arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / powerpc / kvm / book3s_hv_uvmem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Secure pages management: Migration of pages between normal and secure
4  * memory of KVM guests.
5  *
6  * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7  */
8
9 /*
10  * A pseries guest can be run as secure guest on Ultravisor-enabled
11  * POWER platforms. On such platforms, this driver will be used to manage
12  * the movement of guest pages between the normal memory managed by
13  * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14  *
15  * The page-in or page-out requests from UV will come to HV as hcalls and
16  * HV will call back into UV via ultracalls to satisfy these page requests.
17  *
18  * Private ZONE_DEVICE memory equal to the amount of secure memory
19  * available in the platform for running secure guests is hotplugged.
20  * Whenever a page belonging to the guest becomes secure, a page from this
21  * private device memory is used to represent and track that secure page
22  * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23  * shared between UV and HV. However such pages aren't represented by
24  * device private memory and mappings to shared memory exist in both
25  * UV and HV page tables.
26  */
27
28 /*
29  * Notes on locking
30  *
31  * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32  * page-in and page-out requests for the same GPA. Concurrent accesses
33  * can either come via UV (guest vCPUs requesting for same page)
34  * or when HV and guest simultaneously access the same page.
35  * This mutex serializes the migration of page from HV(normal) to
36  * UV(secure) and vice versa. So the serialization points are around
37  * migrate_vma routines and page-in/out routines.
38  *
39  * Per-guest mutex comes with a cost though. Mainly it serializes the
40  * fault path as page-out can occur when HV faults on accessing secure
41  * guest pages. Currently UV issues page-in requests for all the guest
42  * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43  * not a cause for concern. Also currently the number of page-outs caused
44  * by HV touching secure pages is very very low. If an when UV supports
45  * overcommitting, then we might see concurrent guest driven page-outs.
46  *
47  * Locking order
48  *
49  * 1. kvm->srcu - Protects KVM memslots
50  * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51  * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52  *                           as sync-points for page-in/out
53  */
54
55 /*
56  * Notes on page size
57  *
58  * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59  * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60  * secure GPAs at 64K page size and maintains one device PFN for each
61  * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62  * for 64K page at a time.
63  *
64  * HV faulting on secure pages: When HV touches any secure page, it
65  * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66  * UV splits and remaps the 2MB page if necessary and copies out the
67  * required 64K page contents.
68  *
69  * Shared pages: Whenever guest shares a secure page, UV will split and
70  * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71  *
72  * HV invalidating a page: When a regular page belonging to secure
73  * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74  * page size. Using 64K page size is correct here because any non-secure
75  * page will essentially be of 64K page size. Splitting by UV during sharing
76  * and page-out ensures this.
77  *
78  * Page fault handling: When HV handles page fault of a page belonging
79  * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80  * Using 64K size is correct here too as UV would have split the 2MB page
81  * into 64k mappings and would have done page-outs earlier.
82  *
83  * In summary, the current secure pages handling code in HV assumes
84  * 64K page size and in fact fails any page-in/page-out requests of
85  * non-64K size upfront. If and when UV starts supporting multiple
86  * page-sizes, we need to break this assumption.
87  */
88
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <linux/of.h>
94 #include <linux/memremap.h>
95 #include <asm/ultravisor.h>
96 #include <asm/mman.h>
97 #include <asm/kvm_ppc.h>
98 #include <asm/kvm_book3s_uvmem.h>
99
100 static struct dev_pagemap kvmppc_uvmem_pgmap;
101 static unsigned long *kvmppc_uvmem_bitmap;
102 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
103
104 /*
105  * States of a GFN
106  * ---------------
107  * The GFN can be in one of the following states.
108  *
109  * (a) Secure - The GFN is secure. The GFN is associated with
110  *      a Secure VM, the contents of the GFN is not accessible
111  *      to the Hypervisor.  This GFN can be backed by a secure-PFN,
112  *      or can be backed by a normal-PFN with contents encrypted.
113  *      The former is true when the GFN is paged-in into the
114  *      ultravisor. The latter is true when the GFN is paged-out
115  *      of the ultravisor.
116  *
117  * (b) Shared - The GFN is shared. The GFN is associated with a
118  *      a secure VM. The contents of the GFN is accessible to
119  *      Hypervisor. This GFN is backed by a normal-PFN and its
120  *      content is un-encrypted.
121  *
122  * (c) Normal - The GFN is a normal. The GFN is associated with
123  *      a normal VM. The contents of the GFN is accessible to
124  *      the Hypervisor. Its content is never encrypted.
125  *
126  * States of a VM.
127  * ---------------
128  *
129  * Normal VM:  A VM whose contents are always accessible to
130  *      the hypervisor.  All its GFNs are normal-GFNs.
131  *
132  * Secure VM: A VM whose contents are not accessible to the
133  *      hypervisor without the VM's consent.  Its GFNs are
134  *      either Shared-GFN or Secure-GFNs.
