GNU Linux-libre 6.5.10-gnu
[releases.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36 #include <asm/setup.h>
37
38 #include "timing.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54
55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57         return kvm_arch_vcpu_runnable(vcpu);
58 }
59
60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62         return false;
63 }
64
65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67         return 1;
68 }
69
70 /*
71  * Common checks before entering the guest world.  Call with interrupts
72  * disabled.
73  *
74  * returns:
75  *
76  * == 1 if we're ready to go into guest state
77  * <= 0 if we need to go back to the host with return value
78  */
79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81         int r;
82
83         WARN_ON(irqs_disabled());
84         hard_irq_disable();
85
86         while (true) {
87                 if (need_resched()) {
88                         local_irq_enable();
89                         cond_resched();
90                         hard_irq_disable();
91                         continue;
92                 }
93
94                 if (signal_pending(current)) {
95                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96                         vcpu->run->exit_reason = KVM_EXIT_INTR;
97                         r = -EINTR;
98                         break;
99                 }
100
101                 vcpu->mode = IN_GUEST_MODE;
102
103                 /*
104                  * Reading vcpu->requests must happen after setting vcpu->mode,
105                  * so we don't miss a request because the requester sees
106                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107                  * before next entering the guest (and thus doesn't IPI).
108                  * This also orders the write to mode from any reads
109                  * to the page tables done while the VCPU is running.
110                  * Please see the comment in kvm_flush_remote_tlbs.
111                  */
112                 smp_mb();
113
114                 if (kvm_request_pending(vcpu)) {
115                         /* Make sure we process requests preemptable */
116                         local_irq_enable();
117                         trace_kvm_check_requests(vcpu);
118                         r = kvmppc_core_check_requests(vcpu);
119                         hard_irq_disable();
120                         if (r > 0)
121                                 continue;
122                         break;
123                 }
124
125                 if (kvmppc_core_prepare_to_enter(vcpu)) {
126                         /* interrupts got enabled in between, so we
127                            are back at square 1 */
128                         continue;
129                 }
130
131                 guest_enter_irqoff();
132                 return 1;
133         }
134
135         /* return to host */
136         local_irq_enable();
137         return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145         int i;
146
147         shared->sprg0 = swab64(shared->sprg0);
148         shared->sprg1 = swab64(shared->sprg1);
149         shared->sprg2 = swab64(shared->sprg2);
150         shared->sprg3 = swab64(shared->sprg3);
151         shared->srr0 = swab64(shared->srr0);
152         shared->srr1 = swab64(shared->srr1);
153         shared->dar = swab64(shared->dar);
154         shared->msr = swab64(shared->msr);
155         shared->dsisr = swab32(shared->dsisr);
156         shared->int_pending = swab32(shared->int_pending);
157         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158                 shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161
162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164         int nr = kvmppc_get_gpr(vcpu, 11);
165         int r;
166         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170         unsigned long r2 = 0;
171
172         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173                 /* 32 bit mode */
174                 param1 &= 0xffffffff;
175                 param2 &= 0xffffffff;
176                 param3 &= 0xffffffff;
177                 param4 &= 0xffffffff;
178         }
179
180         switch (nr) {
181         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182         {
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184                 /* Book3S can be little endian, find it out here */
185                 int shared_big_endian = true;
186                 if (vcpu->arch.intr_msr & MSR_LE)
187                         shared_big_endian = false;
188                 if (shared_big_endian != vcpu->arch.shared_big_endian)
189                         kvmppc_swab_shared(vcpu);
190                 vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192
193                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194                         /*
195                          * Older versions of the Linux magic page code had
196                          * a bug where they would map their trampoline code
197                          * NX. If that's the case, remove !PR NX capability.
198                          */
199                         vcpu->arch.disable_kernel_nx = true;
200                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201                 }
202
203                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206 #ifdef CONFIG_PPC_64K_PAGES
207                 /*
208                  * Make sure our 4k magic page is in the same window of a 64k
209                  * page within the guest and within the host's page.
210                  */
211                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212                     ((ulong)vcpu->arch.shared & 0xf000)) {
213                         void *old_shared = vcpu->arch.shared;
214                         ulong shared = (ulong)vcpu->arch.shared;
215                         void *new_shared;
216
217                         shared &= PAGE_MASK;
218                         shared |= vcpu->arch.magic_page_pa & 0xf000;
219                         new_shared = (void*)shared;
220                         memcpy(new_shared, old_shared, 0x1000);
221                         vcpu->arch.shared = new_shared;
222                 }
223 #endif
224
225                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227                 r = EV_SUCCESS;
228                 break;
229         }
230         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231                 r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235
236                 /* Second return value is in r4 */
237                 break;
238         case EV_HCALL_TOKEN(EV_IDLE):
239                 r = EV_SUCCESS;
240                 kvm_vcpu_halt(vcpu);
241                 break;
242         default:
243                 r = EV_UNIMPLEMENTED;
244                 break;
245         }
246
247         kvmppc_set_gpr(vcpu, 4, r2);
248
249         return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255         int r = false;
256
257         /* We have to know what CPU to virtualize */
258         if (!vcpu->arch.pvr)
259                 goto out;
260
261         /* PAPR only works with book3s_64 */
262         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263                 goto out;
264
265         /* HV KVM can only do PAPR mode for now */
266         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267                 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270         if (!cpu_has_feature(CPU_FTR_EMB_HV))
271                 goto out;
272 #endif
273
274         r = true;
275
276 out:
277         vcpu->arch.sane = r;
278         return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284         enum emulation_result er;
285         int r;
286
287         er = kvmppc_emulate_loadstore(vcpu);
288         switch (er) {
289         case EMULATE_DONE:
290                 /* Future optimization: only reload non-volatiles if they were
291                  * actually modified. */
292                 r = RESUME_GUEST_NV;
293                 break;
294         case EMULATE_AGAIN:
295                 r = RESUME_GUEST;
296                 break;
297         case EMULATE_DO_MMIO:
298                 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299                 /* We must reload nonvolatiles because "update" load/store
300                  * instructions modify register state. */
301                 /* Future optimization: only reload non-volatiles if they were
302                  * actually modified. */
303                 r = RESUME_HOST_NV;
304                 break;
305         case EMULATE_FAIL:
306         {
307                 ppc_inst_t last_inst;
308
309                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310                 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311                                       ppc_inst_val(last_inst));
312
313                 /*
314                  * Injecting a Data Storage here is a bit more
315                  * accurate since the instruction that caused the
316                  * access could still be a valid one.
317                  */
318                 if (!IS_ENABLED(CONFIG_BOOKE)) {
319                         ulong dsisr = DSISR_BADACCESS;
320
321                         if (vcpu->mmio_is_write)
322                                 dsisr |= DSISR_ISSTORE;
323
324                         kvmppc_core_queue_data_storage(vcpu,
325                                         kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
326                                         vcpu->arch.vaddr_accessed, dsisr);
327                 } else {
328                         /*
329                          * BookE does not send a SIGBUS on a bad
330                          * fault, so use a Program interrupt instead
331                          * to avoid a fault loop.
