;
548         int idx;
549         int set_yield_cpu = -1;
550         int iters = 0;
551
552         BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
553
554         qnodesp = this_cpu_ptr(&qnodes);
555         if (unlikely(qnodesp->count >= MAX_NODES)) {
556                 spec_barrier();
557                 while (!queued_spin_trylock(lock))
558                         cpu_relax();
559                 return;
560         }
561
562         idx = qnodesp->count++;
563         /*
564          * Ensure that we increment the head node->count before initialising
565          * the actual node. If the compiler is kind enough to reorder these
566          * stores, then an IRQ could overwrite our assignments.
567          */
568         barrier();
569         node = &qnodesp->nodes[idx];
570         node->next = NULL;
571         node->lock = lock;
572         node->cpu = smp_processor_id();
573         node->yield_cpu = -1;
574         node->locked = 0;
575
576         tail = encode_tail_cpu(node->cpu);
577
578         /*
579          * Assign all attributes of a node before it can be published.
580          * Issues an lwsync, serving as a release barrier, as well as a
581          * compiler barrier.
582          */
583         old = publish_tail_cpu(lock, tail);
584
585         /*
586          * If there was a previous node; link it and wait until reaching the
587          * head of the waitqueue.
588          */
589         if (old & _Q_TAIL_CPU_MASK) {
590                 struct qnode *prev = get_tail_qnode(lock, old);
591
592                 /* Link @node into the waitqueue. */
593                 WRITE_ONCE(prev->next, node);
594
595                 /* Wait for mcs node lock to be released */
596                 spin_begin();
597                 while (!READ_ONCE(node->locked)) {
598                         spec_barrier();
599
600                         if (yield_to_prev(lock, node, old, paravirt))
601                                 seen_preempted = true;
602                 }
603                 spec_barrier();
604                 spin_end();
605
606                 /* Clear out stale propagated yield_cpu */
607                 if (paravirt && pv_yield_propagate_owner && node->yield_cpu != -1)
608                         node->yield_cpu = -1;
609
610                 smp_rmb(); /* acquire barrier for the mcs lock */
611
612                 /*
613                  * Generic qspinlocks have this prefetch here, but it seems
614                  * like it could cause additional line transitions because
615                  * the waiter will keep loading from it.
616                  */
617                 if (_Q_SPIN_PREFETCH_NEXT) {
618                         next = READ_ONCE(node->next);
619                         if (next)
620                                 prefetchw(next);
621                 }
622         }
623
624         /* We're at the head of the waitqueue, wait for the lock. */
625 again:
626         spin_begin();
627         for (;;) {
628                 bool preempted;
629
630                 val = READ_ONCE(lock->val);
631                 if (!(val & _Q_LOCKED_VAL))
632                         break;
633                 spec_barrier();
634
635                 if (paravirt && pv_sleepy_lock && maybe_stealers) {
636                         if (!sleepy) {
637                                 if (val & _Q_SLEEPY_VAL) {
638                                         seen_sleepy_lock();
639                                         sleepy = true;
640                                 } else if (recently_sleepy()) {
641                                         sleepy = true;
642                                 }
643                         }
644                         if (pv_sleepy_lock_sticky && seen_preempted &&
645                             !(val & _Q_SLEEPY_VAL)) {
646                                 if (try_set_sleepy(lock, val))
647                                         val |= _Q_SLEEPY_VAL;
648                         }
649                 }
650
651                 propagate_yield_cpu(node, val, &set_yield_cpu, paravirt);
652                 preempted = yield_head_to_locked_owner(lock, val, paravirt);
653                 if (!maybe_stealers)
654                         continue;
655
656                 if (preempted)
657                         seen_preempted = true;
658
659                 if (paravirt && preempted) {
660                         sleepy = true;
661
662                         if (!pv_spin_on_preempted_owner)
663                                 iters++;
664                 } else {
665                         iters++;
666                 }
667
668                 if (!mustq && iters >= get_head_spins(paravirt, sleepy)) {
669                         mustq = true;
670                         set_mustq(lock);
671                         val |= _Q_MUST_Q_VAL;
672                 }
673         }
674         spec_barrier();
675         spin_end();
676
677         /* If we're the last queued, must clean up the tail. */
678         old = trylock_clean_tail(lock, tail);
679         if (unlikely(old & _Q_LOCKED_VAL)) {
680                 BUG_ON(!maybe_stealers);
681                 goto again; /* Can only be true if maybe_stealers. */
682         }
683
684         if ((old & _Q_TAIL_CPU_MASK) == tail)
685                 goto release; /* We were the tail, no next. */
686
687         /* There is a next, must wait for node->next != NULL (MCS protocol) */
688         next = READ_ONCE(node->next);
689         if (!next) {
690                 spin_begin();
691                 while (!(next = READ_ONCE(node->next)))
692                         cpu_relax();
693                 spin_end();
694         }
695         spec_barrier();
696
697         /*
698          * Unlock the next mcs waiter node. Release barrier is not required
699          * here because the acquirer is only accessing the lock word, and
700          * the acquire barrier we took the lock with orders that update vs
701          * this store to locked. The corresponding barrier is the smp_rmb()
702          * acquire barrier for mcs lock, above.