135  *
136  * Transient VM: A Normal VM that is transitioning to secure VM.
137  *      The transition starts on successful return of
138  *      H_SVM_INIT_START, and ends on successful return
139  *      of H_SVM_INIT_DONE. This transient VM, can have GFNs
140  *      in any of the three states; i.e Secure-GFN, Shared-GFN,
141  *      and Normal-GFN. The VM never executes in this state
142  *      in supervisor-mode.
143  *
144  * Memory slot State.
145  * -----------------------------
146  *      The state of a memory slot mirrors the state of the
147  *      VM the memory slot is associated with.
148  *
149  * VM State transition.
150  * --------------------
151  *
152  *  A VM always starts in Normal Mode.
153  *
154  *  H_SVM_INIT_START moves the VM into transient state. During this
155  *  time the Ultravisor may request some of its GFNs to be shared or
156  *  secured. So its GFNs can be in one of the three GFN states.
157  *
158  *  H_SVM_INIT_DONE moves the VM entirely from transient state to
159  *  secure-state. At this point any left-over normal-GFNs are
160  *  transitioned to Secure-GFN.
161  *
162  *  H_SVM_INIT_ABORT moves the transient VM back to normal VM.
163  *  All its GFNs are moved to Normal-GFNs.
164  *
165  *  UV_TERMINATE transitions the secure-VM back to normal-VM. All
166  *  the secure-GFN and shared-GFNs are tranistioned to normal-GFN
167  *  Note: The contents of the normal-GFN is undefined at this point.
168  *
169  * GFN state implementation:
170  * -------------------------
171  *
172  * Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
173  * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
174  * set, and contains the value of the secure-PFN.
175  * It is associated with a normal-PFN; also called mem_pfn, when
176  * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
177  * The value of the normal-PFN is not tracked.
178  *
179  * Shared GFN is associated with a normal-PFN. Its pfn[] has
180  * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
181  * is not tracked.
182  *
183  * Normal GFN is associated with normal-PFN. Its pfn[] has
184  * no flag set. The value of the normal-PFN is not tracked.
185  *
186  * Life cycle of a GFN
187  * --------------------
188  *
189  * --------------------------------------------------------------
190  * |        |     Share  |  Unshare | SVM       |H_SVM_INIT_DONE|
191  * |        |operation   |operation | abort/    |               |
192  * |        |            |          | terminate |               |
193  * -------------------------------------------------------------
194  * |        |            |          |           |               |
195  * | Secure |     Shared | Secure   |Normal     |Secure         |
196  * |        |            |          |           |               |
197  * | Shared |     Shared | Secure   |Normal     |Shared         |
198  * |        |            |          |           |               |
199  * | Normal |     Shared | Secure   |Normal     |Secure         |
200  * --------------------------------------------------------------
201  *
202  * Life cycle of a VM
203  * --------------------
204  *
205  * --------------------------------------------------------------------
206  * |         |  start    |  H_SVM_  |H_SVM_   |H_SVM_     |UV_SVM_    |
207  * |         |  VM       |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE  |
208  * |         |           |          |         |           |           |
209  * --------- ----------------------------------------------------------
210  * |         |           |          |         |           |           |
211  * | Normal  | Normal    | Transient|Error    |Error      |Normal     |
212  * |         |           |          |         |           |           |
213  * | Secure  |   Error   | Error    |Error    |Error      |Normal     |
214  * |         |           |          |         |           |           |
215  * |Transient|   N/A     | Error    |Secure   |Normal     |Normal     |
216  * --------------------------------------------------------------------
217  */
218
219 #define KVMPPC_GFN_UVMEM_PFN    (1UL << 63)
220 #define KVMPPC_GFN_MEM_PFN      (1UL << 62)
221 #define KVMPPC_GFN_SHARED       (1UL << 61)
222 #define KVMPPC_GFN_SECURE       (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
223 #define KVMPPC_GFN_FLAG_MASK    (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
224 #define KVMPPC_GFN_PFN_MASK     (~KVMPPC_GFN_FLAG_MASK)
225
226 struct kvmppc_uvmem_slot {
227         struct list_head list;
228         unsigned long nr_pfns;
229         unsigned long base_pfn;
230         unsigned long *pfns;
231 };
232 struct kvmppc_uvmem_page_pvt {
233         struct kvm *kvm;
234         unsigned long gpa;
235         bool skip_page_out;
236         bool remove_gfn;
237 };
238
239 bool kvmppc_uvmem_available(void)
240 {
241         /*
242          * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
243          * and our data structures have been initialized successfully.