332                          */
333                         kvmppc_core_queue_program(vcpu, 0);
334                 }
335
336                 r = RESUME_GUEST;
337                 break;
338         }
339         default:
340                 WARN_ON(1);
341                 r = RESUME_GUEST;
342         }
343
344         return r;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
347
348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349               bool data)
350 {
351         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352         struct kvmppc_pte pte;
353         int r = -EINVAL;
354
355         vcpu->stat.st++;
356
357         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
358                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
359                                                             size);
360
361         if ((!r) || (r == -EAGAIN))
362                 return r;
363
364         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365                          XLATE_WRITE, &pte);
366         if (r < 0)
367                 return r;
368
369         *eaddr = pte.raddr;
370
371         if (!pte.may_write)
372                 return -EPERM;
373
374         /* Magic page override */
375         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378                 void *magic = vcpu->arch.shared;
379                 magic += pte.eaddr & 0xfff;
380                 memcpy(magic, ptr, size);
381                 return EMULATE_DONE;
382         }
383
384         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
385                 return EMULATE_DO_MMIO;
386
387         return EMULATE_DONE;
388 }
389 EXPORT_SYMBOL_GPL(kvmppc_st);
390
391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
392                       bool data)
393 {
394         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
395         struct kvmppc_pte pte;
396         int rc = -EINVAL;
397
398         vcpu->stat.ld++;
399
400         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
401                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
402                                                               size);
403
404         if ((!rc) || (rc == -EAGAIN))
405                 return rc;
406
407         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
408                           XLATE_READ, &pte);
409         if (rc)
410                 return rc;
411
412         *eaddr = pte.raddr;
413
414         if (!pte.may_read)
415                 return -EPERM;
416
417         if (!data && !pte.may_execute)
418                 return -ENOEXEC;
419
420         /* Magic page override */
421         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
422             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
423             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
424                 void *magic = vcpu->arch.shared;
425                 magic += pte.eaddr & 0xfff;
426                 memcpy(ptr, magic, size);
427                 return EMULATE_DONE;
428         }
429
430         kvm_vcpu_srcu_read_lock(vcpu);
431         rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
432         kvm_vcpu_srcu_read_unlock(vcpu);
433         if (rc)
434                 return EMULATE_DO_MMIO;
435
436         return EMULATE_DONE;
437 }
438 EXPORT_SYMBOL_GPL(kvmppc_ld);
439
440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
441 {
442         struct kvmppc_ops *kvm_ops = NULL;
443         int r;
444
445         /*
446          * if we have both HV and PR enabled, default is HV
447          */
448         if (type == 0) {
449                 if (kvmppc_hv_ops)
450                         kvm_ops = kvmppc_hv_ops;
451                 else
452                         kvm_ops = kvmppc_pr_ops;
453                 if (!kvm_ops)
454                         goto err_out;
455         } else  if (type == KVM_VM_PPC_HV) {
456                 if (!kvmppc_hv_ops)
457                         goto err_out;
458                 kvm_ops = kvmppc_hv_ops;
459         } else if (type == KVM_VM_PPC_PR) {
460                 if (!kvmppc_pr_ops)
461                         goto err_out;
462                 kvm_ops = kvmppc_pr_ops;
463         } else
464                 goto err_out;
465
466         if (!try_module_get(kvm_ops->owner))
467                 return -ENOENT;
468
469         kvm->arch.kvm_ops = kvm_ops;
470         r = kvmppc_core_init_vm(kvm);
471         if (r)
472                 module_put(kvm_ops->owner);
473         return r;
474 err_out:
475         return -EINVAL;
476 }
477
478 void kvm_arch_destroy_vm(struct kvm *kvm)
479 {
480 #ifdef CONFIG_KVM_XICS
481         /*
482          * We call kick_all_cpus_sync() to ensure that all
483          * CPUs have executed any pending IPIs before we
484          * continue and free VCPUs structures below.
485          */
486         if (is_kvmppc_hv_enabled(kvm))
487                 kick_all_cpus_sync();
488 #endif
489
490         kvm_destroy_vcpus(kvm);
491
492         mutex_lock(&kvm->lock);
493
494         kvmppc_core_destroy_vm(kvm);
495
496         mutex_unlock(&kvm->lock);
497
498         /* drop the module reference */
499         module_put(kvm->arch.kvm_ops->owner);
500 }
501
502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
503 {
504         int r;
505         /* Assume we're using HV mode when the HV module is loaded */
506         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
507
508         if (kvm) {
509                 /*
510                  * Hooray - we know which VM type we're running on. Depend on
511                  * that rather than the guess above.
512                  */
513                 hv_enabled = is_kvmppc_hv_enabled(kvm);
514         }
515
516         switch (ext) {
517 #ifdef CONFIG_BOOKE
518         case KVM_CAP_PPC_BOOKE_SREGS:
519         case KVM_CAP_PPC_BOOKE_WATCHDOG:
520         case KVM_CAP_PPC_EPR:
521 #else
522         case KVM_CAP_PPC_SEGSTATE:
523         case KVM_CAP_PPC_HIOR:
524         case KVM_CAP_PPC_PAPR:
525 #endif
526         case KVM_CAP_PPC_UNSET_IRQ:
527         case KVM_CAP_PPC_IRQ_LEVEL:
528         case KVM_CAP_ENABLE_CAP:
529         case KVM_CAP_ONE_REG:
530         case KVM_CAP_IOEVENTFD:
531         case KVM_CAP_DEVICE_CTRL:
532         case KVM_CAP_IMMEDIATE_EXIT:
533         case KVM_CAP_SET_GUEST_DEBUG:
534                 r = 1;
535                 break;
536         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
537         case KVM_CAP_PPC_PAIRED_SINGLES:
538         case KVM_CAP_PPC_OSI:
539         case KVM_CAP_PPC_GET_PVINFO:
540 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
541         case KVM_CAP_SW_TLB:
542 #endif
543                 /* We support this only for PR */
544                 r = !hv_enabled;
545                 break;
546 #ifdef CONFIG_KVM_MPIC
547         case KVM_CAP_IRQ_MPIC:
548                 r = 1;
549                 break;
550 #endif
551
552 #ifdef CONFIG_PPC_BOOK3S_64
553         case KVM_CAP_SPAPR_TCE:
554         case KVM_CAP_SPAPR_TCE_64:
555                 r = 1;
556                 break;
557         case KVM_CAP_SPAPR_TCE_VFIO:
558                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
559                 break;
560         case KVM_CAP_PPC_RTAS:
561         case KVM_CAP_PPC_FIXUP_HCALL:
562         case KVM_CAP_PPC_ENABLE_HCALL:
563 #ifdef CONFIG_KVM_XICS
564         case KVM_CAP_IRQ_XICS:
565 #endif
566         case KVM_CAP_PPC_GET_CPU_CHAR:
567                 r = 1;
568                 break;
569 #ifdef CONFIG_KVM_XIVE
570         case KVM_CAP_PPC_IRQ_XIVE:
571                 /*
572                  * We need XIVE to be enabled on the platform (implies
573                  * a POWER9 processor) and the PowerNV platform, as
574                  * nested is not yet supported.
575                  */
576                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
577                         kvmppc_xive_native_supported();
578                 break;
579 #endif
580
581 #ifdef CONFIG_HAVE_KVM_IRQFD
582         case KVM_CAP_IRQFD_RESAMPLE:
583                 r = !xive_enabled();
584                 break;
585 #endif
586
587         case KVM_CAP_PPC_ALLOC_HTAB:
588                 r = hv_enabled;
589                 break;
590 #endif /* CONFIG_PPC_BOOK3S_64 */
591 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
592         case KVM_CAP_PPC_SMT:
593                 r = 0;
594                 if (kvm) {
595                         if (kvm->arch.emul_smt_mode > 1)
596                                 r = kvm->arch.emul_smt_mode;
597                         else
598                                 r = kvm->arch.smt_mode;
599                 } else if (hv_enabled) {
600                         if (cpu_has_feature(CPU_FTR_ARCH_300))
601                                 r = 1;
602                         else
603                                 r = threads_per_subcore;
604                 }
605                 break;
606         case KVM_CAP_PPC_SMT_POSSIBLE:
607                 r = 1;
608                 if (hv_enabled) {
609                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
610                                 r = ((threads_per_subcore << 1) - 1);
611                         else
612                                 /* P9 can emulate dbells, so allow any mode */
613                                 r = 8 | 4 | 2 | 1;
614                 }
615                 break;
616         case KVM_CAP_PPC_RMA:
617                 r = 0;
618                 break;
619         case KVM_CAP_PPC_HWRNG:
620                 r = kvmppc_hwrng_present();
621                 break;
622         case KVM_CAP_PPC_MMU_RADIX:
623                 r = !!(hv_enabled && radix_enabled());
624                 break;
625         case KVM_CAP_PPC_MMU_HASH_V3:
626                 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
627                        kvmppc_hv_ops->hash_v3_possible());
628                 break;
629         case KVM_CAP_PPC_NESTED_HV:
630                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
631                        !kvmppc_hv_ops->enable_nested(NULL));
632                 break;
633 #endif
634         case KVM_CAP_SYNC_MMU:
635 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
636                 r = hv_enabled;
637 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
638                 r = 1;
639 #else
640                 r = 0;
641 #endif
642                 break;
643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
644         case KVM_CAP_PPC_HTAB_FD:
645                 r = hv_enabled;
646                 break;
647 #endif
648         case KVM_CAP_NR_VCPUS:
649                 /*
650                  * Recommending a number of CPUs is somewhat arbitrary; we
651                  * return the number of present CPUs for -HV (since a host
652                  * will have secondary threads "offline"), and for other KVM
653                  * implementations just count online CPUs.