703          */
704         if (paravirt && pv_prod_head) {
705                 int next_cpu = next->cpu;
706                 WRITE_ONCE(next->locked, 1);
707                 if (_Q_SPIN_MISO)
708                         asm volatile("miso" ::: "memory");
709                 if (vcpu_is_preempted(next_cpu))
710                         prod_cpu(next_cpu);
711         } else {
712                 WRITE_ONCE(next->locked, 1);
713                 if (_Q_SPIN_MISO)
714                         asm volatile("miso" ::: "memory");
715         }
716
717 release:
718         qnodesp->count--; /* release the node */
719 }
720
721 void queued_spin_lock_slowpath(struct qspinlock *lock)
722 {
723         /*
724          * This looks funny, but it induces the compiler to inline both
725          * sides of the branch rather than share code as when the condition
726          * is passed as the paravirt argument to the functions.
727          */
728         if (IS_ENABLED(CONFIG_PARAVIRT_SPINLOCKS) && is_shared_processor()) {
729                 if (try_to_steal_lock(lock, true)) {
730                         spec_barrier();
731                         return;
732                 }
733                 queued_spin_lock_mcs_queue(lock, true);
734         } else {
735                 if (try_to_steal_lock(lock, false)) {
736                         spec_barrier();
737                         return;
738                 }
739                 queued_spin_lock_mcs_queue(lock, false);
740         }
741 }
742 EXPORT_SYMBOL(queued_spin_lock_slowpath);
743
744 #ifdef CONFIG_PARAVIRT_SPINLOCKS
745 void pv_spinlocks_init(void)
746 {
747 }
748 #endif
749
750 #include <linux/debugfs.h>
751 static int steal_spins_set(void *data, u64 val)
752 {
753 #if _Q_SPIN_TRY_LOCK_STEAL == 1
754         /* MAYBE_STEAL remains true */
755         steal_spins = val;
756 #else
757         static DEFINE_MUTEX(lock);
758
759         /*
760          * The lock slow path has a !maybe_stealers case that can assume
761          * the head of queue will not see concurrent waiters. That waiter
762          * is unsafe in the presence of stealers, so must keep them away
763          * from one another.
764          */
765
766         mutex_lock(&lock);
767         if (val && !steal_spins) {
768                 maybe_stealers = true;
769                 /* wait for queue head waiter to go away */
770                 synchronize_rcu();
771                 steal_spins = val;
772         } else if (!val && steal_spins) {
773                 steal_spins = val;
774                 /* wait for all possible stealers to go away */
775                 synchronize_rcu();
776                 maybe_stealers = false;
777         } else {
778                 steal_spins = val;
779         }
780         mutex_unlock(&lock);
781 #endif
782
783         return 0;
784 }
785
786 static int steal_spins_get(void *data, u64 *val)
787 {
788         *val = steal_spins;
789
790         return 0;
791 }
792
793 DEFINE_SIMPLE_ATTRIBUTE(fops_steal_spins, steal_spins_get, steal_spins_set, "%llu\n");
794
795 static int remote_steal_spins_set(void *data, u64 val)
796 {
797         remote_steal_spins = val;
798
799         return 0;
800 }
801
802 static int remote_steal_spins_get(void *data, u64 *val)
803 {
804         *val = remote_steal_spins;
805
806         return 0;
807 }
808
809 DEFINE_SIMPLE_ATTRIBUTE(fops_remote_steal_spins, remote_steal_spins_get, remote_steal_spins_set, "%llu\n");
810
811 static int head_spins_set(void *data, u64 val)
812 {
813         head_spins = val;
814
815         return 0;
816 }
817
818 static int head_spins_get(void *data, u64 *val)
819 {
820         *val = head_spins;
821
822         return 0;
823 }
824
825 DEFINE_SIMPLE_ATTRIBUTE(fops_head_spins, head_spins_get, head_spins_set, "%llu\n");
826
827 static int pv_yield_owner_set(void *data, u64 val)
828 {
829         pv_yield_owner = !!val;
830
831         return 0;
832 }
833
834 static int pv_yield_owner_get(void *data, u64 *val)
835 {
836         *val = pv_yield_owner;
837
838         return 0;
839 }
840
841 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_owner, pv_yield_owner_get, pv_yield_owner_set, "%llu\n");
842
843 static int pv_yield_allow_steal_set(void *data, u64 val)
844 {
845         pv_yield_allow_steal = !!val;
846
847         return 0;
848 }
849
850 static int pv_yield_allow_steal_get(void *data, u64 *val)
851 {
852         *val = pv_yield_allow_steal;
853
854         return 0;
855 }
856
857 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_allow_steal, pv_yield_allow_steal_get, pv_yield_allow_steal_set, "%llu\n");
858
859 static int pv_spin_on_preempted_owner_set(void *data, u64 val)
860 {
861         pv_spin_on_preempted_owner = !!val;
862
863         return 0;
864 }
865
866 static int pv_spin_on_preempted_owner_get(void *data, u64 *val)
867 {
868         *val = pv_spin_on_preempted_owner;
869
870         return 0;