244          */
245         return !!kvmppc_uvmem_bitmap;
246 }
247
248 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
249 {
250         struct kvmppc_uvmem_slot *p;
251
252         p = kzalloc(sizeof(*p), GFP_KERNEL);
253         if (!p)
254                 return -ENOMEM;
255         p->pfns = vcalloc(slot->npages, sizeof(*p->pfns));
256         if (!p->pfns) {
257                 kfree(p);
258                 return -ENOMEM;
259         }
260         p->nr_pfns = slot->npages;
261         p->base_pfn = slot->base_gfn;
262
263         mutex_lock(&kvm->arch.uvmem_lock);
264         list_add(&p->list, &kvm->arch.uvmem_pfns);
265         mutex_unlock(&kvm->arch.uvmem_lock);
266
267         return 0;
268 }
269
270 /*
271  * All device PFNs are already released by the time we come here.
272  */
273 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
274 {
275         struct kvmppc_uvmem_slot *p, *next;
276
277         mutex_lock(&kvm->arch.uvmem_lock);
278         list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
279                 if (p->base_pfn == slot->base_gfn) {
280                         vfree(p->pfns);
281                         list_del(&p->list);
282                         kfree(p);
283                         break;
284                 }
285         }
286         mutex_unlock(&kvm->arch.uvmem_lock);
287 }
288
289 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
290                         unsigned long flag, unsigned long uvmem_pfn)
291 {
292         struct kvmppc_uvmem_slot *p;
293
294         list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
295                 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
296                         unsigned long index = gfn - p->base_pfn;
297
298                         if (flag == KVMPPC_GFN_UVMEM_PFN)
299                                 p->pfns[index] = uvmem_pfn | flag;
300                         else
301                                 p->pfns[index] = flag;
302                         return;
303                 }
304         }
305 }
306
307 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
308 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
309                         unsigned long uvmem_pfn, struct kvm *kvm)
310 {
311         kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
312 }
313
314 /* mark the GFN as secure-GFN associated with a memory-PFN. */
315 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
316 {
317         kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
318 }
319
320 /* mark the GFN as a shared GFN. */
321 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
322 {
323         kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
324 }
325
326 /* mark the GFN as a non-existent GFN. */
327 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
328 {
329         kvmppc_mark_gfn(gfn, kvm, 0, 0);
330 }
331
332 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */
333 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
334                                     unsigned long *uvmem_pfn)
335 {
336         struct kvmppc_uvmem_slot *p;
337
338         list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
339                 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
340                         unsigned long index = gfn - p->base_pfn;
341
342                         if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
343                                 if (uvmem_pfn)
344                                         *uvmem_pfn = p->pfns[index] &
345                                                      KVMPPC_GFN_PFN_MASK;
346                                 return true;
347                         } else
348                                 return false;
349                 }
350         }
351         return false;
352 }
353
354 /*
355  * starting from *gfn search for the next available GFN that is not yet
356  * transitioned to a secure GFN.  return the value of that GFN in *gfn.  If a
357  * GFN is found, return true, else return false
358  *
359  * Must be called with kvm->arch.uvmem_lock  held.
360  */
361 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
362                 struct kvm *kvm, unsigned long *gfn)
363 {
364         struct kvmppc_uvmem_slot *p = NULL, *iter;
365         bool ret = false;
366         unsigned long i;
367
368         list_for_each_entry(iter, &kvm->arch.uvmem_pfns, list)
369                 if (*gfn >= iter->base_pfn && *gfn < iter->base_pfn + iter->nr_pfns) {
370                         p = iter;
371                         break;
372                 }
373         if (!p)
374                 return ret;
375         /*
376          * The code below assumes, one to one correspondence between
377          * kvmppc_uvmem_slot and memslot.
378          */
379         for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
380                 unsigned long index = i - p->base_pfn;
381
382                 if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
383                         *gfn = i;
384                         ret = true;
385                         break;
386                 }
387         }
388         return ret;
389 }
390
391 static int kvmppc_memslot_page_merge(struct kvm *kvm,
392                 const struct kvm_memory_slot *memslot, bool merge)
393 {
394         unsigned long gfn = memslot->base_gfn;
395         unsigned long end, start = gfn_to_hva(kvm, gfn);
396         unsigned long vm_flags;
397         int ret = 0;
398         struct vm_area_struct *vma;
399         int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
400
401         if (kvm_is_error_hva(start))
402                 return H_STATE;
403
404         end = start + (memslot->npages << PAGE_SHIFT);
405
406         mmap_write_lock(kvm->mm);
407         do {
408                 vma = find_vma_intersection(kvm->mm, start, end);
409                 if (!vma) {
410                         ret = H_STATE;
411                         break;
412                 }
413                 vma_start_write(vma);
414                 /* Copy vm_flags to avoid partial modifications in ksm_madvise */
415                 vm_flags = vma->vm_flags;
416                 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
417                           merge_flag, &vm_flags);
418                 if (ret) {
419                         ret = H_STATE;
420                         break;
421                 }
422                 vm_flags_reset(vma, vm_flags);