654                  */
655                 if (hv_enabled)
656                         r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
657                 else
658                         r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
659                 break;
660         case KVM_CAP_MAX_VCPUS:
661                 r = KVM_MAX_VCPUS;
662                 break;
663         case KVM_CAP_MAX_VCPU_ID:
664                 r = KVM_MAX_VCPU_IDS;
665                 break;
666 #ifdef CONFIG_PPC_BOOK3S_64
667         case KVM_CAP_PPC_GET_SMMU_INFO:
668                 r = 1;
669                 break;
670         case KVM_CAP_SPAPR_MULTITCE:
671                 r = 1;
672                 break;
673         case KVM_CAP_SPAPR_RESIZE_HPT:
674                 r = !!hv_enabled;
675                 break;
676 #endif
677 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
678         case KVM_CAP_PPC_FWNMI:
679                 r = hv_enabled;
680                 break;
681 #endif
682 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
683         case KVM_CAP_PPC_HTM:
684                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
685                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
686                 break;
687 #endif
688 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
689         case KVM_CAP_PPC_SECURE_GUEST:
690                 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
691                         !kvmppc_hv_ops->enable_svm(NULL);
692                 break;
693         case KVM_CAP_PPC_DAWR1:
694                 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
695                        !kvmppc_hv_ops->enable_dawr1(NULL));
696                 break;
697         case KVM_CAP_PPC_RPT_INVALIDATE:
698                 r = 1;
699                 break;
700 #endif
701         case KVM_CAP_PPC_AIL_MODE_3:
702                 r = 0;
703                 /*
704                  * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
705                  * The POWER9s can support it if the guest runs in hash mode,
706                  * but QEMU doesn't necessarily query the capability in time.
707                  */
708                 if (hv_enabled) {
709                         if (kvmhv_on_pseries()) {
710                                 if (pseries_reloc_on_exception())
711                                         r = 1;
712                         } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
713                                   !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
714                                 r = 1;
715                         }
716                 }
717                 break;
718         default:
719                 r = 0;
720                 break;
721         }
722         return r;
723
724 }
725
726 long kvm_arch_dev_ioctl(struct file *filp,
727                         unsigned int ioctl, unsigned long arg)
728 {
729         return -EINVAL;
730 }
731
732 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
733 {
734         kvmppc_core_free_memslot(kvm, slot);
735 }
736
737 int kvm_arch_prepare_memory_region(struct kvm *kvm,
738                                    const struct kvm_memory_slot *old,
739                                    struct kvm_memory_slot *new,
740                                    enum kvm_mr_change change)
741 {
742         return kvmppc_core_prepare_memory_region(kvm, old, new, change);
743 }
744
745 void kvm_arch_commit_memory_region(struct kvm *kvm,
746                                    struct kvm_memory_slot *old,
747                                    const struct kvm_memory_slot *new,
748                                    enum kvm_mr_change change)
749 {
750         kvmppc_core_commit_memory_region(kvm, old, new, change);
751 }
752
753 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
754                                    struct kvm_memory_slot *slot)
755 {
756         kvmppc_core_flush_memslot(kvm, slot);
757 }
758
759 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
760 {
761         return 0;
762 }
763
764 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
765 {
766         struct kvm_vcpu *vcpu;
767
768         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
769         kvmppc_decrementer_func(vcpu);
770
771         return HRTIMER_NORESTART;
772 }
773
774 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
775 {
776         int err;
777
778         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
779         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
780
781 #ifdef CONFIG_KVM_EXIT_TIMING
782         mutex_init(&vcpu->arch.exit_timing_lock);
783 #endif
784         err = kvmppc_subarch_vcpu_init(vcpu);
785         if (err)
786                 return err;
787
788         err = kvmppc_core_vcpu_create(vcpu);
789         if (err)
790                 goto out_vcpu_uninit;
791
792         rcuwait_init(&vcpu->arch.wait);
793         vcpu->arch.waitp = &vcpu->arch.wait;
794         return 0;
795
796 out_vcpu_uninit:
797         kvmppc_subarch_vcpu_uninit(vcpu);
798         return err;
799 }
800
801 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
802 {
803 }
804
805 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
806 {
807         /* Make sure we're not using the vcpu anymore */
808         hrtimer_cancel(&vcpu->arch.dec_timer);
809
810         switch (vcpu->arch.irq_type) {
811         case KVMPPC_IRQ_MPIC:
812                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
813                 break;
814         case KVMPPC_IRQ_XICS:
815                 if (xics_on_xive())
816                         kvmppc_xive_cleanup_vcpu(vcpu);
817                 else
818                         kvmppc_xics_free_icp(vcpu);
819                 break;
820         case KVMPPC_IRQ_XIVE:
821                 kvmppc_xive_native_cleanup_vcpu(vcpu);
822                 break;
823         }
824
825         kvmppc_core_vcpu_free(vcpu);
826
827         kvmppc_subarch_vcpu_uninit(vcpu);
828 }
829
830 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
831 {
832         return kvmppc_core_pending_dec(vcpu);
833 }
834
835 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
836 {
837 #ifdef CONFIG_BOOKE
838         /*
839          * vrsave (formerly usprg0) isn't used by Linux, but may
840          * be used by the guest.
841          *
842          * On non-booke this is associated with Altivec and
843          * is handled by code in book3s.c.
844          */
845         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
846 #endif
847         kvmppc_core_vcpu_load(vcpu, cpu);
848 }
849
850 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
851 {
852         kvmppc_core_vcpu_put(vcpu);
853 #ifdef CONFIG_BOOKE
854         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
855 #endif
856 }
857
858 /*
859  * irq_bypass_add_producer and irq_bypass_del_producer are only
860  * useful if the architecture supports PCI passthrough.
861  * irq_bypass_stop and irq_bypass_start are not needed and so
862  * kvm_ops are not defined for them.
863  */
864 bool kvm_arch_has_irq_bypass(void)
865 {
866         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
867                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
868 }
869
870 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
871                                      struct irq_bypass_producer *prod)
872 {
873         struct kvm_kernel_irqfd *irqfd =
874                 container_of(cons, struct kvm_kernel_irqfd, consumer);
875         struct kvm *kvm = irqfd->kvm;
876
877         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
878                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
879
880         return 0;
881 }
882
883 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
884                                       struct irq_bypass_producer *prod)
885 {
886         struct kvm_kernel_irqfd *irqfd =
887                 container_of(cons, struct kvm_kernel_irqfd, consumer);
888         struct kvm *kvm = irqfd->kvm;
889
890         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
891                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
892 }
893
894 #ifdef CONFIG_VSX
895 static inline int kvmppc_get_vsr_dword_offset(int index)
896 {
897         int offset;
898
899         if ((index != 0) && (index != 1))
900                 return -1;
901
902 #ifdef __BIG_ENDIAN
903         offset =  index;
904 #else
905         offset = 1 - index;
906 #endif
907
908         return offset;
909 }
910
911 static inline int kvmppc_get_vsr_word_offset(int index)
912 {
913         int offset;
914
915         if ((index > 3) || (index < 0))
916                 return -1;
917
918 #ifdef __BIG_ENDIAN
919         offset = index;
920 #else
921         offset = 3 - index;
922 #endif
923         return offset;
924 }
925
926 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
927         u64 gpr)
928 {
929         union kvmppc_one_reg val;
930         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
931         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
932
933         if (offset == -1)
934                 return;
935
936         if (index >= 32) {
937                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
938                 val.vsxval[offset] = gpr;
939                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
940         } else {
941                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
942         }
943 }
944
945 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
946         u64 gpr)
947 {
948         union kvmppc_one_reg val;
949         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
950
951         if (index >= 32) {
952                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
953                 val.vsxval[0] = gpr;
954                 val.vsxval[1] = gpr;
955                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
956         } else {
957                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
958                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
959         }
960 }
961
962 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
963         u32 gpr)
964 {
965         union kvmppc_one_reg val;
966         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
967
968         if (index >= 32) {
969                 val.vsx32val[0] = gpr;
970                 val.vsx32val[1] = gpr;
971                 val.vsx32val[2] = gpr;
972                 val.vsx32val[3] = gpr;
973                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
974         } else {
975                 val.vsx32val[0] = gpr;
976                 val.vsx32val[1] = gpr;