871 }
872
873 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_spin_on_preempted_owner, pv_spin_on_preempted_owner_get, pv_spin_on_preempted_owner_set, "%llu\n");
874
875 static int pv_sleepy_lock_set(void *data, u64 val)
876 {
877         pv_sleepy_lock = !!val;
878
879         return 0;
880 }
881
882 static int pv_sleepy_lock_get(void *data, u64 *val)
883 {
884         *val = pv_sleepy_lock;
885
886         return 0;
887 }
888
889 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock, pv_sleepy_lock_get, pv_sleepy_lock_set, "%llu\n");
890
891 static int pv_sleepy_lock_sticky_set(void *data, u64 val)
892 {
893         pv_sleepy_lock_sticky = !!val;
894
895         return 0;
896 }
897
898 static int pv_sleepy_lock_sticky_get(void *data, u64 *val)
899 {
900         *val = pv_sleepy_lock_sticky;
901
902         return 0;
903 }
904
905 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_sticky, pv_sleepy_lock_sticky_get, pv_sleepy_lock_sticky_set, "%llu\n");
906
907 static int pv_sleepy_lock_interval_ns_set(void *data, u64 val)
908 {
909         pv_sleepy_lock_interval_ns = val;
910
911         return 0;
912 }
913
914 static int pv_sleepy_lock_interval_ns_get(void *data, u64 *val)
915 {
916         *val = pv_sleepy_lock_interval_ns;
917
918         return 0;
919 }
920
921 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_interval_ns, pv_sleepy_lock_interval_ns_get, pv_sleepy_lock_interval_ns_set, "%llu\n");
922
923 static int pv_sleepy_lock_factor_set(void *data, u64 val)
924 {
925         pv_sleepy_lock_factor = val;
926
927         return 0;
928 }
929
930 static int pv_sleepy_lock_factor_get(void *data, u64 *val)
931 {
932         *val = pv_sleepy_lock_factor;
933
934         return 0;
935 }
936
937 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_factor, pv_sleepy_lock_factor_get, pv_sleepy_lock_factor_set, "%llu\n");
938
939 static int pv_yield_prev_set(void *data, u64 val)
940 {
941         pv_yield_prev = !!val;
942
943         return 0;
944 }
945
946 static int pv_yield_prev_get(void *data, u64 *val)
947 {
948         *val = pv_yield_prev;
949
950         return 0;
951 }
952
953 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_prev, pv_yield_prev_get, pv_yield_prev_set, "%llu\n");
954
955 static int pv_yield_propagate_owner_set(void *data, u64 val)
956 {
957         pv_yield_propagate_owner = !!val;
958
959         return 0;
960 }
961
962 static int pv_yield_propagate_owner_get(void *data, u64 *val)
963 {
964         *val = pv_yield_propagate_owner;
965
966         return 0;
967 }
968
969 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_propagate_owner, pv_yield_propagate_owner_get, pv_yield_propagate_owner_set, "%llu\n");
970
971 static int pv_prod_head_set(void *data, u64 val)
972 {
973         pv_prod_head = !!val;
974
975         return 0;
976 }
977
978 static int pv_prod_head_get(void *data, u64 *val)
979 {
980         *val = pv_prod_head;
981
982         return 0;
983 }
984
985 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_prod_head, pv_prod_head_get, pv_prod_head_set, "%llu\n");
986
987 static __init int spinlock_debugfs_init(void)
988 {
989         debugfs_create_file("qspl_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_steal_spins);
990         debugfs_create_file("qspl_remote_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_remote_steal_spins);
991         debugfs_create_file("qspl_head_spins", 0600, arch_debugfs_dir, NULL, &fops_head_spins);
992         if (is_shared_processor()) {
993                 debugfs_create_file("qspl_pv_yield_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_owner);
994                 debugfs_create_file("qspl_pv_yield_allow_steal", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_allow_steal);
995                 debugfs_create_file("qspl_pv_spin_on_preempted_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_spin_on_preempted_owner);
996                 debugfs_create_file("qspl_pv_sleepy_lock", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock);
997                 debugfs_create_file("qspl_pv_sleepy_lock_sticky", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_sticky);
998                 debugfs_create_file("qspl_pv_sleepy_lock_interval_ns", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_interval_ns);
999                 debugfs_create_file("qspl_pv_sleepy_lock_factor", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_factor);
1000                 debugfs_create_file("qspl_pv_yield_prev", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_prev);
1001                 debugfs_create_file("qspl_pv_yield_propagate_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_propagate_owner);
1002                 debugfs_create_file("qspl_pv_prod_head", 0600, arch_debugfs_dir, NULL, &fops_pv_prod_head);
1003         }
1004
1005         return 0;
1006 }
1007 device_initcall(spinlock_debugfs_init);