423                 start = vma->vm_end;
424         } while (end > vma->vm_end);
425
426         mmap_write_unlock(kvm->mm);
427         return ret;
428 }
429
430 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
431                 const struct kvm_memory_slot *memslot)
432 {
433         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
434         kvmppc_uvmem_slot_free(kvm, memslot);
435         kvmppc_memslot_page_merge(kvm, memslot, true);
436 }
437
438 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
439                 const struct kvm_memory_slot *memslot)
440 {
441         int ret = H_PARAMETER;
442
443         if (kvmppc_memslot_page_merge(kvm, memslot, false))
444                 return ret;
445
446         if (kvmppc_uvmem_slot_init(kvm, memslot))
447                 goto out1;
448
449         ret = uv_register_mem_slot(kvm->arch.lpid,
450                                    memslot->base_gfn << PAGE_SHIFT,
451                                    memslot->npages * PAGE_SIZE,
452                                    0, memslot->id);
453         if (ret < 0) {
454                 ret = H_PARAMETER;
455                 goto out;
456         }
457         return 0;
458 out:
459         kvmppc_uvmem_slot_free(kvm, memslot);
460 out1:
461         kvmppc_memslot_page_merge(kvm, memslot, true);
462         return ret;
463 }
464
465 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
466 {
467         struct kvm_memslots *slots;
468         struct kvm_memory_slot *memslot, *m;
469         int ret = H_SUCCESS;
470         int srcu_idx, bkt;
471
472         kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
473
474         if (!kvmppc_uvmem_bitmap)
475                 return H_UNSUPPORTED;
476
477         /* Only radix guests can be secure guests */
478         if (!kvm_is_radix(kvm))
479                 return H_UNSUPPORTED;
480
481         /* NAK the transition to secure if not enabled */
482         if (!kvm->arch.svm_enabled)
483                 return H_AUTHORITY;
484
485         srcu_idx = srcu_read_lock(&kvm->srcu);
486
487         /* register the memslot */
488         slots = kvm_memslots(kvm);
489         kvm_for_each_memslot(memslot, bkt, slots) {
490                 ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
491                 if (ret)
492                         break;
493         }
494
495         if (ret) {
496                 slots = kvm_memslots(kvm);
497                 kvm_for_each_memslot(m, bkt, slots) {
498                         if (m == memslot)
499                                 break;
500                         __kvmppc_uvmem_memslot_delete(kvm, memslot);
501                 }
502         }
503
504         srcu_read_unlock(&kvm->srcu, srcu_idx);
505         return ret;
506 }
507
508 /*
509  * Provision a new page on HV side and copy over the contents
510  * from secure memory using UV_PAGE_OUT uvcall.
511  * Caller must held kvm->arch.uvmem_lock.
512  */
513 static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
514                 unsigned long start,
515                 unsigned long end, unsigned long page_shift,
516                 struct kvm *kvm, unsigned long gpa, struct page *fault_page)
517 {
518         unsigned long src_pfn, dst_pfn = 0;
519         struct migrate_vma mig = { 0 };
520         struct page *dpage, *spage;
521         struct kvmppc_uvmem_page_pvt *pvt;
522         unsigned long pfn;
523         int ret = U_SUCCESS;
524
525         memset(&mig, 0, sizeof(mig));
526         mig.vma = vma;
527         mig.start = start;
528         mig.end = end;
529         mig.src = &src_pfn;
530         mig.dst = &dst_pfn;
531         mig.pgmap_owner = &kvmppc_uvmem_pgmap;
532         mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
533         mig.fault_page = fault_page;
534
535         /* The requested page is already paged-out, nothing to do */
536         if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
537                 return ret;
538
539         ret = migrate_vma_setup(&mig);
540         if (ret)
541                 return -1;
542
543         spage = migrate_pfn_to_page(*mig.src);
544         if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
545                 goto out_finalize;
546
547         if (!is_zone_device_page(spage))
548                 goto out_finalize;
549
550         dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
551         if (!dpage) {
552                 ret = -1;
553                 goto out_finalize;
554         }
555
556         lock_page(dpage);
557         pvt = spage->zone_device_data;
558         pfn = page_to_pfn(dpage);
559
560         /*
561          * This function is used in two cases:
562          * - When HV touches a secure page, for which we do UV_PAGE_OUT
563          * - When a secure page is converted to shared page, we *get*
564          *   the page to essentially unmap the device page. In this
565          *   case we skip page-out.
566          */
567         if (!pvt->skip_page_out)
568                 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
569                                   gpa, 0, page_shift);
570
571         if (ret == U_SUCCESS)
572                 *mig.dst = migrate_pfn(pfn);
573         else {
574                 unlock_page(dpage);
575                 __free_page(dpage);
576                 goto out_finalize;
577         }
578
579         migrate_vma_pages(&mig);
580
581 out_finalize:
582         migrate_vma_finalize(&mig);
583         return ret;
584 }
585
586 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
587                                       unsigned long start, unsigned long end,
588                                       unsigned long page_shift,
589                                       struct kvm *kvm, unsigned long gpa,
590                                       struct page *fault_page)
591 {
592         int ret;
593
594         mutex_lock(&kvm->arch.uvmem_lock);
595         ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa,
596                                 fault_page);
597         mutex_unlock(&kvm->arch.uvmem_lock);
598
599         return ret;
600 }
601
602 /*
603  * Drop device pages that we maintain for the secure guest
604  *
605  * We first mark the pages to be skipped from UV_PAGE_OUT when there
606  * is HV side fault on these pages. Next we *get* these pages, forcing
607  * fault on them, do fault time migration to replace the device PTEs in
608  * QEMU page table with normal PTEs from newly allocated pages.