977                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
978                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
979         }
980 }
981
982 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
983         u32 gpr32)
984 {
985         union kvmppc_one_reg val;
986         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
987         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
988         int dword_offset, word_offset;
989
990         if (offset == -1)
991                 return;
992
993         if (index >= 32) {
994                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
995                 val.vsx32val[offset] = gpr32;
996                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
997         } else {
998                 dword_offset = offset / 2;
999                 word_offset = offset % 2;
1000                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
1001                 val.vsx32val[word_offset] = gpr32;
1002                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
1003         }
1004 }
1005 #endif /* CONFIG_VSX */
1006
1007 #ifdef CONFIG_ALTIVEC
1008 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1009                 int index, int element_size)
1010 {
1011         int offset;
1012         int elts = sizeof(vector128)/element_size;
1013
1014         if ((index < 0) || (index >= elts))
1015                 return -1;
1016
1017         if (kvmppc_need_byteswap(vcpu))
1018                 offset = elts - index - 1;
1019         else
1020                 offset = index;
1021
1022         return offset;
1023 }
1024
1025 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1026                 int index)
1027 {
1028         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1029 }
1030
1031 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1032                 int index)
1033 {
1034         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1035 }
1036
1037 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1038                 int index)
1039 {
1040         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1041 }
1042
1043 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1044                 int index)
1045 {
1046         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1047 }
1048
1049
1050 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1051         u64 gpr)
1052 {
1053         union kvmppc_one_reg val;
1054         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1055                         vcpu->arch.mmio_vmx_offset);
1056         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1057
1058         if (offset == -1)
1059                 return;
1060
1061         val.vval = VCPU_VSX_VR(vcpu, index);
1062         val.vsxval[offset] = gpr;
1063         VCPU_VSX_VR(vcpu, index) = val.vval;
1064 }
1065
1066 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1067         u32 gpr32)
1068 {
1069         union kvmppc_one_reg val;
1070         int offset = kvmppc_get_vmx_word_offset(vcpu,
1071                         vcpu->arch.mmio_vmx_offset);
1072         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1073
1074         if (offset == -1)
1075                 return;
1076
1077         val.vval = VCPU_VSX_VR(vcpu, index);
1078         val.vsx32val[offset] = gpr32;
1079         VCPU_VSX_VR(vcpu, index) = val.vval;
1080 }
1081
1082 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1083         u16 gpr16)
1084 {
1085         union kvmppc_one_reg val;
1086         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1087                         vcpu->arch.mmio_vmx_offset);
1088         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1089
1090         if (offset == -1)
1091                 return;
1092
1093         val.vval = VCPU_VSX_VR(vcpu, index);
1094         val.vsx16val[offset] = gpr16;
1095         VCPU_VSX_VR(vcpu, index) = val.vval;
1096 }
1097
1098 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1099         u8 gpr8)
1100 {
1101         union kvmppc_one_reg val;
1102         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1103                         vcpu->arch.mmio_vmx_offset);
1104         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1105
1106         if (offset == -1)
1107                 return;
1108
1109         val.vval = VCPU_VSX_VR(vcpu, index);
1110         val.vsx8val[offset] = gpr8;
1111         VCPU_VSX_VR(vcpu, index) = val.vval;
1112 }
1113 #endif /* CONFIG_ALTIVEC */
1114
1115 #ifdef CONFIG_PPC_FPU
1116 static inline u64 sp_to_dp(u32 fprs)
1117 {
1118         u64 fprd;
1119
1120         preempt_disable();
1121         enable_kernel_fp();
1122         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1123              : "fr0");
1124         preempt_enable();
1125         return fprd;
1126 }
1127
1128 static inline u32 dp_to_sp(u64 fprd)
1129 {
1130         u32 fprs;
1131
1132         preempt_disable();
1133         enable_kernel_fp();
1134         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1135              : "fr0");
1136         preempt_enable();
1137         return fprs;
1138 }
1139
1140 #else
1141 #define sp_to_dp(x)     (x)
1142 #define dp_to_sp(x)     (x)
1143 #endif /* CONFIG_PPC_FPU */
1144
1145 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1146 {
1147         struct kvm_run *run = vcpu->run;
1148         u64 gpr;
1149
1150         if (run->mmio.len > sizeof(gpr))
1151                 return;
1152
1153         if (!vcpu->arch.mmio_host_swabbed) {
1154                 switch (run->mmio.len) {
1155                 case 8: gpr = *(u64 *)run->mmio.data; break;
1156                 case 4: gpr = *(u32 *)run->mmio.data; break;
1157                 case 2: gpr = *(u16 *)run->mmio.data; break;
1158                 case 1: gpr = *(u8 *)run->mmio.data; break;
1159                 }
1160         } else {
1161                 switch (run->mmio.len) {
1162                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1163                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1164                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1165                 case 1: gpr = *(u8 *)run->mmio.data; break;
1166                 }
1167         }
1168
1169         /* conversion between single and double precision */
1170         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1171                 gpr = sp_to_dp(gpr);
1172
1173         if (vcpu->arch.mmio_sign_extend) {
1174                 switch (run->mmio.len) {
1175 #ifdef CONFIG_PPC64
1176                 case 4:
1177                         gpr = (s64)(s32)gpr;
1178                         break;
1179 #endif
1180                 case 2:
1181                         gpr = (s64)(s16)gpr;
1182                         break;
1183                 case 1:
1184                         gpr = (s64)(s8)gpr;
1185                         break;
1186                 }
1187         }
1188
1189         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1190         case KVM_MMIO_REG_GPR:
1191                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1192                 break;
1193         case KVM_MMIO_REG_FPR:
1194                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1195                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1196
1197                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1198                 break;
1199 #ifdef CONFIG_PPC_BOOK3S
1200         case KVM_MMIO_REG_QPR:
1201                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1202                 break;
1203         case KVM_MMIO_REG_FQPR:
1204                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1205                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1206                 break;
1207 #endif
1208 #ifdef CONFIG_VSX
1209         case KVM_MMIO_REG_VSX:
1210                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1211                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1212
1213                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1214                         kvmppc_set_vsr_dword(vcpu, gpr);
1215                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1216                         kvmppc_set_vsr_word(vcpu, gpr);
1217                 else if (vcpu->arch.mmio_copy_type ==
1218                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1219                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1220                 else if (vcpu->arch.mmio_copy_type ==
1221                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1222                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1223                 break;
1224 #endif
1225 #ifdef CONFIG_ALTIVEC
1226         case KVM_MMIO_REG_VMX:
1227                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1228                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1229
1230                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1231                         kvmppc_set_vmx_dword(vcpu, gpr);
1232                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1233                         kvmppc_set_vmx_word(vcpu, gpr);
1234                 else if (vcpu->arch.mmio_copy_type ==
1235                                 KVMPPC_VMX_COPY_HWORD)
1236                         kvmppc_set_vmx_hword(vcpu, gpr);
1237                 else if (vcpu->arch.mmio_copy_type ==
1238                                 KVMPPC_VMX_COPY_BYTE)
1239                         kvmppc_set_vmx_byte(vcpu, gpr);
1240                 break;
1241 #endif
1242 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1243         case KVM_MMIO_REG_NESTED_GPR:
1244                 if (kvmppc_need_byteswap(vcpu))
1245                         gpr = swab64(gpr);
1246                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1247                                      sizeof(gpr));
1248                 break;
1249 #endif
1250         default:
1251                 BUG();
1252         }
1253 }
1254
1255 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1256                                 unsigned int rt, unsigned int bytes,
1257                                 int is_default_endian, int sign_extend)
1258 {
1259         struct kvm_run *run = vcpu->run;
1260         int idx, ret;
1261         bool host_swabbed;
1262
1263         /* Pity C doesn't have a logical XOR operator */
1264         if (kvmppc_need_byteswap(vcpu)) {
1265                 host_swabbed = is_default_endian;
1266         } else {
1267                 host_swabbed = !is_default_endian;
1268         }
1269
1270         if (bytes > sizeof(run->mmio.data))
1271                 return EMULATE_FAIL;
1272
1273         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1274         run->mmio.len = bytes;
1275         run->mmio.is_write = 0;
1276
1277         vcpu->arch.io_gpr = rt;
1278         vcpu->arch.mmio_host_swabbed = host_swabbed;
1279         vcpu->mmio_needed = 1;
1280         vcpu->mmio_is_write = 0;
1281         vcpu->arch.mmio_sign_extend = sign_extend;
1282
1283         idx = srcu_read_lock(&vcpu->kvm->srcu);
1284
1285         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1286                               bytes, &run->mmio.data);
1287
1288         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1289
1290         if (!ret) {
1291                 kvmppc_complete_mmio_load(vcpu);
1292                 vcpu->mmio_needed = 0;
1293                 return EMULATE_DONE;
1294         }
1295
1296         return EMULATE_DO_MMIO;
1297 }
1298
1299 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1300                        unsigned int rt, unsigned int bytes,
1301                        int is_default_endian)
1302 {
1303         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1304 }
1305 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1306
1307 /* Same as above, but sign extends */
1308 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1309                         unsigned int rt, unsigned int bytes,
1310                         int is_default_endian)
1311 {
1312         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1313 }
1314
1315 #ifdef CONFIG_VSX
1316 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1317                         unsigned int rt, unsigned int bytes,
1318                         int is_default_endian, int mmio_sign_extend)
1319 {
1320         enum emulation_result emulated = EMULATE_DONE;
1321
1322         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1323         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1324                 return EMULATE_FAIL;
1325
1326         while (vcpu->arch.mmio_vsx_copy_nums) {
1327                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1328                         is_default_endian, mmio_sign_extend);
1329
1330                 if (emulated != EMULATE_DONE)
1331                         break;
1332
1333                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1334
1335                 vcpu->arch.mmio_vsx_copy_nums--;
1336                 vcpu->arch.mmio_vsx_offset++;
1337         }
1338         return emulated;
1339 }
1340 #endif /* CONFIG_VSX */
1341
1342 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1343                         u64 val, unsigned int bytes, int is_default_endian)
1344 {
1345         struct kvm_run *run = vcpu->run;
1346         void *data = run->mmio.data;
1347         int idx, ret;
1348         bool host_swabbed;
1349
1350         /* Pity C doesn't have a logical XOR operator */
1351         if (kvmppc_need_byteswap(vcpu)) {
1352                 host_swabbed = is_default_endian;
1353         } else {
1354                 host_swabbed = !is_default_endian;
1355         }
1356
1357         if (bytes > sizeof(run->mmio.data))
1358                 return EMULATE_FAIL;
1359
1360         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1361         run->mmio.len = bytes;
1362         run->mmio.is_write = 1;
1363         vcpu->mmio_needed = 1;
1364         vcpu->mmio_is_write = 1;
1365
1366         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1367                 val = dp_to_sp(val);
1368
1369         /* Store the value at the lowest bytes in 'data'. */
1370         if (!host_swabbed) {
1371                 switch (bytes) {
1372                 case 8: *(u64 *)data = val; break;
1373                 case 4: *(u32 *)data = val; break;
1374                 case 2: *(u16 *)data = val; break;
1375                 case 1: *(u8  *)data = val; break;
1376                 }
1377         } else {
1378                 switch (bytes) {
1379                 case 8: *(u64 *)data = swab64(val); break;
1380                 case 4: *(u32 *)data = swab32(val); break;
1381                 case 2: *(u16 *)data = swab16(val); break;
1382                 case 1: *(u8  *)data = val; break;
1383                 }
1384         }
1385
1386         idx = srcu_read_lock(&vcpu->kvm->srcu);
1387
1388         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1389                                bytes, &run->mmio.data);
1390
1391         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1392
1393         if (!ret) {
1394                 vcpu->mmio_needed = 0;
1395                 return EMULATE_DONE;
1396         }
1397
1398         return EMULATE_DO_MMIO;
1399 }
1400 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1401
1402 #ifdef CONFIG_VSX
1403 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1404 {
1405         u32 dword_offset, word_offset;
1406         union kvmppc_one_reg reg;
1407         int vsx_offset = 0;
1408         int copy_type = vcpu->arch.mmio_copy_type;
1409         int result = 0;
1410
1411         switch (copy_type) {
1412         case KVMPPC_VSX_COPY_DWORD:
1413                 vsx_offset =
1414                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1415
1416                 if (vsx_offset == -1) {
1417                         result = -1;
1418                         break;
1419                 }
1420
1421                 if (rs < 32) {
1422                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1423                 } else {
1424                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1425                         *val = reg.vsxval[vsx_offset];
1426                 }
1427                 break;
1428
1429         case KVMPPC_VSX_COPY_WORD:
1430                 vsx_offset =
1431                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1432
1433                 if (vsx_offset == -1) {
1434                         result = -1;
1435                         break;
1436                 }
1437
1438                 if (rs < 32) {
1439                         dword_offset = vsx_offset / 2;
1440                         word_offset = vsx_offset % 2;
1441                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1442                         *val = reg.vsx32val[word_offset];
1443                 } else {
1444                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1445                         *val = reg.vsx32val[vsx_offset];
1446                 }
1447                 break;
1448
1449         default:
1450                 result = -1;
1451                 break;
1452         }
1453
1454         return result;
1455 }
1456
1457 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1458                         int rs, unsigned int bytes, int is_default_endian)
1459 {
1460         u64 val;
1461         enum emulation_result emulated = EMULATE_DONE;
1462
1463         vcpu->arch.io_gpr = rs;
1464
1465         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1466         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1467                 return EMULATE_FAIL;
1468
1469         while (vcpu->arch.mmio_vsx_copy_nums) {
1470                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1471                         return EMULATE_FAIL;
1472
1473                 emulated = kvmppc_handle_store(vcpu,
1474                          val, bytes, is_default_endian);
1475
1476                 if (emulated != EMULATE_DONE)
1477                         break;
1478
1479                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1480
1481                 vcpu->arch.mmio_vsx_copy_nums--;
1482                 vcpu->arch.mmio_vsx_offset++;
1483         }
1484
1485         return emulated;
1486 }
1487
1488 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1489 {
1490         struct kvm_run *run = vcpu->run;
1491         enum emulation_result emulated = EMULATE_FAIL;
1492         int r;
1493
1494         vcpu->arch.paddr_accessed += run->mmio.len;
1495
1496         if (!vcpu->mmio_is_write) {
1497                 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1498                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1499         } else {
1500                 emulated = kvmppc_handle_vsx_store(vcpu,
1501                          vcpu->arch.io_gpr, run->mmio.len, 1);
1502         }
1503
1504         switch (emulated) {
1505         case EMULATE_DO_MMIO:
1506                 run->exit_reason = KVM_EXIT_MMIO;
1507                 r = RESUME_HOST;
1508                 break;
1509         case EMULATE_FAIL:
1510                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1511                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1512                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1513                 r = RESUME_HOST;
1514                 break;
1515         default:
1516                 r = RESUME_GUEST;
1517                 break;
1518         }
1519         return r;
1520 }
1521 #endif /* CONFIG_VSX */
1522
1523 #ifdef CONFIG_ALTIVEC
1524 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1525                 unsigned int rt, unsigned int bytes, int is_default_endian)
1526 {
1527         enum emulation_result emulated = EMULATE_DONE;
1528
1529         if (vcpu->arch.mmio_vmx_copy_nums > 2)
1530                 return EMULATE_FAIL;
1531
1532         while (vcpu->arch.mmio_vmx_copy_nums) {
1533                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1534                                 is_default_endian, 0);
1535
1536                 if (emulated != EMULATE_DONE)
1537                         break;
1538
1539                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1540                 vcpu->arch.mmio_vmx_copy_nums--;
1541                 vcpu->arch.mmio_vmx_offset++;
1542         }
1543
1544         return emulated;
1545 }
1546
1547 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1548 {
1549         union kvmppc_one_reg reg;
1550         int vmx_offset = 0;
1551         int result = 0;
1552
1553         vmx_offset =
1554                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1555
1556         if (vmx_offset == -1)
1557                 return -1;
1558
1559         reg.vval = VCPU_VSX_VR(vcpu, index);
1560         *val = reg.vsxval[vmx_offset];
1561
1562         return result;
1563 }
1564
1565 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1566 {
1567         union kvmppc_one_reg reg;
1568         int vmx_offset = 0;
1569         int result = 0;
1570
1571         vmx_offset =
1572                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1573
1574         if (vmx_offset == -1)
1575                 return -1;
1576
1577         reg.vval = VCPU_VSX_VR(vcpu, index);