609  */
610 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
611                              struct kvm *kvm, bool skip_page_out)
612 {
613         int i;
614         struct kvmppc_uvmem_page_pvt *pvt;
615         struct page *uvmem_page;
616         struct vm_area_struct *vma = NULL;
617         unsigned long uvmem_pfn, gfn;
618         unsigned long addr;
619
620         mmap_read_lock(kvm->mm);
621
622         addr = slot->userspace_addr;
623
624         gfn = slot->base_gfn;
625         for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
626
627                 /* Fetch the VMA if addr is not in the latest fetched one */
628                 if (!vma || addr >= vma->vm_end) {
629                         vma = vma_lookup(kvm->mm, addr);
630                         if (!vma) {
631                                 pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
632                                 break;
633                         }
634                 }
635
636                 mutex_lock(&kvm->arch.uvmem_lock);
637
638                 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
639                         uvmem_page = pfn_to_page(uvmem_pfn);
640                         pvt = uvmem_page->zone_device_data;
641                         pvt->skip_page_out = skip_page_out;
642                         pvt->remove_gfn = true;
643
644                         if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
645                                                   PAGE_SHIFT, kvm, pvt->gpa, NULL))
646                                 pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
647                                        pvt->gpa, addr);
648                 } else {
649                         /* Remove the shared flag if any */
650                         kvmppc_gfn_remove(gfn, kvm);
651                 }
652
653                 mutex_unlock(&kvm->arch.uvmem_lock);
654         }
655
656         mmap_read_unlock(kvm->mm);
657 }
658
659 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
660 {
661         int srcu_idx, bkt;
662         struct kvm_memory_slot *memslot;
663
664         /*
665          * Expect to be called only after INIT_START and before INIT_DONE.
666          * If INIT_DONE was completed, use normal VM termination sequence.
667          */
668         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
669                 return H_UNSUPPORTED;
670
671         if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
672                 return H_STATE;
673
674         srcu_idx = srcu_read_lock(&kvm->srcu);
675
676         kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
677                 kvmppc_uvmem_drop_pages(memslot, kvm, false);
678
679         srcu_read_unlock(&kvm->srcu, srcu_idx);
680
681         kvm->arch.secure_guest = 0;
682         uv_svm_terminate(kvm->arch.lpid);
683
684         return H_PARAMETER;
685 }
686
687 /*
688  * Get a free device PFN from the pool
689  *
690  * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
691  * PFN will be used to keep track of the secure page on HV side.
692  *
693  * Called with kvm->arch.uvmem_lock held
694  */
695 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
696 {
697         struct page *dpage = NULL;
698         unsigned long bit, uvmem_pfn;
699         struct kvmppc_uvmem_page_pvt *pvt;
700         unsigned long pfn_last, pfn_first;
701
702         pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
703         pfn_last = pfn_first +
704                    (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
705
706         spin_lock(&kvmppc_uvmem_bitmap_lock);
707         bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
708                                   pfn_last - pfn_first);
709         if (bit >= (pfn_last - pfn_first))
710                 goto out;
711         bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
712         spin_unlock(&kvmppc_uvmem_bitmap_lock);
713
714         pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
715         if (!pvt)
716                 goto out_clear;
717
718         uvmem_pfn = bit + pfn_first;
719         kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
720
721         pvt->gpa = gpa;
722         pvt->kvm = kvm;
723
724         dpage = pfn_to_page(uvmem_pfn);
725         dpage->zone_device_data = pvt;
726         zone_device_page_init(dpage);
727         return dpage;
728 out_clear:
729         spin_lock(&kvmppc_uvmem_bitmap_lock);
730         bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
731 out:
732         spin_unlock(&kvmppc_uvmem_bitmap_lock);
733         return NULL;
734 }
735
736 /*
737  * Alloc a PFN from private device memory pool. If @pagein is true,
738  * copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
739  */
740 static int kvmppc_svm_page_in(struct vm_area_struct *vma,
741                 unsigned long start,
742                 unsigned long end, unsigned long gpa, struct kvm *kvm,
743                 unsigned long page_shift,
744                 bool pagein)
745 {
746         unsigned long src_pfn, dst_pfn = 0;
747         struct migrate_vma mig = { 0 };
748         struct page *spage;
749         unsigned long pfn;
750         struct page *dpage;
751         int ret = 0;
752
753         memset(&mig, 0, sizeof(mig));