1578         *val = reg.vsx32val[vmx_offset];
1579
1580         return result;
1581 }
1582
1583 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1584 {
1585         union kvmppc_one_reg reg;
1586         int vmx_offset = 0;
1587         int result = 0;
1588
1589         vmx_offset =
1590                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1591
1592         if (vmx_offset == -1)
1593                 return -1;
1594
1595         reg.vval = VCPU_VSX_VR(vcpu, index);
1596         *val = reg.vsx16val[vmx_offset];
1597
1598         return result;
1599 }
1600
1601 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1602 {
1603         union kvmppc_one_reg reg;
1604         int vmx_offset = 0;
1605         int result = 0;
1606
1607         vmx_offset =
1608                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1609
1610         if (vmx_offset == -1)
1611                 return -1;
1612
1613         reg.vval = VCPU_VSX_VR(vcpu, index);
1614         *val = reg.vsx8val[vmx_offset];
1615
1616         return result;
1617 }
1618
1619 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1620                 unsigned int rs, unsigned int bytes, int is_default_endian)
1621 {
1622         u64 val = 0;
1623         unsigned int index = rs & KVM_MMIO_REG_MASK;
1624         enum emulation_result emulated = EMULATE_DONE;
1625
1626         if (vcpu->arch.mmio_vmx_copy_nums > 2)
1627                 return EMULATE_FAIL;
1628
1629         vcpu->arch.io_gpr = rs;
1630
1631         while (vcpu->arch.mmio_vmx_copy_nums) {
1632                 switch (vcpu->arch.mmio_copy_type) {
1633                 case KVMPPC_VMX_COPY_DWORD:
1634                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1635                                 return EMULATE_FAIL;
1636
1637                         break;
1638                 case KVMPPC_VMX_COPY_WORD:
1639                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1640                                 return EMULATE_FAIL;
1641                         break;
1642                 case KVMPPC_VMX_COPY_HWORD:
1643                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1644                                 return EMULATE_FAIL;
1645                         break;
1646                 case KVMPPC_VMX_COPY_BYTE:
1647                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1648                                 return EMULATE_FAIL;
1649                         break;
1650                 default:
1651                         return EMULATE_FAIL;
1652                 }
1653
1654                 emulated = kvmppc_handle_store(vcpu, val, bytes,
1655                                 is_default_endian);
1656                 if (emulated != EMULATE_DONE)
1657                         break;
1658
1659                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1660                 vcpu->arch.mmio_vmx_copy_nums--;
1661                 vcpu->arch.mmio_vmx_offset++;
1662         }
1663
1664         return emulated;
1665 }
1666
1667 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1668 {
1669         struct kvm_run *run = vcpu->run;
1670         enum emulation_result emulated = EMULATE_FAIL;
1671         int r;
1672
1673         vcpu->arch.paddr_accessed += run->mmio.len;
1674
1675         if (!vcpu->mmio_is_write) {
1676                 emulated = kvmppc_handle_vmx_load(vcpu,
1677                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1678         } else {
1679                 emulated = kvmppc_handle_vmx_store(vcpu,
1680                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1681         }
1682
1683         switch (emulated) {
1684         case EMULATE_DO_MMIO:
1685                 run->exit_reason = KVM_EXIT_MMIO;
1686                 r = RESUME_HOST;
1687                 break;
1688         case EMULATE_FAIL:
1689                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1690                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1691                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1692                 r = RESUME_HOST;
1693                 break;
1694         default:
1695                 r = RESUME_GUEST;
1696                 break;
1697         }
1698         return r;
1699 }
1700 #endif /* CONFIG_ALTIVEC */
1701
1702 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1703 {
1704         int r = 0;
1705         union kvmppc_one_reg val;
1706         int size;
1707
1708         size = one_reg_size(reg->id);
1709         if (size > sizeof(val))
1710                 return -EINVAL;
1711
1712         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1713         if (r == -EINVAL) {
1714                 r = 0;
1715                 switch (reg->id) {
1716 #ifdef CONFIG_ALTIVEC
1717                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1718                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1719                                 r = -ENXIO;
1720                                 break;
1721                         }
1722                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1723                         break;
1724                 case KVM_REG_PPC_VSCR:
1725                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1726                                 r = -ENXIO;
1727                                 break;
1728                         }
1729                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1730                         break;
1731                 case KVM_REG_PPC_VRSAVE:
1732                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1733                         break;
1734 #endif /* CONFIG_ALTIVEC */
1735                 default:
1736                         r = -EINVAL;
1737                         break;
1738                 }
1739         }
1740
1741         if (r)
1742                 return r;
1743
1744         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1745                 r = -EFAULT;
1746
1747         return r;
1748 }
1749
1750 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1751 {
1752         int r;
1753         union kvmppc_one_reg val;
1754         int size;
1755
1756         size = one_reg_size(reg->id);
1757         if (size > sizeof(val))
1758                 return -EINVAL;
1759
1760         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1761                 return -EFAULT;
1762
1763         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1764         if (r == -EINVAL) {
1765                 r = 0;
1766                 switch (reg->id) {
1767 #ifdef CONFIG_ALTIVEC
1768                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1769                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1770                                 r = -ENXIO;
1771                                 break;
1772                         }
1773                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1774                         break;
1775                 case KVM_REG_PPC_VSCR:
1776                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1777                                 r = -ENXIO;
1778                                 break;
1779                         }
1780                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1781                         break;
1782                 case KVM_REG_PPC_VRSAVE:
1783                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1784                                 r = -ENXIO;
1785                                 break;
1786                         }
1787                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1788                         break;
1789 #endif /* CONFIG_ALTIVEC */
1790                 default:
1791                         r = -EINVAL;
1792                         break;
1793                 }
1794         }
1795
1796         return r;
1797 }
1798
1799 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1800 {
1801         struct kvm_run *run = vcpu->run;
1802         int r;
1803
1804         vcpu_load(vcpu);
1805
1806         if (vcpu->mmio_needed) {
1807                 vcpu->mmio_needed = 0;
1808                 if (!vcpu->mmio_is_write)
1809                         kvmppc_complete_mmio_load(vcpu);
1810 #ifdef CONFIG_VSX
1811                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1812                         vcpu->arch.mmio_vsx_copy_nums--;
1813                         vcpu->arch.mmio_vsx_offset++;
1814                 }
1815
1816                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1817                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1818                         if (r == RESUME_HOST) {
1819                                 vcpu->mmio_needed = 1;
1820                                 goto out;
1821                         }
1822                 }
1823 #endif
1824 #ifdef CONFIG_ALTIVEC
1825                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1826                         vcpu->arch.mmio_vmx_copy_nums--;
1827                         vcpu->arch.mmio_vmx_offset++;
1828                 }
1829
1830                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1831                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1832                         if (r == RESUME_HOST) {
1833                                 vcpu->mmio_needed = 1;
1834                                 goto out;
1835                         }
1836                 }
1837 #endif
1838         } else if (vcpu->arch.osi_needed) {
1839                 u64 *gprs = run->osi.gprs;
1840                 int i;
1841
1842                 for (i = 0; i < 32; i++)
1843                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1844                 vcpu->arch.osi_needed = 0;
1845         } else if (vcpu->arch.hcall_needed) {
1846                 int i;
1847
1848                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1849                 for (i = 0; i < 9; ++i)
1850                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1851                 vcpu->arch.hcall_needed = 0;
1852 #ifdef CONFIG_BOOKE
1853         } else if (vcpu->arch.epr_needed) {
1854                 kvmppc_set_epr(vcpu, run->epr.epr);
1855                 vcpu->arch.epr_needed = 0;
1856 #endif
1857         }
1858
1859         kvm_sigset_activate(vcpu);
1860
1861         if (run->immediate_exit)
1862                 r = -EINTR;
1863         else
1864                 r = kvmppc_vcpu_run(vcpu);
1865
1866         kvm_sigset_deactivate(vcpu);
1867
1868 #ifdef CONFIG_ALTIVEC
1869 out:
1870 #endif
1871
1872         /*
1873          * We're already returning to userspace, don't pass the
1874          * RESUME_HOST flags along.
1875          */
1876         if (r > 0)
1877                 r = 0;
1878
1879         vcpu_put(vcpu);
1880         return r;
1881 }
1882
1883 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1884 {
1885         if (irq->irq == KVM_INTERRUPT_UNSET) {
1886                 kvmppc_core_dequeue_external(vcpu);
1887                 return 0;
1888         }
1889
1890         kvmppc_core_queue_external(vcpu, irq);
1891
1892         kvm_vcpu_kick(vcpu);
1893
1894         return 0;
1895 }
1896
1897 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1898                                      struct kvm_enable_cap *cap)
1899 {
1900         int r;
1901
1902         if (cap->flags)
1903                 return -EINVAL;
1904
1905         switch (cap->cap) {
1906         case KVM_CAP_PPC_OSI:
1907                 r = 0;
1908                 vcpu->arch.osi_enabled = true;
1909                 break;
1910         case KVM_CAP_PPC_PAPR:
1911                 r = 0;
1912                 vcpu->arch.papr_enabled = true;
1913                 break;
1914         case KVM_CAP_PPC_EPR:
1915                 r = 0;
1916                 if (cap->args[0])
1917                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1918                 else
1919                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1920                 break;
1921 #ifdef CONFIG_BOOKE
1922         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1923                 r = 0;
1924                 vcpu->arch.watchdog_enabled = true;
1925                 break;
1926 #endif
1927 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1928         case KVM_CAP_SW_TLB: {
1929                 struct kvm_config_tlb cfg;
1930                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1931
1932                 r = -EFAULT;
1933                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1934                         break;
1935
1936                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1937                 break;
1938         }
1939 #endif
1940 #ifdef CONFIG_KVM_MPIC
1941         case KVM_CAP_IRQ_MPIC: {
1942                 struct fd f;
1943                 struct kvm_device *dev;
1944
1945                 r = -EBADF;
1946                 f = fdget(cap->args[0]);
1947                 if (!f.file)
1948                         break;
1949
1950                 r = -EPERM;
1951                 dev = kvm_device_from_filp(f.file);
1952                 if (dev)
1953                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1954
1955                 fdput(f);
1956                 break;
1957         }
1958 #endif
1959 #ifdef CONFIG_KVM_XICS
1960         case KVM_CAP_IRQ_XICS: {
1961                 struct fd f;
1962                 struct kvm_device *dev;
1963
1964                 r = -EBADF;
1965                 f = fdget(cap->args[0]);
1966                 if (!f.file)
1967                         break;
1968
1969                 r = -EPERM;
1970                 dev = kvm_device_from_filp(f.file);
1971                 if (dev) {
1972                         if (xics_on_xive())
1973                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1974                         else
1975                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1976                 }
1977
1978                 fdput(f);
1979                 break;
1980         }
1981 #endif /* CONFIG_KVM_XICS */
1982 #ifdef CONFIG_KVM_XIVE
1983         case KVM_CAP_PPC_IRQ_XIVE: {
1984                 struct fd f;
1985                 struct kvm_device *dev;
1986
1987                 r = -EBADF;
1988                 f = fdget(cap->args[0]);
1989                 if (!f.file)
1990                         break;
1991
1992                 r = -ENXIO;
1993                 if (!xive_enabled())
1994                         break;
1995
1996                 r = -EPERM;
1997                 dev = kvm_device_from_filp(f.file);
1998                 if (dev)
1999                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
2000                                                             cap->args[1]);
2001
2002                 fdput(f);
2003                 break;
2004         }
2005 #endif /* CONFIG_KVM_XIVE */
2006 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2007         case KVM_CAP_PPC_FWNMI:
2008                 r = -EINVAL;
2009                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
2010                         break;
2011                 r = 0;
2012                 vcpu->kvm->arch.fwnmi_enabled = true;
2013                 break;
2014 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2015         default:
2016                 r = -EINVAL;
2017                 break;
2018         }
2019
2020         if (!r)
2021                 r = kvmppc_sanity_check(vcpu);
2022
2023         return r;
2024 }
2025
2026 bool kvm_arch_intc_initialized(struct kvm *kvm)
2027 {
2028 #ifdef CONFIG_KVM_MPIC
2029         if (kvm->arch.mpic)
2030                 return true;
2031 #endif
2032 #ifdef CONFIG_KVM_XICS
2033         if (kvm->arch.xics || kvm->arch.xive)
2034                 return true;
2035 #endif
2036         return false;
2037 }
2038
2039 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2040                                     struct kvm_mp_state *mp_state)
2041 {
2042         return -EINVAL;
2043 }
2044
2045 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2046                                     struct kvm_mp_state *mp_state)
2047 {
2048         return -EINVAL;
2049 }
2050
2051 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2052                                unsigned int ioctl, unsigned long arg)
2053 {
2054         struct kvm_vcpu *vcpu = filp->private_data;
2055         void __user *argp = (void __user *)arg;
2056
2057         if (ioctl == KVM_INTERRUPT) {
2058                 struct kvm_interrupt irq;
2059                 if (copy_from_user(&irq, argp, sizeof(irq)))
2060                         return -EFAULT;
2061                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2062         }
2063         return -ENOIOCTLCMD;
2064 }
2065
2066 long kvm_arch_vcpu_ioctl(struct file *filp,
2067                          unsigned int ioctl, unsigned long arg)
2068 {
2069         struct kvm_vcpu *vcpu = filp->private_data;
2070         void __user *argp = (void __user *)arg;
2071         long r;
2072
2073         switch (ioctl) {
2074         case KVM_ENABLE_CAP:
2075         {
2076                 struct kvm_enable_cap cap;
2077                 r = -EFAULT;
2078                 if (copy_from_user(&cap, argp, sizeof(cap)))
2079                         goto out;
2080                 vcpu_load(vcpu);
2081                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2082                 vcpu_put(vcpu);
2083                 break;
2084         }
2085
2086         case KVM_SET_ONE_REG:
2087         case KVM_GET_ONE_REG:
2088         {
2089                 struct kvm_one_reg reg;
2090                 r = -EFAULT;
2091                 if (copy_from_user(&reg, argp, sizeof(reg)))
2092                         goto out;
2093                 if (ioctl == KVM_SET_ONE_REG)
2094                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2095                 else
2096                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2097                 break;
2098         }
2099
2100 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2101         case KVM_DIRTY_TLB: {
2102                 struct kvm_dirty_tlb dirty;
2103                 r = -EFAULT;
2104                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2105                         goto out;
2106                 vcpu_load(vcpu);
2107                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2108                 vcpu_put(vcpu);
2109                 break;
2110         }
2111 #endif
2112         default:
2113                 r = -EINVAL;
2114         }
2115
2116 out:
2117         return r;
2118 }
2119
2120 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2121 {
2122         return VM_FAULT_SIGBUS;
2123 }
2124
2125 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2126 {
2127         u32 inst_nop = 0x60000000;
2128 #ifdef CONFIG_KVM_BOOKE_HV
2129         u32 inst_sc1 = 0x44000022;
2130         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2131         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2132         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2133         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2134 #else
2135         u32 inst_lis = 0x3c000000;
2136         u32 inst_ori = 0x60000000;
2137         u32 inst_sc = 0x44000002;
2138         u32 inst_imm_mask = 0xffff;
2139
2140         /*
2141          * The hypercall to get into KVM from within guest context is as
2142          * follows:
2143          *
2144          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2145          *    ori r0, KVM_SC_MAGIC_R0@l
2146          *    sc
2147          *    nop
2148          */
2149         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2150         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2151         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2152         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2153 #endif
2154
2155         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2156
2157         return 0;
2158 }
2159
2160 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2161 {
2162         int ret = 0;
2163
2164 #ifdef CONFIG_KVM_MPIC
2165         ret = ret || (kvm->arch.mpic != NULL);
2166 #endif
2167 #ifdef CONFIG_KVM_XICS
2168         ret = ret || (kvm->arch.xics != NULL);
2169         ret = ret || (kvm->arch.xive != NULL);
2170 #endif
2171         smp_rmb();
2172         return ret;
2173 }
2174
2175 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2176                           bool line_status)
2177 {
2178         if (!kvm_arch_irqchip_in_kernel(kvm))
2179                 return -ENXIO;
2180
2181         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2182                                         irq_event->irq, irq_event->level,
2183                                         line_status);
2184         return 0;
2185 }
2186
2187
2188 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2189                             struct kvm_enable_cap *cap)
2190 {
2191         int r;
2192
2193         if (cap->flags)
2194                 return -EINVAL;
2195
2196         switch (cap->cap) {
2197 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2198         case KVM_CAP_PPC_ENABLE_HCALL: {
2199                 unsigned long hcall = cap->args[0];
2200
2201                 r = -EINVAL;
2202                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2203                     cap->args[1] > 1)
2204                         break;
2205                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2206                         break;
2207                 if (cap->args[1])
2208                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2209                 else
2210                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2211                 r = 0;
2212                 break;
2213         }
2214         case KVM_CAP_PPC_SMT: {
2215                 unsigned long mode = cap->args[0];
2216                 unsigned long flags = cap->args[1];
2217
2218                 r = -EINVAL;
2219                 if (kvm->arch.kvm_ops->set_smt_mode)
2220                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2221                 break;
2222         }
2223
2224         case KVM_CAP_PPC_NESTED_HV:
2225                 r = -EINVAL;
2226                 if (!is_kvmppc_hv_enabled(kvm) ||
2227                     !kvm->arch.kvm_ops->enable_nested)
2228                         break;
2229                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2230                 break;
2231 #endif
2232 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2233         case KVM_CAP_PPC_SECURE_GUEST:
2234                 r = -EINVAL;
2235                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2236                         break;
2237                 r = kvm->arch.kvm_ops->enable_svm(kvm);
2238                 break;
2239         case KVM_CAP_PPC_DAWR1:
2240                 r = -EINVAL;
2241                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2242                         break;
2243                 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2244                 break;
2245 #endif
2246         default:
2247                 r = -EINVAL;
2248                 break;
2249         }
2250
2251         return r;
2252 }
2253
2254 #ifdef CONFIG_PPC_BOOK3S_64
2255 /*
2256  * These functions check whether the underlying hardware is safe
2257  * against attacks based on observing the effects of speculatively
2258  * executed instructions, and whether it supplies instructions for
2259  * use in workarounds.  The information comes from firmware, either
2260  * via the device tree on powernv platforms or from an hcall on
2261  * pseries platforms.