754         mig.vma = vma;
755         mig.start = start;
756         mig.end = end;
757         mig.src = &src_pfn;
758         mig.dst = &dst_pfn;
759         mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
760
761         ret = migrate_vma_setup(&mig);
762         if (ret)
763                 return ret;
764
765         if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
766                 ret = -1;
767                 goto out_finalize;
768         }
769
770         dpage = kvmppc_uvmem_get_page(gpa, kvm);
771         if (!dpage) {
772                 ret = -1;
773                 goto out_finalize;
774         }
775
776         if (pagein) {
777                 pfn = *mig.src >> MIGRATE_PFN_SHIFT;
778                 spage = migrate_pfn_to_page(*mig.src);
779                 if (spage) {
780                         ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
781                                         gpa, 0, page_shift);
782                         if (ret)
783                                 goto out_finalize;
784                 }
785         }
786
787         *mig.dst = migrate_pfn(page_to_pfn(dpage));
788         migrate_vma_pages(&mig);
789 out_finalize:
790         migrate_vma_finalize(&mig);
791         return ret;
792 }
793
794 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
795                 const struct kvm_memory_slot *memslot)
796 {
797         unsigned long gfn = memslot->base_gfn;
798         struct vm_area_struct *vma;
799         unsigned long start, end;
800         int ret = 0;
801
802         mmap_read_lock(kvm->mm);
803         mutex_lock(&kvm->arch.uvmem_lock);
804         while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
805                 ret = H_STATE;
806                 start = gfn_to_hva(kvm, gfn);
807                 if (kvm_is_error_hva(start))
808                         break;
809
810                 end = start + (1UL << PAGE_SHIFT);
811                 vma = find_vma_intersection(kvm->mm, start, end);
812                 if (!vma || vma->vm_start > start || vma->vm_end < end)
813                         break;
814
815                 ret = kvmppc_svm_page_in(vma, start, end,
816                                 (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
817                 if (ret) {
818                         ret = H_STATE;
819                         break;
820                 }
821
822                 /* relinquish the cpu if needed */
823                 cond_resched();
824         }
825         mutex_unlock(&kvm->arch.uvmem_lock);
826         mmap_read_unlock(kvm->mm);
827         return ret;
828 }
829
830 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
831 {
832         struct kvm_memslots *slots;
833         struct kvm_memory_slot *memslot;
834         int srcu_idx, bkt;
835         long ret = H_SUCCESS;
836
837         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
838                 return H_UNSUPPORTED;
839
840         /* migrate any unmoved normal pfn to device pfns*/
841         srcu_idx = srcu_read_lock(&kvm->srcu);
842         slots = kvm_memslots(kvm);
843         kvm_for_each_memslot(memslot, bkt, slots) {
844                 ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
845                 if (ret) {
846                         /*
847                          * The pages will remain transitioned.
848                          * Its the callers responsibility to
849                          * terminate the VM, which will undo
850                          * all state of the VM. Till then
851                          * this VM is in a erroneous state.
852                          * Its KVMPPC_SECURE_INIT_DONE will
853                          * remain unset.
854                          */
855                         ret = H_STATE;
856                         goto out;
857                 }
858         }
859
860         kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
861         pr_info("LPID %lld went secure\n", kvm->arch.lpid);
862
863 out:
864         srcu_read_unlock(&kvm->srcu, srcu_idx);
865         return ret;
866 }
867
868 /*
869  * Shares the page with HV, thus making it a normal page.
870  *
871  * - If the page is already secure, then provision a new page and share
872  * - If the page is a normal page, share the existing page
873  *
874  * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
875  * to unmap the device page from QEMU's page tables.
876  */
877 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
878                 unsigned long page_shift)
879 {
880
881         int ret = H_PARAMETER;
882         struct page *uvmem_page;
883         struct kvmppc_uvmem_page_pvt *pvt;
884         unsigned long pfn;
885         unsigned long gfn = gpa >> page_shift;
886         int srcu_idx;
887         unsigned long uvmem_pfn;
888
889         srcu_idx = srcu_read_lock(&kvm->srcu);
890         mutex_lock(&kvm->arch.uvmem_lock);
891         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
892                 uvmem_page = pfn_to_page(uvmem_pfn);
893                 pvt = uvmem_page->zone_device_data;
894                 pvt->skip_page_out = true;
895                 /*
896                  * do not drop the GFN. It is a valid GFN
897                  * that is transitioned to a shared GFN.