2262  */
2263 #ifdef CONFIG_PPC_PSERIES
2264 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2265 {
2266         struct h_cpu_char_result c;
2267         unsigned long rc;
2268
2269         if (!machine_is(pseries))
2270                 return -ENOTTY;
2271
2272         rc = plpar_get_cpu_characteristics(&c);
2273         if (rc == H_SUCCESS) {
2274                 cp->character = c.character;
2275                 cp->behaviour = c.behaviour;
2276                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2277                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2278                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2279                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2280                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2281                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2282                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2283                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2284                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2285                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2286                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2287                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2288                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2289         }
2290         return 0;
2291 }
2292 #else
2293 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2294 {
2295         return -ENOTTY;
2296 }
2297 #endif
2298
2299 static inline bool have_fw_feat(struct device_node *fw_features,
2300                                 const char *state, const char *name)
2301 {
2302         struct device_node *np;
2303         bool r = false;
2304
2305         np = of_get_child_by_name(fw_features, name);
2306         if (np) {
2307                 r = of_property_read_bool(np, state);
2308                 of_node_put(np);
2309         }
2310         return r;
2311 }
2312
2313 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2314 {
2315         struct device_node *np, *fw_features;
2316         int r;
2317
2318         memset(cp, 0, sizeof(*cp));
2319         r = pseries_get_cpu_char(cp);
2320         if (r != -ENOTTY)
2321                 return r;
2322
2323         np = of_find_node_by_name(NULL, "ibm,opal");
2324         if (np) {
2325                 fw_features = of_get_child_by_name(np, "fw-features");
2326                 of_node_put(np);
2327                 if (!fw_features)
2328                         return 0;
2329                 if (have_fw_feat(fw_features, "enabled",
2330                                  "inst-spec-barrier-ori31,31,0"))
2331                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2332                 if (have_fw_feat(fw_features, "enabled",
2333                                  "fw-bcctrl-serialized"))
2334                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2335                 if (have_fw_feat(fw_features, "enabled",
2336                                  "inst-l1d-flush-ori30,30,0"))
2337                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2338                 if (have_fw_feat(fw_features, "enabled",
2339                                  "inst-l1d-flush-trig2"))
2340                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2341                 if (have_fw_feat(fw_features, "enabled",
2342                                  "fw-l1d-thread-split"))
2343                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2344                 if (have_fw_feat(fw_features, "enabled",
2345                                  "fw-count-cache-disabled"))
2346                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2347                 if (have_fw_feat(fw_features, "enabled",
2348                                  "fw-count-cache-flush-bcctr2,0,0"))
2349                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2350                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2351                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2352                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2353                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2354                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2355                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2356                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2357
2358                 if (have_fw_feat(fw_features, "enabled",
2359                                  "speculation-policy-favor-security"))
2360                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2361                 if (!have_fw_feat(fw_features, "disabled",
2362                                   "needs-l1d-flush-msr-pr-0-to-1"))
2363                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2364                 if (!have_fw_feat(fw_features, "disabled",
2365                                   "needs-spec-barrier-for-bound-checks"))
2366                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2367                 if (have_fw_feat(fw_features, "enabled",
2368                                  "needs-count-cache-flush-on-context-switch"))
2369                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2370                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2371                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2372                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2373                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2374
2375                 of_node_put(fw_features);
2376         }
2377
2378         return 0;
2379 }
2380 #endif
2381
2382 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2383 {
2384         struct kvm *kvm __maybe_unused = filp->private_data;
2385         void __user *argp = (void __user *)arg;
2386         int r;
2387
2388         switch (ioctl) {
2389         case KVM_PPC_GET_PVINFO: {
2390                 struct kvm_ppc_pvinfo pvinfo;
2391                 memset(&pvinfo, 0, sizeof(pvinfo));
2392                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2393                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2394                         r = -EFAULT;
2395                         goto out;
2396                 }
2397
2398                 break;
2399         }
2400 #ifdef CONFIG_SPAPR_TCE_IOMMU
2401         case KVM_CREATE_SPAPR_TCE_64: {
2402                 struct kvm_create_spapr_tce_64 create_tce_64;
2403
2404                 r = -EFAULT;
2405                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2406                         goto out;
2407                 if (create_tce_64.flags) {
2408                         r = -EINVAL;
2409                         goto out;
2410                 }
2411                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2412                 goto out;
2413         }
2414         case KVM_CREATE_SPAPR_TCE: {
2415                 struct kvm_create_spapr_tce create_tce;
2416                 struct kvm_create_spapr_tce_64 create_tce_64;
2417
2418                 r = -EFAULT;
2419                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2420                         goto out;
2421
2422                 create_tce_64.liobn = create_tce.liobn;
2423                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2424                 create_tce_64.offset = 0;
2425                 create_tce_64.size = create_tce.window_size >>
2426                                 IOMMU_PAGE_SHIFT_4K;
2427                 create_tce_64.flags = 0;
2428                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2429                 goto out;
2430         }
2431 #endif
2432 #ifdef CONFIG_PPC_BOOK3S_64
2433         case KVM_PPC_GET_SMMU_INFO: {
2434                 struct kvm_ppc_smmu_info info;
2435                 struct kvm *kvm = filp->private_data;
2436
2437                 memset(&info, 0, sizeof(info));
2438                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2439                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2440                         r = -EFAULT;
2441                 break;
2442         }
2443         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2444                 struct kvm *kvm = filp->private_data;
2445
2446                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2447                 break;
2448         }
2449         case KVM_PPC_CONFIGURE_V3_MMU: {
2450                 struct kvm *kvm = filp->private_data;
2451                 struct kvm_ppc_mmuv3_cfg cfg;
2452
2453                 r = -EINVAL;
2454                 if (!kvm->arch.kvm_ops->configure_mmu)
2455                         goto out;
2456                 r = -EFAULT;
2457                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2458                         goto out;
2459                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2460                 break;
2461         }
2462         case KVM_PPC_GET_RMMU_INFO: {
2463                 struct kvm *kvm = filp->private_data;
2464                 struct kvm_ppc_rmmu_info info;
2465
2466                 r = -EINVAL;
2467                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2468                         goto out;
2469                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2470                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2471                         r = -EFAULT;
2472                 break;
2473         }
2474         case KVM_PPC_GET_CPU_CHAR: {
2475                 struct kvm_ppc_cpu_char cpuchar;
2476
2477                 r = kvmppc_get_cpu_char(&cpuchar);
2478                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2479                         r = -EFAULT;
2480                 break;
2481         }
2482         case KVM_PPC_SVM_OFF: {
2483                 struct kvm *kvm = filp->private_data;
2484
2485                 r = 0;
2486                 if (!kvm->arch.kvm_ops->svm_off)
2487                         goto out;
2488
2489                 r = kvm->arch.kvm_ops->svm_off(kvm);
2490                 break;
2491         }
2492         default: {
2493                 struct kvm *kvm = filp->private_data;
2494                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2495         }
2496 #else /* CONFIG_PPC_BOOK3S_64 */
2497         default:
2498                 r = -ENOTTY;
2499 #endif
2500         }
2501 out:
2502         return r;
2503 }
2504
2505 static DEFINE_IDA(lpid_inuse);
2506 static unsigned long nr_lpids;
2507
2508 long kvmppc_alloc_lpid(void)
2509 {
2510         int lpid;
2511
2512         /* The host LPID must always be 0 (allocation starts at 1) */
2513         lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2514         if (lpid < 0) {
2515                 if (lpid == -ENOMEM)
2516                         pr_err("%s: Out of memory\n", __func__);
2517                 else
2518                         pr_err("%s: No LPIDs free\n", __func__);
2519                 return -ENOMEM;
2520         }
2521
2522         return lpid;
2523 }
2524 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2525
2526 void kvmppc_free_lpid(long lpid)
2527 {
2528         ida_free(&lpid_inuse, lpid);
2529 }
2530 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2531
2532 /* nr_lpids_param includes the host LPID */
2533 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2534 {
2535         nr_lpids = nr_lpids_param;
2536 }
2537 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2538
2539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2540
2541 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2542 {
2543         if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2544                 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2545 }
2546
2547 int kvm_arch_create_vm_debugfs(struct kvm *kvm)
2548 {
2549         if (kvm->arch.kvm_ops->create_vm_debugfs)
2550                 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2551         return 0;
2552 }