898                  */
899                 pvt->remove_gfn = false;
900         }
901
902 retry:
903         mutex_unlock(&kvm->arch.uvmem_lock);
904         pfn = gfn_to_pfn(kvm, gfn);
905         if (is_error_noslot_pfn(pfn))
906                 goto out;
907
908         mutex_lock(&kvm->arch.uvmem_lock);
909         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
910                 uvmem_page = pfn_to_page(uvmem_pfn);
911                 pvt = uvmem_page->zone_device_data;
912                 pvt->skip_page_out = true;
913                 pvt->remove_gfn = false; /* it continues to be a valid GFN */
914                 kvm_release_pfn_clean(pfn);
915                 goto retry;
916         }
917
918         if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
919                                 page_shift)) {
920                 kvmppc_gfn_shared(gfn, kvm);
921                 ret = H_SUCCESS;
922         }
923         kvm_release_pfn_clean(pfn);
924         mutex_unlock(&kvm->arch.uvmem_lock);
925 out:
926         srcu_read_unlock(&kvm->srcu, srcu_idx);
927         return ret;
928 }
929
930 /*
931  * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
932  *
933  * H_PAGE_IN_SHARED flag makes the page shared which means that the same
934  * memory in is visible from both UV and HV.
935  */
936 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
937                 unsigned long flags,
938                 unsigned long page_shift)
939 {
940         unsigned long start, end;
941         struct vm_area_struct *vma;
942         int srcu_idx;
943         unsigned long gfn = gpa >> page_shift;
944         int ret;
945
946         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
947                 return H_UNSUPPORTED;
948
949         if (page_shift != PAGE_SHIFT)
950                 return H_P3;
951
952         if (flags & ~H_PAGE_IN_SHARED)
953                 return H_P2;
954
955         if (flags & H_PAGE_IN_SHARED)
956                 return kvmppc_share_page(kvm, gpa, page_shift);
957
958         ret = H_PARAMETER;
959         srcu_idx = srcu_read_lock(&kvm->srcu);
960         mmap_read_lock(kvm->mm);
961
962         start = gfn_to_hva(kvm, gfn);
963         if (kvm_is_error_hva(start))
964                 goto out;
965
966         mutex_lock(&kvm->arch.uvmem_lock);
967         /* Fail the page-in request of an already paged-in page */
968         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
969                 goto out_unlock;
970
971         end = start + (1UL << page_shift);
972         vma = find_vma_intersection(kvm->mm, start, end);
973         if (!vma || vma->vm_start > start || vma->vm_end < end)
974                 goto out_unlock;
975
976         if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
977                                 true))
978                 goto out_unlock;
979
980         ret = H_SUCCESS;
981
982 out_unlock:
983         mutex_unlock(&kvm->arch.uvmem_lock);
984 out:
985         mmap_read_unlock(kvm->mm);
986         srcu_read_unlock(&kvm->srcu, srcu_idx);
987         return ret;
988 }
989
990
991 /*
992  * Fault handler callback that gets called when HV touches any page that
993  * has been moved to secure memory, we ask UV to give back the page by
994  * issuing UV_PAGE_OUT uvcall.
995  *
996  * This eventually results in dropping of device PFN and the newly
997  * provisioned page/PFN gets populated in QEMU page tables.
998  */
999 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
1000 {
1001         struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
1002
1003         if (kvmppc_svm_page_out(vmf->vma, vmf->address,
1004                                 vmf->address + PAGE_SIZE, PAGE_SHIFT,
1005                                 pvt->kvm, pvt->gpa, vmf->page))
1006                 return VM_FAULT_SIGBUS;
1007         else
1008                 return 0;
1009 }
1010
1011 /*
1012  * Release the device PFN back to the pool
1013  *
1014  * Gets called when secure GFN tranistions from a secure-PFN
1015  * to a normal PFN during H_SVM_PAGE_OUT.
1016  * Gets called with kvm->arch.uvmem_lock held.
1017  */
1018 static void kvmppc_uvmem_page_free(struct page *page)
1019 {
1020         unsigned long pfn = page_to_pfn(page) -
1021                         (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
1022         struct kvmppc_uvmem_page_pvt *pvt;
1023
1024         spin_lock(&kvmppc_uvmem_bitmap_lock);
1025         bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
1026         spin_unlock(&kvmppc_uvmem_bitmap_lock);
1027
1028         pvt = page->zone_device_data;
1029         page->zone_device_data = NULL;
1030         if (pvt->remove_gfn)
1031                 kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1032         else
1033                 kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1034         kfree(pvt);
1035 }
1036
1037 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
1038         .page_free = kvmppc_uvmem_page_free,
1039         .migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
1040 };
1041
1042 /*
1043  * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
1044  */
1045 unsigned long
1046 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
1047                       unsigned long flags, unsigned long page_shift)
1048 {
1049         unsigned long gfn = gpa >> page_shift;
1050         unsigned long start, end;
1051         struct vm_area_struct *vma;
1052         int srcu_idx;
1053         int ret;
1054
1055         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
1056                 return H_UNSUPPORTED;
1057
1058         if (page_shift != PAGE_SHIFT)
1059                 return H_P3;
1060
1061         if (flags)
1062                 return H_P2;
1063
1064         ret = H_PARAMETER;
1065         srcu_idx = srcu_read_lock(&kvm->srcu);
1066         mmap_read_lock(kvm->mm);
1067         start = gfn_to_hva(kvm, gfn);
1068         if (kvm_is_error_hva(start))
1069                 goto out;
1070
1071         end = start + (1UL << page_shift);
1072         vma = find_vma_intersection(kvm->mm, start, end);
1073         if (!vma || vma->vm_start > start || vma->vm_end < end)
1074                 goto out;
1075
1076         if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL))
1077                 ret = H_SUCCESS;
1078 out:
1079         mmap_read_unlock(kvm->mm);
1080         srcu_read_unlock(&kvm->srcu, srcu_idx);
1081         return ret;
1082 }
1083
1084 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
1085 {
1086         unsigned long pfn;
1087         int ret = U_SUCCESS;
1088
1089         pfn = gfn_to_pfn(kvm, gfn);
1090         if (is_error_noslot_pfn(pfn))
1091                 return -EFAULT;
1092
1093         mutex_lock(&kvm->arch.uvmem_lock);
1094         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
1095                 goto out;
1096
1097         ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
1098                          0, PAGE_SHIFT);
1099 out:
1100         kvm_release_pfn_clean(pfn);
1101         mutex_unlock(&kvm->arch.uvmem_lock);
1102         return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
1103 }
1104
1105 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
1106 {
1107         int ret = __kvmppc_uvmem_memslot_create(kvm, new);
1108
1109         if (!ret)
1110                 ret = kvmppc_uv_migrate_mem_slot(kvm, new);
1111
1112         return ret;
1113 }
1114
1115 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
1116 {
1117         __kvmppc_uvmem_memslot_delete(kvm, old);
1118 }
1119
1120 static u64 kvmppc_get_secmem_size(void)
1121 {
1122         struct device_node *np;
1123         int i, len;
1124         const __be32 *prop;
1125         u64 size = 0;
1126
1127         /*
1128          * First try the new ibm,secure-memory nodes which supersede the
1129          * secure-memory-ranges property.
1130          * If we found some, no need to read the deprecated ones.
1131          */
1132         for_each_compatible_node(np, NULL, "ibm,secure-memory") {
1133                 prop = of_get_property(np, "reg", &len);
1134                 if (!prop)
1135                         continue;
1136                 size += of_read_number(prop + 2, 2);
1137         }
1138         if (size)
1139                 return size;
1140
1141         np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
1142         if (!np)
1143                 goto out;
1144
1145         prop = of_get_property(np, "secure-memory-ranges", &len);
1146         if (!prop)
1147                 goto out_put;
1148
1149         for (i = 0; i < len / (sizeof(*prop) * 4); i++)
1150                 size += of_read_number(prop + (i * 4) + 2, 2);
1151
1152 out_put:
1153         of_node_put(np);
1154 out:
1155         return size;
1156 }
1157
1158 int kvmppc_uvmem_init(void)
1159 {
1160         int ret = 0;
1161         unsigned long size;
1162         struct resource *res;
1163         void *addr;
1164         unsigned long pfn_last, pfn_first;
1165
1166         size = kvmppc_get_secmem_size();
1167         if (!size) {
1168                 /*
1169                  * Don't fail the initialization of kvm-hv module if
1170                  * the platform doesn't export ibm,uv-firmware node.
1171                  * Let normal guests run on such PEF-disabled platform.
1172                  */
1173                 pr_info("KVMPPC-UVMEM: No support for secure guests\n");
1174                 goto out;
1175         }
1176
1177         res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
1178         if (IS_ERR(res)) {
1179                 ret = PTR_ERR(res);
1180                 goto out;
1181         }
1182
1183         kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
1184         kvmppc_uvmem_pgmap.range.start = res->start;
1185         kvmppc_uvmem_pgmap.range.end = res->end;
1186         kvmppc_uvmem_pgmap.nr_range = 1;
1187         kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
1188         /* just one global instance: */
1189         kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
1190         addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
1191         if (IS_ERR(addr)) {
1192                 ret = PTR_ERR(addr);
1193                 goto out_free_region;
1194         }
1195
1196         pfn_first = res->start >> PAGE_SHIFT;
1197         pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
1198         kvmppc_uvmem_bitmap = bitmap_zalloc(pfn_last - pfn_first, GFP_KERNEL);
1199         if (!kvmppc_uvmem_bitmap) {
1200                 ret = -ENOMEM;
1201                 goto out_unmap;
1202         }
1203
1204         pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
1205         return ret;
1206 out_unmap:
1207         memunmap_pages(&kvmppc_uvmem_pgmap);
1208 out_free_region:
1209         release_mem_region(res->start, size);
1210 out:
1211         return ret;
1212 }
1213
1214 void kvmppc_uvmem_free(void)
1215 {
1216         if (!kvmppc_uvmem_bitmap)
1217                 return;
1218
1219         memunmap_pages(&kvmppc_uvmem_pgmap);
1220         release_mem_region(kvmppc_uvmem_pgmap.range.start,
1221                            range_len(&kvmppc_uvmem_pgmap.range));
1222         bitmap_free(kvmppc_uvmem_bitmap);
1223 }